JPH09209762A - Combustion chamber structure for in cylinder direct injection type spark ignition engine - Google Patents

Combustion chamber structure for in cylinder direct injection type spark ignition engine

Info

Publication number
JPH09209762A
JPH09209762A JP8024331A JP2433196A JPH09209762A JP H09209762 A JPH09209762 A JP H09209762A JP 8024331 A JP8024331 A JP 8024331A JP 2433196 A JP2433196 A JP 2433196A JP H09209762 A JPH09209762 A JP H09209762A
Authority
JP
Japan
Prior art keywords
combustion chamber
ignition
tumble flow
fuel
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8024331A
Other languages
Japanese (ja)
Other versions
JP3681080B2 (en
Inventor
Akira Akimoto
晃 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP02433196A priority Critical patent/JP3681080B2/en
Priority to GB9702648A priority patent/GB2310003B/en
Priority to US08/796,482 priority patent/US5960767A/en
Priority to DE19705023A priority patent/DE19705023B4/en
Publication of JPH09209762A publication Critical patent/JPH09209762A/en
Application granted granted Critical
Publication of JP3681080B2 publication Critical patent/JP3681080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/102Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the spark plug being placed offset the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/241Cylinder heads specially adapted to pent roof shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To set a fuel injection termination timing at a stratified combustion time in a wide range according to a fuel injection amount. SOLUTION: A combustion chamber 14 is formed into a pent roof type, an injector 15 is vertically disposed at the top 12b of the combustion chamber 14, and a slate-like intake port 16 is made to be approximately parallel with the extension line LEX of an exhaust side pent roof face or is tilted thereto making an acute angle so that cylinder intake air flows out in the direction of the exhaust side pent roof face so as to cause tumble flow. On a piston top face 13a, a curved face-like cavity 13b is formed in order to turn the tumble flow flowing in from the exhaust side pent roof face toward an intake side pent roof face, and the ignition portion 23a of an ignition plug is disposed in the flowing direction of the tumble flow from the cavity 13b. Fuel injection timing at an extremely low load operation is to ignite the rear end of a spray terminating just before ignition, and the fuel spray at a low and medium load operation time is ignited when the spray collides with the cavity 13b and winds up. In early injection at an acceleration time, the spray winds up along the tumble flow of the in cylinder intake air so as to form ignitable air-fuel mixture in the ignition portion 23a of the ignition plug.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、筒内吸入空気にタ
ンブル流を生起させて、燃料噴射終了時期を燃料噴射量
に応じて広範囲に設定することのできる筒内直噴式火花
点火エンジンの燃焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to combustion in a cylinder direct injection type spark ignition engine in which a tumble flow is generated in cylinder intake air and the fuel injection end timing can be set in a wide range according to the fuel injection amount. Regarding the room structure.

【0002】[0002]

【従来の技術】従来、この種の筒内直噴式火花点火エン
ジンでは、圧縮行程後半に燃料を噴射して混合気を成層
化し、点火プラグの発火部の周囲に着火可能な混合気を
形成して、希薄空燃比下でも安定した燃焼が得られる成
層燃焼と、吸気行程中に燃料を噴射して、吸入空気と均
一に混合させることで、いわゆる予混合と同等の空気利
用率を確保する均一燃焼とを選択に切換えることが可能
である。
2. Description of the Related Art Conventionally, in this type of direct injection type spark ignition engine, fuel is injected in the latter half of the compression stroke to stratify the air-fuel mixture and form an ignitable air-fuel mixture around the ignition part of the spark plug. As a result, stratified charge combustion that can obtain stable combustion even under a lean air-fuel ratio, and by injecting fuel during the intake stroke and mixing it evenly with intake air, an air utilization rate equivalent to so-called premixing is ensured. It is possible to switch between combustion and selection.

【0003】このような上記成層燃焼と均一燃焼に適し
た燃焼室構造として、本出願人は、特開平6−4235
2号公報において、インジェクタを燃焼室頂部中央に垂
立状に配設し、また上記インジェクタの噴射方向に対設
するピストン頂面にキャビティを形成し、さらに点火プ
ラグの発火部を上記インジェクタの噴孔の近傍に臨ませ
た筒内直噴式火花点火エンジンの燃焼室構造を提案し
た。
As a combustion chamber structure suitable for such stratified combustion and uniform combustion, the applicant of the present invention has disclosed in Japanese Unexamined Patent Publication No. 6-4235.
In Japanese Unexamined Patent Publication No. 2 (1999), an injector is vertically arranged in the center of the top of a combustion chamber, a cavity is formed on a piston top surface opposite to the injection direction of the injector, and a firing portion of a spark plug is connected to the injector. A combustion chamber structure for a direct injection spark ignition engine facing the vicinity of the hole was proposed.

【0004】この燃焼室構造によれば、成層燃焼時、点
火時期直前で噴射終了した燃料噴霧の後端に着火し、或
は上記ピストンキャビティに衝突して反射した混合気に
着火することで、安定燃焼を得るようにしている。ま
た、均一燃焼時には、吸気行程の比較的早い時期に噴射
を開始することで、空気利用率の高い均一混合気を得る
ことができ、しかもインジェクタを燃焼室頂部に垂立状
に配設したことで、燃料噴霧がシリンダボアの壁面に付
着せず、いわゆる燃料冷却による燃焼の悪化等も防止す
ることができる。
According to this structure of the combustion chamber, during stratified combustion, ignition is performed at the trailing end of the fuel spray that has been injected immediately before the ignition timing, or by ignition of the air-fuel mixture reflected by colliding with the piston cavity, I try to get stable combustion. Also, during uniform combustion, by injecting at a relatively early stage of the intake stroke, a uniform air-fuel mixture with a high air utilization rate can be obtained, and the injector is installed vertically on the top of the combustion chamber. Therefore, the fuel spray does not adhere to the wall surface of the cylinder bore, and it is possible to prevent deterioration of combustion due to so-called fuel cooling.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記先行技
術のように、燃料の噴霧作用のみによって点火プラグの
発火位置に安定着火可能な可燃混合気を形成して安定着
火させようとする場合の、着火が最良となる最適燃料噴
射(終了)時期(BITI)は、図13に破線で示すよ
うに、燃料噴射量(負荷)に対する依存性は低く、すな
わち、点火時期に対して噴射終了時期をほぼ一定に保て
ば良いことが解る。
By the way, in the case of forming a stable ignitable combustible mixture at the ignition position of the spark plug by only the spraying action of the fuel as in the prior art described above, it is attempted to perform stable ignition. The optimum fuel injection (end) timing (BITI) at which ignition is best has little dependency on the fuel injection amount (load) as shown by the broken line in FIG. 13, that is, the injection end timing is almost equal to the ignition timing. It turns out that it should be kept constant.

【0006】しかし、燃料噴射量が増加すると、燃料噴
霧の気化不足や混合不足による局所的な過濃により、煤
が発生したり、CO(一酸化炭素)の増加による排気エ
ミッションの悪化、及び燃焼室壁面、排気管等へのカー
ボンの堆積等に起因して、種々の機能障害を引き起す可
能性がある。そのため、現実には、混合気形成の時間、
すなわち燃料噴射終了から点火までの時間を燃料噴射量
に応じて制御して、燃料の気化、拡散を調整する必要が
ある。
However, when the fuel injection amount increases, soot is generated due to local concentration due to insufficient vaporization or insufficient mixing of the fuel spray, deterioration of exhaust emission due to increase of CO (carbon monoxide), and combustion. Various functional disorders may be caused due to carbon deposition on the chamber wall surface, exhaust pipe, and the like. Therefore, in reality,
That is, it is necessary to adjust the vaporization and diffusion of fuel by controlling the time from the end of fuel injection to ignition in accordance with the fuel injection amount.

【0007】また、図14に示すように、点火時期に対
し燃料噴射(終了)時期を次第に早める(遠ざける)
と、ある進角度以前では燃料噴射の拡散や気化の進行に
よる予混合で、CO、HC、NOXが増大し、逆に、点
火時期近傍へ次第に遅らせる(近づける)と、発火部周
囲の空燃比過濃や気化不足によって煤の発生量が増加す
る。なお、この煤の発生時期は、同図に破線で示すよう
に、燃料噴射量の増加に従い、次第に早い噴射時期で発
生する。従って、排気ガス(煤、CO、HC、NOX
等)対策の観点からの最適噴射時期(BITE)制御で
は、図12に実線で示すように、燃料噴射量(負荷)が
増加するに従って噴射時期を早める制御を行う必要があ
る。
Further, as shown in FIG. 14, the fuel injection (end) timing is gradually advanced (distanced) with respect to the ignition timing.
Then, before a certain advance angle, CO, HC, and NOx increase due to premixing due to diffusion of fuel injection and progress of vaporization, and conversely, when gradually retarded (closed) to near the ignition timing, the air-fuel ratio excess around the ignition part is increased. The amount of soot generated increases due to richness and insufficient vaporization. The soot is generated at a gradually earlier injection timing as the fuel injection amount increases, as indicated by the broken line in the figure. Therefore, exhaust gas (soot, CO, HC, NOX
In the optimum injection timing (BITE) control from the viewpoint of countermeasures, it is necessary to perform control for advancing the injection timing as the fuel injection amount (load) increases, as shown by the solid line in FIG.

【0008】その結果、成層燃焼においては、着火性に
主眼をおくBITI制御と、排気ガス対策に主眼をおく
BITE制御とでは、制御領域が必然的に相違してく
る。
As a result, in the stratified charge combustion, the control region is inevitably different between the BITI control which focuses on ignitability and the BITE control which focuses on exhaust gas countermeasures.

【0009】ところが、上記BITE制御であっても、
例えば、図15に示すような、ピストン1の頂面にフラ
ットなキャビティ1aが形成されている燃焼室構造で
は、燃料噴射(終了)時期を早期に設定すると、インジ
ェクタ2から噴射された燃料噴霧は、上記キャビティ1
aに衝突して周囲に拡散されてしまい、点火プラグ3の
発火部3a付近まで巻上がらず、この発火部3aの周囲
に着火可能な混合気を形成することができず、失火、或
は燃焼不良を招く。従って、このようなピストン形状の
エンジンでは、点火時期近傍で噴射を終了させ、燃料噴
霧の後端に着火させる必要があり、燃料噴射(終了)時
期を燃料噴射量に応じて早期化させるには限界がある。
However, even with the above BITE control,
For example, in the combustion chamber structure in which the flat cavity 1a is formed on the top surface of the piston 1 as shown in FIG. 15, if the fuel injection (end) timing is set early, the fuel spray injected from the injector 2 will be , Above cavity 1
Since it collides with a and is diffused to the surroundings, it does not wind up to the vicinity of the ignition part 3a of the ignition plug 3, and an ignitable air-fuel mixture cannot be formed around this ignition part 3a, resulting in misfire or combustion. Cause defects. Therefore, in such a piston-shaped engine, it is necessary to end the injection near the ignition timing and ignite the rear end of the fuel spray, and to advance the fuel injection (end) timing in accordance with the fuel injection amount. There is a limit.

【0010】この点、上記先行技術のように、ピストン
頂面のキャビティを曲面形状に形成すれば、インジェク
タから噴射された燃料は、上記キャビティの曲面に沿っ
て巻上がり、点火プラグの発火部周囲に可燃混合気を形
成することが可能になり、燃料噴射の早期化も在る程度
は設定することができる。しかし、燃料の噴射霧作用の
みで混合気を上記キャビティから点火プラグの発火部周
囲に巻上げるためには、燃料(終了)噴射を早期に終了
すると、この混合気が点火時期までの間に周囲に拡散し
てしまい、点火時には、上記点火プラグの発火部周囲に
着火可能な混合気が形成されなくなる。
In this respect, if the cavity on the top surface of the piston is formed in a curved shape as in the above-mentioned prior art, the fuel injected from the injector is rolled up along the curved surface of the cavity and around the ignition portion of the spark plug. It becomes possible to form a combustible air-fuel mixture, and it is possible to set the degree to which the fuel injection is accelerated. However, in order to wind the air-fuel mixture from the above cavity to the periphery of the ignition part of the spark plug only by the action of fuel injection and mist, if the fuel (end) injection is ended early, the air-fuel mixture will be surrounded by the ignition timing. Therefore, at the time of ignition, an ignitable air-fuel mixture is not formed around the ignition portion of the spark plug.

【0011】従って、上記先行技術に示されている燃焼
室構造では、燃料噴射量に応じて噴射時期を次第に早期
化すれば、点火時における発火部周囲の混合気が過度に
希薄化し、着火不良、或は火炎伝播不良による燃焼悪化
を招き、結果として、未燃焼燃料の排出を増大させてし
まうことになる。
Therefore, in the structure of the combustion chamber shown in the above-mentioned prior art, if the injection timing is gradually advanced according to the fuel injection amount, the air-fuel mixture around the ignition portion at the time of ignition becomes excessively diluted, resulting in poor ignition. Or, combustion deterioration is caused due to poor flame propagation, and as a result, the emission of unburned fuel is increased.

【0012】ところで、成層燃焼は点火プラグ周辺の空
気を利用して着火させるようにしているため、平均空燃
比が理論空燃比に近づくに従って、すなわち、燃料噴射
量が増加するに従い、点火プラグの発火部周囲の混合気
が過濃となり、或は気化不足が生じて煤、CO等が発生
し易くなる。そのため、成層燃焼時の平均空燃比には一
定のリッチ限界がある。一方、均一燃焼では、点火時に
は、既に予混合されているため、希薄混合気では充分に
着火できず、空燃比には一定のリーン限界がある。
By the way, in stratified charge combustion, the air around the spark plug is used for ignition, so that the ignition plug is ignited as the average air-fuel ratio approaches the stoichiometric air-fuel ratio, that is, as the fuel injection amount increases. The air-fuel mixture around the part becomes excessively rich, or insufficient vaporization occurs, and soot, CO, etc. are easily generated. Therefore, the average air-fuel ratio during stratified charge combustion has a certain rich limit. On the other hand, in the case of uniform combustion, since it is already premixed at the time of ignition, it cannot be satisfactorily ignited with a lean air-fuel mixture, and the air-fuel ratio has a certain lean limit.

【0013】一般に、成層燃焼は低中負荷運転に適し、
一方、均一燃焼は高負荷運転に適している。エンジン負
荷は、走行中に連続的に変化するものであり、また空燃
比をエンジン負荷に応じて可変設定する筒内直噴エンジ
ンでは、成層燃焼時のリッチ限界が均一燃焼時のリーン
限界よりも希薄な場合、運転領域が成層燃焼から均一燃
焼に切換わったときの空燃比が極端にリーン化し、一
方、均一燃焼から成層燃焼へ切換わったときには、空燃
比が極端にリッチ化してしまう。
Generally, stratified charge combustion is suitable for low and medium load operation,
On the other hand, uniform combustion is suitable for high load operation. The engine load changes continuously during running, and in a cylinder direct injection engine in which the air-fuel ratio is variably set according to the engine load, the rich limit during stratified combustion is greater than the lean limit during uniform combustion. When it is lean, the air-fuel ratio becomes extremely lean when the operating region is switched from stratified combustion to uniform combustion, while on the other hand, when the operating region is switched from uniform combustion to stratified combustion, the air-fuel ratio becomes extremely rich.

【0014】このように、燃焼方式が切換わる過渡的な
状況では、エンジン負荷に応じて設定する空燃比の連続
性が確保されず、燃焼の不安定化を招くばかりでなく、
排気エミッションが悪化し、良好なドライバビリティが
得られなくなる。すなわち、吸入空気量一定の条件下で
は、図13に破線で示すBITI制御で、均一燃焼時の
リーン限界P3に対して連続性を保つように成層燃焼時
の燃料噴射量を上記リーン限界P3の燃料噴射量と同レ
ベルP1に設定すると、煤の発生、及びCO増加などの
不都合が生じ、一方、この成層燃焼時の燃料噴射量の限
界値を煤の発生、及びCO増加を回避するリッチ限界P
2に設定すれば、燃焼方式が成層燃焼から均一燃焼に切
換わるときに、燃料噴射量がP2から、いきなり、P3に
増加してしまい、エンジン負荷に対する出力の連続性が
保たれなくなる。
As described above, in a transitional situation in which the combustion system is switched, the continuity of the air-fuel ratio set according to the engine load is not ensured, which not only causes instability of combustion, but also
Exhaust emission deteriorates, and good drivability cannot be obtained. That is, under the condition that the intake air amount is constant, the fuel injection amount during stratified combustion is set to the lean limit P3 so as to maintain continuity with respect to the lean limit P3 during uniform combustion by BITI control shown by the broken line in FIG. If the fuel injection amount is set to the same level as P1, inconveniences such as soot generation and CO increase occur. On the other hand, the limit value of the fuel injection amount at the time of stratified charge combustion is the rich limit for avoiding soot generation and CO increase. P
When set to 2, when the combustion system is switched from stratified combustion to uniform combustion, the fuel injection amount suddenly increases from P2 to P3, and the continuity of output with respect to the engine load cannot be maintained.

【0015】本発明は、上記事情に鑑みてなされたもの
で、成層燃焼時の燃料噴射終了時期を、排気エミッショ
ンを悪化させることなく燃料噴射量に応じて広範囲に設
定することができ、常に安定した着火性能が得られるば
かりでなく、成層燃焼と均一燃焼との切換え時における
負荷の連続性を確保することができて、良好なドライバ
ビリティを得ることのできる筒内直噴式火花点火エンジ
ンの燃焼室構造を提供することを目的としている。
The present invention has been made in view of the above circumstances, and the fuel injection end timing at the time of stratified charge combustion can be set in a wide range according to the fuel injection amount without deteriorating the exhaust emission and is always stable. Combustion in a direct-injection spark-ignition engine that not only provides excellent ignition performance but also ensures load continuity when switching between stratified combustion and uniform combustion, resulting in good drivability. It is intended to provide a room structure.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の発明は、吸気ポートを通過して供給され
る筒内吸入空気にタンブル流を生起させる筒内直噴式火
花点火エンジンの燃焼室構造において、燃焼室の吸気側
ルーフ面に開口する上記吸気ポートを、上記筒内吸入空
気が燃焼室頂部から排気側ルーフ面へ巻回してタンブル
流を生成するように上記排気側ルーフ面の延長線に対し
ほぼ平行か或は鋭角に配設し、またピストン頂面に、上
記排気側ルーフ面側からのタンブル流を上記吸気側ルー
フ面方向へターンさせると共にインジェクタからの燃料
噴霧を衝突後反射可能な曲面形状のキャビティを形成
し、さらにこのキャビティに流入したタンブル流及びこ
のキャビティに衝突した燃料噴霧の流出位置或は流出方
向に点火プラグの発火部を配設したことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a direct injection type spark ignition engine for a direct injection type spark ignition engine which causes a tumble flow in the intake air in the cylinder supplied through an intake port. In the combustion chamber structure, the exhaust side roof surface is formed so that the cylinder intake air is wound from the top of the combustion chamber to the exhaust side roof surface to generate a tumble flow through the intake port opening on the intake side roof surface of the combustion chamber. Is arranged substantially parallel to or at an acute angle to the extension line of the above, and the tumble flow from the exhaust side roof surface side is turned to the intake side roof surface direction and the fuel spray from the injector collides with the piston top surface. A curved cavity capable of back reflection is formed, and the spark plug is emitted at the outflow position or outflow direction of the tumble flow that has flowed into this cavity and the fuel spray that has collided with this cavity. Parts characterized by being arranged.

【0017】請求項2記載の発明は、筒内吸入空気にタ
ンブル流を生起させる筒内直噴式火花点火エンジンの燃
焼室構造において、燃焼室の吸気側ルーフ面に開口する
吸気ポートを、該吸気ポートからの空気流がピストン頂
面方向へ指向するように、シリンダ軸線に対する傾斜角
度を鋭角に配設し、上記ピストン頂面に、上記吸気側ル
ーフ面側からのタンブル流を排気側ルーフ面方向にター
ンさせると共にインジェクタからの燃料噴霧を衝突後反
射可能な曲面形状のキャビティを形成し、上記キャビテ
ィに流入したタンブル流及びこのキャビティに衝突した
燃料噴霧の流出位置或いは流出方向に点火プラグの発火
部を配設したことを特徴とする。
According to a second aspect of the present invention, in a combustion chamber structure of a direct injection type spark ignition engine for producing a tumble flow in a cylinder intake air, an intake port opened to a roof surface of an intake side of the combustion chamber is provided with the intake port. The inclination angle with respect to the cylinder axis is arranged at an acute angle so that the air flow from the port is directed toward the piston top surface, and the tumble flow from the intake side roof surface side is directed to the exhaust side roof surface direction on the piston top surface. And a curved cavity capable of reflecting the fuel spray from the injector after collision is formed and a tumble flow flowing into the cavity and the outflow position or outflow direction of the fuel spray colliding with this cavity are ignited by the ignition part of the spark plug. Is provided.

【0018】また、請求項3記載の発明は、請求項1或
いは請求項2記載の発明において、前記タンブル流のエ
ンジン1回転あたりの回転量を0.5〜1.7とすることを特
徴とする。
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the amount of rotation of the tumble flow per engine revolution is 0.5 to 1.7.

【0019】すなわち、請求項1記載の発明では、燃焼
室に供給される筒内吸入空気は、吸気ポートが排気側ル
ーフ面の延長線に対しほぼ平行か或は鋭角に配設されて
いるので、燃焼室頂部から排気側ルーフ面の方向へ流動
してタンブル流が生成される。そして、このタンブル流
がピストン頂面に形成した曲面形状のキャビティにガイ
ドされて、上記吸気ポートを開口する吸気側ルーフ面の
方向へターンされる。又、成層燃焼時にインジェクタか
ら燃焼室内へ所定タイミングで噴射される燃料は、無負
荷運転時、低負荷運転時等の点火時期直前で噴射終了さ
れた場合には上記ピストンに形成したキャビティに衝突
して反射し、加速運転時等で早期に燃料噴射終了した場
合には上記タンブル流に沿って上記キャビティから流出
される。そして、点火時に上記燃料噴霧の流出位置或は
流出方向に配設する点火プラグの発火部周囲に着火可能
な混合気が形成される。
That is, according to the first aspect of the present invention, the cylinder intake air supplied to the combustion chamber has the intake port arranged substantially parallel or at an acute angle to the extension line of the exhaust side roof surface. , Tumble flow is generated by flowing from the top of the combustion chamber toward the exhaust side roof surface. Then, the tumble flow is guided by the curved cavity formed on the top surface of the piston and turned toward the intake side roof surface that opens the intake port. Further, the fuel injected from the injector into the combustion chamber at a predetermined timing during stratified combustion collides with the cavity formed in the piston when the injection is finished just before the ignition timing during no-load operation or low-load operation. When the fuel injection ends early during acceleration operation or the like, the fuel flows out from the cavity along the tumble flow. At the time of ignition, an ignitable air-fuel mixture is formed around the ignition portion of the ignition plug arranged at the outflow position or the outflow direction of the fuel spray.

【0020】請求項2記載の発明では、燃焼室に供給さ
れる筒内吸入空気は、吸気ポートからピストン頂面方向
へ流動し、ピストン頂面に形成した曲面形状のキャビテ
ィにガイドされて、吸気側ルーフ面側から排気側ルーフ
面方向にターンされてタンブル流が生起される。又、成
層燃焼時にインジェクタから燃焼室内へ所定タイミング
で噴射される燃料は、無負荷運転時、低負荷運転時等の
点火時期直前で噴射終了された場合には、上記ピストン
頂面に形成した曲面形状のキャビティに衝突して反射
し、加速運転時等で早期に燃料噴射終了した場合には上
記タンブル流に沿ってキャビティから流出される。そし
て、点火時に上記燃料噴霧の流出位置或いは流出方向に
配設する点火プラグの発火部周囲に着火可能な混合気が
形成される。
According to the second aspect of the invention, the in-cylinder intake air supplied to the combustion chamber flows from the intake port toward the top surface of the piston, is guided by the curved cavity formed on the top surface of the piston, and intake air is introduced. A tumble flow is generated by turning from the side roof surface side toward the exhaust side roof surface side. Further, the fuel injected from the injector into the combustion chamber at a predetermined timing during stratified combustion has a curved surface formed on the top surface of the piston when the injection is finished just before the ignition timing during no-load operation or low-load operation. When the fuel injection is completed by colliding with a cavity having a shape and reflecting at the early stage, such as during acceleration operation, the fuel flows out from the cavity along the tumble flow. Then, upon ignition, an ignitable air-fuel mixture is formed around the ignition portion of the ignition plug arranged at the outflow position or the outflow direction of the fuel spray.

【0021】請求項3記載の発明では、請求項1或いは
請求項2記載の発明において、上記タンブル流のエンジ
ン1回転あたりの回転量を0.5〜1.7とすることで、上記
タンブル流が圧縮行程中途で減衰せず、しかも成層状態
で上記点火プラグの発火部に着火可能な混合気を送るこ
とができる。
According to the invention of claim 3, in the invention of claim 1 or 2, the rotation amount of the tumble flow per engine revolution is set to 0.5 to 1.7 so that the tumble flow is in the middle of the compression stroke. It is possible to send an air-fuel mixture which is not attenuated by and can be ignited to the ignition part of the spark plug in a stratified state.

【0022】[0022]

【発明の実施の形態】以下、図1〜図11に基づいて本
発明の実施の第一形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS.

【0023】図1〜図7には、筒内直噴式火花点火テエ
ンジンの一例として4バルブDOHCエンジンの燃焼室
構造が示されている。これらの図において、符号11は
シリンダブロック、12はシリンダヘッド、13はピス
トンで、このピストン13が上死点付近のときのピスト
ン13の頂面13aとシリンダブロック11の内壁と上
記シリンダヘッド12の底面とで筒内に燃焼室14を形
成する。
1 to 7 show a combustion chamber structure of a 4-valve DOHC engine as an example of a direct injection type spark ignition engine. In these drawings, reference numeral 11 is a cylinder block, 12 is a cylinder head, and 13 is a piston. When the piston 13 is near the top dead center, the top surface 13a of the piston 13, the inner wall of the cylinder block 11 and the cylinder head 12 are described. A combustion chamber 14 is formed in the cylinder with the bottom surface.

【0024】上記シリンダヘッド12の底面には内面凹
部12aが形成されている。この内面凹部12aはペン
トルーフ形で、その頂部12bはシリンダボアの中心か
ら一方へやや偏倚している。このペントルーフ形内面凹
部12aの上記頂部12bのほぼ中央に、インジェクタ
15が垂立され、その噴孔15aが上記燃焼室14に臨
まされている。また、上記シリンダヘッド12の内面凹
部12aの吸気側ペントルーフ面12cの上記インジェ
クタ15を挟む両側に吸気ポート16が各々開口され、
また排気側ペントルーフ面12dの上記インジェクタ1
5を挟む両側に排気ポート17が各々開口されている。
なお、上記シリンダヘッド12の上記内面凹部12aの
各ペントルーフ面12c,12dの裾部分に、スキッシ
ュエリア18が形成されている。
An inner surface recess 12a is formed on the bottom surface of the cylinder head 12. The inner surface concave portion 12a has a pent roof shape, and the top portion 12b thereof is slightly deviated from the center of the cylinder bore to one side. An injector 15 is erected substantially at the center of the top portion 12b of the pentroof-shaped inner surface recessed portion 12a, and an injection hole 15a thereof faces the combustion chamber 14. Further, intake ports 16 are opened on both sides of the intake-side pentroof surface 12c of the inner surface recessed portion 12a of the cylinder head 12 that sandwich the injector 15.
Also, the injector 1 on the exhaust side pentroof surface 12d
Exhaust ports 17 are opened on both sides sandwiching 5, respectively.
A squish area 18 is formed at the bottom of the pentroof surfaces 12c and 12d of the inner recess 12a of the cylinder head 12.

【0025】また、上記吸気ポート16及び上記排気ポ
ート17は、吸気カム19、排気カム20に連動する吸
気弁21及び排気弁22により所定タイミングで開閉さ
れる。図1に示すように、上記吸気ポート16は、上記
排気側ペントルーフ面12dの延長線LEXとほぼ平行か
或は鋭角に交差する傾斜角度θを有して形成されたスト
レートポートである。上記燃焼室14へ供給される筒内
吸入空気は、この吸気ポート16から上記内面凹部12
aの上記頂面12bを通り上記排気側ペントルーフ面1
2dの方向へ流れてタンブル流を生起する。
The intake port 16 and the exhaust port 17 are opened and closed at a predetermined timing by an intake valve 21 and an exhaust valve 22 which are interlocked with the intake cam 19 and the exhaust cam 20. As shown in FIG. 1, the intake port 16 is a straight port formed with an inclination angle θ that is substantially parallel to the extension line LEX of the exhaust side pentroof surface 12d or intersects with an acute angle. The cylinder intake air supplied to the combustion chamber 14 is supplied from the intake port 16 to the inner surface recess 12
The exhaust side pentroof surface 1 passing through the top surface 12b of a.
It flows in the direction of 2d to generate a tumble flow.

【0026】また、上記ピストン13の上記頂面13a
には、曲面形状のピストンキャビティ13bが形成され
ている。このピストンキャビティ13bは、上記タンブ
ル流が流れ込み易く、しかも、上記吸気側ペントルーフ
面12cの方向へ無理なくターンさせる曲率、及び位置
に形成されている。具体的には、図3に一点鎖線で示す
ように、上記インジェクタ15の直下方向の上記排気ポ
ート17側へやや偏倚した位置に形成されている。
The top surface 13a of the piston 13 is also
A curved piston cavity 13b is formed in the. The piston cavity 13b is formed to have a curvature and a position at which the tumble flow easily flows in, and moreover, the tumble flow easily turns in the direction of the intake side pentroof surface 12c. Specifically, as shown by the alternate long and short dash line in FIG. 3, it is formed at a position slightly offset to the side of the exhaust port 17 directly below the injector 15.

【0027】一方、点火プラグ23の発火部23aは、
吸気側ペントルーフ面12cの吸気ポート16間に臨ま
され、上記ピストンキャビティ13bから流出する上記
タンブル流及び燃料噴霧の流出位置或は流出方向に配設
されている。
On the other hand, the ignition part 23a of the ignition plug 23 is
The tumble flow and the fuel spray, which are exposed between the intake ports 16 on the intake-side pentroof surface 12c, are disposed at the outflow position or the outflow direction of the tumble flow and the fuel spray.

【0028】上記タンブル流のタンブル比(定常流試験
により求めたエンジン1回転あたりの筒内吸入空気の回
転量)は、上記吸気ポート16の傾斜角θ、燃焼室1
4、及びピストン13の形状等、種々の要素によって決
定されるが、本実施の形態では、主に吸気ポート16の
傾斜角θとピストンキャビティ13bの位置及び曲率で
決定している。また、このタンブル比は、実験から約0.
5〜1.7を理想としている。タンブル比<0.5では、圧縮
行程前にタンブル流が減衰してしまい、混合気形成に有
効に作用させることができない。一方、タンブル比>1.
7では、タンブル流が強すぎ、上記ピストン13のキャ
ビティ13bから流出した筒内吸入空気はシリンダ壁面
の方向へ偏在してしまい、すなわち吸気側ペントルーフ
面12cの方向へターンせずにボア方向へ広がってしま
うため、上記ピストンキャビティ13bに向って噴射さ
れた燃料の噴霧が上記タンブル流に沿って流れてまい、
点火プラグ23の発火部23a周辺に着火可能な混合気
が形成されなくなる。従って、タンブル比は、0.5〜1.7
に設定することが望ましい。
The tumble ratio of the tumble flow (the amount of rotation of the intake air in the cylinder per engine revolution determined by the steady flow test) is determined by the inclination angle θ of the intake port 16 and the combustion chamber 1
4 and the shape of the piston 13, but in the present embodiment, the inclination angle θ of the intake port 16 and the position and curvature of the piston cavity 13b are mainly determined. Also, this tumble ratio is about 0 from the experiment.
The ideal is 5 to 1.7. When the tumble ratio is <0.5, the tumble flow is attenuated before the compression stroke, and the tumble flow cannot be effectively acted on the mixture formation. On the other hand, tumble ratio> 1.
In the case of 7, the tumble flow is too strong and the in-cylinder intake air flowing out from the cavity 13b of the piston 13 is unevenly distributed in the direction of the cylinder wall surface, that is, it spreads in the bore direction without turning in the direction of the intake side pentroof surface 12c. Therefore, the spray of fuel injected toward the piston cavity 13b does not flow along the tumble flow,
An ignitable air-fuel mixture is not formed around the ignition part 23a of the spark plug 23. Therefore, the tumble ratio is 0.5 to 1.7.
It is desirable to set to.

【0029】次に、上記構成による作用について説明す
る。
Next, the operation of the above configuration will be described.

【0030】極低負荷時の成層燃焼では、燃料噴射量は
少なく、最適燃料噴射時期は煤の発生が無く安定した着
火が得られるBITI制御(=無負荷相当のBITE制
御)で行う。この場合、最適燃料噴射時期は、点火時期
の近くに設定されるので、図4に示すように、インジェ
クタ15の噴孔15aから噴射して、点火プラグ23の
発火部23aの周辺に自ら作りだした混合気に対して着
火する。極低負荷運転時のガス流動の速度は低いため、
この混合気がガス流動やピストン13の頂面13aに形
成したピストンキャビティ13bの形状などの影響を受
けることはない。
In the stratified charge combustion at an extremely low load, the amount of fuel injection is small, and the optimum fuel injection timing is BITI control (= BITE control corresponding to no load) so that stable ignition can be obtained without soot generation. In this case, since the optimum fuel injection timing is set near the ignition timing, as shown in FIG. 4, the fuel is injected from the injection hole 15a of the injector 15 and self-produced around the ignition portion 23a of the ignition plug 23. Ignite the mixture. Since the gas flow rate is low during extremely low load operation,
This air-fuel mixture is not affected by the gas flow or the shape of the piston cavity 13b formed on the top surface 13a of the piston 13.

【0031】また、一定速度走行相当(R/L負荷)で
のBITE制御は、図8に示すように、BITI制御よ
りも早期に噴射終了となり、従って、噴射エンド時の燃
料噴霧は、点火前に点火プラグ23の発火部23aを通
り過ぎてピストン13の頂面13aに形成したピストン
キヤビティ13bに衝突して、図5に示すように、巻上
がり、点火時には、上記点火プラグ23の発火部23a
の周囲に着火可能な混合気が形成される。その結果、図
8に示すように、早期の燃料噴射タイミングでもBIT
E制御が可能になる。ここで、同図に一点鎖線で示す
(b)は、図15に示すピストン頂面のキャビティがフ
ラットな場合における同じタイミングで燃料噴射したと
きの着火性を示すもので、キャビティがフラットなピス
トンでは、キャビテイに衝突した燃料噴霧は上方へ反射
せずにボア方向へ拡散し、点火プラグ23の発火部23
aに着火可能な混合気が形成されず、着火不良などによ
り燃焼が悪化する。従って、BITE制御を行うことは
できない。
Further, as shown in FIG. 8, the BITE control corresponding to the constant speed running (R / L load) ends the injection earlier than the BITI control. Therefore, the fuel spray at the end of the injection is the fuel before the ignition. When passing through the ignition part 23a of the ignition plug 23 and colliding with the piston cavity 13b formed on the top surface 13a of the piston 13, as shown in FIG.
An ignitable mixture is formed around the. As a result, as shown in FIG. 8, even if the fuel injection timing is early, the BIT
E control becomes possible. Here, (b) shown by a dashed line in the same figure shows the ignitability when fuel is injected at the same timing when the cavity of the piston top surface shown in FIG. 15 is flat. , The fuel spray colliding with the cavities does not reflect upward but diffuses in the bore direction, and the ignition part 23 of the spark plug 23
No air-fuel mixture that can be ignited is formed in a, and combustion deteriorates due to poor ignition. Therefore, BITE control cannot be performed.

【0032】さらに、加速負荷相当でのBITE制御で
は、図8に示すように燃料噴射(終了)時期がさらに早
期になる。このように燃料噴射時期が早期化すると燃料
噴霧の拡散や気化が進み、例えば、燃焼室14にガス流
動が生じていない場合は、図6に示すようにピストン1
3の頂面13aに混合気が比較的広く分布した状態にな
る。ここで、図7に示すように、燃焼室14にタンブル
流によるガス流動を与えると、上記混合気は点火プラグ
23の発火部23aの方向へ巻上がり、点火時には、こ
の発火部23aの周囲に安定着火、燃焼可能な混合気が
形成される。従って、本形態では、図8に示すように、
加速時相当の早期噴射でも、BITE制御が可能にな
り、同図に太線で示すように、遅れ側(a)と早期側
(d)を失火限界とした広範囲に渡って良好な着火、燃
焼性能を得ることができる。なお、同図(a)の領域
は、点火時期に対して燃料噴射終了時期が近すぎるため
に、燃料噴霧が点火プラグ23の放電経路を遮断するこ
とにより生じる失火限界を示す。
Further, in the BITE control corresponding to the acceleration load, the fuel injection (end) timing becomes earlier as shown in FIG. When the fuel injection timing is advanced in this way, diffusion and vaporization of the fuel spray progresses. For example, when gas flow does not occur in the combustion chamber 14, as shown in FIG.
The air-fuel mixture is relatively widely distributed on the top surface 13a of No. 3. Here, as shown in FIG. 7, when a gas flow by a tumble flow is applied to the combustion chamber 14, the air-fuel mixture rolls up toward the ignition portion 23a of the ignition plug 23, and at the time of ignition, the air-fuel mixture is surrounded by the ignition portion 23a. A stable ignition and combustible mixture is formed. Therefore, in this embodiment, as shown in FIG.
BITE control is possible even in early injection equivalent to acceleration, and as shown by the thick line in the figure, good ignition and combustion performance over a wide range with the delay side (a) and the early side (d) as the misfire limit. Can be obtained. The region (a) of the figure shows the misfire limit caused by the fuel spray blocking the discharge path of the ignition plug 23 because the fuel injection end timing is too close to the ignition timing.

【0033】また、図10に、タンブル比一定で、ピス
トンキャビティがフラットなエンジンと、本発明のよう
にピストンキャビテイが曲面形状のエンジンとの燃焼、
排気ガス特性の比較結果を示す。
Further, FIG. 10 shows combustion between an engine having a constant tumble ratio and a flat piston cavity, and an engine having a curved piston cavity as in the present invention.
The comparison result of exhaust gas characteristics is shown.

【0034】同図に太線で示す本発明によるエンジンで
は、成層燃焼時に燃料噴射終了時期を早期に設定しても
良好な着火、燃焼性能が得られ、従って、燃料噴射時期
を広範囲に設定することができが、細線で示すピストン
キャビティがフラットなエンジンでは、ガス流動による
噴霧の反射や巻上げが有効に利用されず、燃料噴射終了
時期がかなり点火時期の近くに設定しないと点火プラグ
の発火部の周囲に着火可能な混合気が形成できず、早期
燃料噴射側での着火性が悪く、燃料噴射終了時期を広範
囲に設定できない。
In the engine according to the present invention shown by the bold line in the figure, good ignition and combustion performance can be obtained even if the fuel injection end timing is set early during stratified combustion. Therefore, the fuel injection timing should be set in a wide range. However, in an engine with a flat piston cavity shown by the thin line, the reflection and hoisting of the spray due to gas flow is not effectively used, and the fuel injection end timing must be set very close to the ignition timing, An ignitable air-fuel mixture cannot be formed in the surroundings, the ignitability on the early fuel injection side is poor, and the fuel injection end timing cannot be set in a wide range.

【0035】また、図11にタンブル流の回転方向、及
びタンブル比による燃焼、排気ガス特性の違いを比較し
た結果を示す。
Further, FIG. 11 shows the results of comparing the difference in combustion and exhaust gas characteristics depending on the rotation direction of the tumble flow and the tumble ratio.

【0036】まず、タンブル流の回転方向が本実施の形
態による場合と、逆方向へタンブル流を生起させた場合
とを比較すると、逆方向へのタンブル流を生起させた場
合には、ピストンキャビティに衝突した燃料の噴霧が点
火プラグの発火位置と逆の方向へ巻上がってしまうた
め、早期噴射では点火位置の混合気が希薄化し、着火性
が悪い。次に、タンブル比の影響について比較すれば、
タンブル比に最適値があることが解る。実験では、本発
明の燃焼室、ピストン形状ではタンブル比1.0が最適値
を示しており、タンブル比=0.5〜1.7が安定着火、燃焼
可能な範囲と設定することができる。すなわち、0.5>
タンブル比ではタンブル流が圧縮行程前で減衰し、混合
気形成に有効に作用しない。また、2.0<タンブル比で
は、タンブル流が強すぎて燃料噴霧が拡散してしまい、
点火時に点火プラグの発火部に着火可能な混合気が形成
されなくなる。
First, comparing the case where the rotation direction of the tumble flow is according to this embodiment and the case where the tumble flow is generated in the opposite direction, when the tumble flow is generated in the opposite direction, the piston cavity Since the fuel spray that has collided with is wound up in the direction opposite to the ignition position of the spark plug, the air-fuel mixture at the ignition position is diluted in the early injection, resulting in poor ignitability. Next, comparing the effects of the tumble ratio,
It can be seen that the tumble ratio has an optimum value. In the experiment, the tumble ratio of 1.0 is the optimum value in the combustion chamber and piston shape of the present invention, and the tumble ratio of 0.5 to 1.7 can be set to the range in which stable ignition and combustion are possible. That is, 0.5>
At the tumble ratio, the tumble flow is attenuated before the compression stroke and does not act effectively on the mixture formation. Further, at 2.0 <tumble ratio, the tumble flow is too strong and the fuel spray diffuses,
At the time of ignition, an ignitable air-fuel mixture is not formed in the ignition part of the spark plug.

【0037】図9には、各運転領域でのBITE制御に
よる燃料噴射時期で実際に運転可能な空燃比範囲を示
す。各運転領域の空燃比及び燃料噴射終了時期は、前述
した各実験結果に基づいて、すなわち燃料噴霧による放
電経路遮断、煤の発生、混合気の希薄燃焼変動等の限界
によって決定される。この図からわかるように、本発明
の燃焼室構造を採用することで、成層燃焼から均一燃焼
までのBITE及び空燃比を、着火性、燃焼性を損うこ
と無く連続的に変化させることが可能になる。
FIG. 9 shows the air-fuel ratio range that can be actually operated at the fuel injection timing by BITE control in each operation region. The air-fuel ratio and the fuel injection end timing of each operating region are determined based on the above-mentioned experimental results, that is, the discharge path cutoff due to the fuel spray, the generation of soot, the lean combustion fluctuation of the air-fuel mixture, and the like. As can be seen from this figure, by adopting the combustion chamber structure of the present invention, it is possible to continuously change the BITE and the air-fuel ratio from stratified combustion to uniform combustion without impairing ignitability and combustibility. become.

【0038】図12に本発明の実施の第二形態を示す。FIG. 12 shows a second embodiment of the present invention.

【0039】本形態では、前記第一の形態において吸気
ポート16間に発火部23aを臨まさせている点火プラ
グ23を、排気ポート17側に配設したものである。
In this embodiment, the spark plug 23, which faces the ignition portion 23a between the intake ports 16 in the first embodiment, is arranged on the exhaust port 17 side.

【0040】この場合、吸気ポート16の傾斜角度θを
前記第一形態よりも狭角の鋭角とし、前記第一形態と逆
方向へタンブル流を生起させる。すなわち、吸気ポート
16から燃焼室14内へ流入する空気流がピストン13
の頂面13a方向へ指向するようにシリンダ軸線に対す
る上記傾斜角度θを鋭角に形成し、又、上記ピストン1
3の頂面13aに形成した曲面形状のピストンキャビテ
ィ13bにより吸気側ペントルーフ面12c側からのタ
ンブル流を排気側ペントルーフ面12d方向にターンさ
せると共にインジェクタ15からの燃料噴霧を衝突後反
射可能とする。そして、上記点火プラグ23の発火部2
3aは、排気側ペントルーフ面12dの排気ポート17
間に臨まされ、ピストンキャビティ13bから流出する
タンブル流及び燃料噴霧の流出位置に配設されている。
In this case, the inclination angle θ of the intake port 16 is set to be an acute angle narrower than that of the first embodiment, and a tumble flow is generated in the direction opposite to the first embodiment. That is, the airflow flowing from the intake port 16 into the combustion chamber 14 is the piston 13
The inclination angle θ with respect to the cylinder axis is formed to be an acute angle so as to be directed to the top surface 13a of the piston 1.
The curved piston cavity 13b formed on the top surface 13a of the No. 3 turns the tumble flow from the intake side pentroof surface 12c side toward the exhaust side pentroof surface 12d and allows the fuel spray from the injector 15 to be reflected after collision. And the ignition part 2 of the spark plug 23
3a is an exhaust port 17 on the exhaust side pent roof surface 12d.
It is arranged at the outflow position of the fuel spray and the tumble flow that is exposed from the piston cavity 13b.

【0041】従って、本形態のタンブル流は、ピストン
キャビティ13bから巻上がった燃料噴霧を、吸気側ペ
ントルーフ面12c側から排気側ペントルーフ面12d
方向へ導いて、点火時の点火プラグ23の発火部23a
周囲に着火可能な混合気を形成する。
Therefore, in the tumble flow of this embodiment, the fuel spray rolled up from the piston cavity 13b is sprayed from the intake side pentroof surface 12c side to the exhaust side pentroof surface 12d.
The ignition portion 23a of the spark plug 23 at the time of ignition.
Creates an ignitable mixture around.

【0042】本形態においては、上述のように、前記第
一形態に対し、早期噴射における着火性がやや劣るもの
の、点火プラグ23を排気ポート17側に配設すること
で、吸気バルブの大径化、吸気ポート形状をより吸入抵
抗の少ないものとすることができる。尚、本形態におい
ても、上述のようにタンブル比は、0.5〜1.7に設定する
ことが望ましい。
In the present embodiment, as described above, although the ignition performance in early injection is slightly inferior to that of the first embodiment, by disposing the spark plug 23 on the exhaust port 17 side, the large diameter of the intake valve is obtained. And the shape of the intake port can be made to have less suction resistance. Also in this embodiment, the tumble ratio is preferably set to 0.5 to 1.7 as described above.

【0043】なお、本発明は上記各実施の形態に限るも
のではなく、例えば、吸気ポートに連通する吸気通路
に、この吸気通路の一部を選択的に閉塞或は面積を連続
的に減少させることの可能な吸気可変機構を併設するこ
とで、燃料噴射量に応じてガス流動の強さ及び吸入抵抗
を最適に設定することができ、燃焼、燃費、出力性能を
向上させることができる。
The present invention is not limited to the above-mentioned respective embodiments, and, for example, in the intake passage communicating with the intake port, a part of the intake passage is selectively closed or the area is continuously reduced. By additionally providing the variable intake air mechanism, the strength of gas flow and the intake resistance can be optimally set according to the fuel injection amount, and combustion, fuel consumption, and output performance can be improved.

【0044】[0044]

【発明の効果】以上、説明したように本発明によれば、
燃焼室に供給される筒内吸入空気は、吸気ポートから排
気ポート側ルーフ面の方向へ流動し、ピストン頂面に形
成した曲面形状のキャビティにガイドされて吸気ポート
を開口する吸気側ルーフ面の方向へターンされてタンブ
ル流が生起され、或いは、吸気ポートからピストン頂面
方向へ流動し、ピストン頂面に形成した曲面形状のキャ
ビティにガイドされて、吸気側ルーフ面側から排気側ル
ーフ面方向にターンされてタンブル流が生起され、又、
成層燃焼時にインジェクタから燃焼室内へ所定タイミン
グで噴射される燃料は、無負荷運転時、低負荷運転時の
点火時期直前で噴射終了された場合には上記キャビティ
に衝突して反射し、加速運転時等で早期に燃料噴射終了
した場合には上記タンブル流に沿ってキャビティから流
出し、点火時に燃料噴射の流出位置或いは流出方向に配
設する点火プラグの発火部周囲に着火可能な混合気が形
成されるので、極低負荷運転時には、点火時期の近くに
燃料噴射終了を設定し、点火プラグの発火部の周辺に自
ら作りだした混合気に着火させることが可能となり、ま
た、低中負荷運転時に燃料噴射時期を早めると、燃料噴
霧がピストン頂面に形成したキヤビティに衝突し、この
キャビティの曲面に沿って巻上がり、点火時には上記点
火プラグの発火部の周囲に着火可能な混合気を形成する
ことができ、さらに、加速運転時には、燃料噴射量が増
加するため、燃料噴射終了時期が早期に設定された燃料
噴霧はピストン頂面に衝突し、衝突した燃料噴霧が筒内
吸入空気のタンブル流に沿って巻上げられ、点火時には
上記点火プラグの発火部に着火可能な混合気を形成する
ことが可能となる。その結果、成層燃焼時の燃料噴射終
了時期を、排気エミッションを悪化させることなく燃料
噴射量に応じて広範囲に設定することができ、常に安定
した着火性能が得られるばかりでなく、成層燃焼と均一
燃焼との切換え時の過渡的な変化に対して負荷の連続性
を確保することができ、良好なドライバビリティを得る
ことができる。
As described above, according to the present invention,
Cylinder intake air supplied to the combustion chamber flows from the intake port toward the exhaust port side roof surface, and is guided by the curved cavity formed on the piston top surface to open the intake port. Direction to generate a tumble flow, or it flows from the intake port toward the piston top surface and is guided by the curved cavity formed on the piston top surface, from the intake side roof surface side to the exhaust side roof surface direction. The tumble flow was generated by turning to
During stratified combustion, the fuel injected from the injector into the combustion chamber at a predetermined timing collides with the cavity and reflects when the injection is finished just before the ignition timing during no-load operation or low-load operation, and during acceleration operation. When the fuel injection is completed early due to such factors as the above, the mixture flows out from the cavity along the tumble flow and forms an ignitable mixture around the ignition part of the spark plug arranged at the outflow position or the outflow direction of the fuel injection at the time of ignition. Therefore, during extremely low load operation, it is possible to set the end of fuel injection near the ignition timing and ignite the mixture created around the ignition part of the spark plug, and during low and medium load operation. When the fuel injection timing is advanced, the fuel spray collides with the cavity formed on the top surface of the piston and rolls up along the curved surface of this cavity. It is possible to form an ignitable air-fuel mixture in the surroundings, and since the fuel injection amount increases during acceleration operation, the fuel spray with the fuel injection end timing set earlier collided with the piston top surface and collided. The fuel spray is wound up along the tumble flow of the cylinder intake air, and at the time of ignition, it becomes possible to form an air-fuel mixture which can be ignited at the ignition part of the spark plug. As a result, the fuel injection end timing during stratified charge combustion can be set within a wide range according to the fuel injection amount without deteriorating exhaust emission, and not only stable ignition performance can always be obtained but also uniform stratified charge combustion. The continuity of the load can be secured against a transient change at the time of switching to combustion, and good drivability can be obtained.

【0045】また、前記タンブル流のエンジン1回転あ
たりの回転量を0.5〜1.7とすることで、圧縮行程時にタ
ンブル流が減衰されず、しかもタンブル流が強すぎて燃
料が拡散することもなく、点火プラグの発火部に着火可
能な混合気を確実に形成させることができる。
Further, by setting the amount of rotation of the tumble flow per engine revolution to 0.5 to 1.7, the tumble flow is not attenuated during the compression stroke, and the tumble flow is too strong so that the fuel does not diffuse. It is possible to reliably form an air-fuel mixture that can ignite the ignition part of the spark plug.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第一形態に係わり、筒内直噴式
火花点火エンジンの燃焼室形状の概略図
FIG. 1 is a schematic diagram of a combustion chamber shape of a direct injection spark ignition engine according to a first embodiment of the present invention.

【図2】同上、筒内直噴式火花点火エンジンの燃焼室形
状の構成図
[Fig. 2] Same as the above, configuration diagram of a combustion chamber shape of a direct injection spark ignition engine in a cylinder

【図3】同上、シリンダヘッドを燃焼室側から見た底面
FIG. 3 is a bottom view of the cylinder head seen from the combustion chamber side as above.

【図4】同上、点火時期直前に終了する燃料の噴霧状態
を示す図2に相当する構成図
FIG. 4 is a configuration diagram corresponding to FIG. 2 showing a fuel spraying state that ends immediately before ignition timing.

【図5】同上、ピストンキャビティに衝突した燃料の噴
霧挙動を示す図2に相当する構成図
5 is a configuration diagram corresponding to FIG. 2, showing the spraying behavior of the fuel colliding with the piston cavity.

【図6】同上、加速時のタンブル流がない状態での燃料
の噴霧挙動を示す図2に相当する構成図
FIG. 6 is a configuration diagram corresponding to FIG. 2, showing the fuel spraying behavior in the absence of a tumble flow during acceleration.

【図7】同上、加速時のタンブル流が発生した状態での
燃料の噴霧挙動を示す図2に相当する構成図
FIG. 7 is a configuration diagram corresponding to FIG. 2, showing a fuel spraying behavior in a state where a tumble flow is generated during acceleration.

【図8】同上、噴射時期と燃焼安定性との関係を示す曲
線図
FIG. 8 is a curve diagram showing the relationship between the injection timing and combustion stability.

【図9】同上、各燃焼限界による運転可能領域と最適燃
料噴射時期との関係を示す曲線図
FIG. 9 is a curve diagram showing the relationship between the drivable range according to each combustion limit and the optimum fuel injection timing.

【図10】同上、ピストンキャビティがフラットな場合
と曲面形状に形成した場合との燃焼、排気ガス特性の比
較結果を示す曲線図
FIG. 10 is a curve diagram showing a comparison result of combustion and exhaust gas characteristics when the piston cavity is flat and when the piston cavity is formed in a curved shape.

【図11】同上、タンブル流の回転方向、及びタンブル
比による燃焼、排気ガス特性の相違の比較結果を示す曲
線図
FIG. 11 is a curve diagram showing a comparison result of the difference in combustion and exhaust gas characteristics depending on the rotation direction of the tumble flow and the tumble ratio.

【図12】本発明の実施の第二形態に係わり、筒内直噴
式火花点火エンジンの燃焼室形状の概略図
FIG. 12 is a schematic view of the shape of a combustion chamber of a direct injection spark ignition engine according to a second embodiment of the present invention.

【図13】従来例の関し、燃料噴射終了時期と燃料噴射
量との関係を示す曲線図
FIG. 13 is a curve diagram showing a relationship between a fuel injection end timing and a fuel injection amount in the conventional example.

【図14】同上、燃料噴射時期とエミッション排出量と
の関係を示す曲線図
FIG. 14 is a curve diagram showing the relationship between the fuel injection timing and the emission amount of the same as above.

【図15】同上、筒内直噴式火花点火エンジンの燃焼室
形状の概略図
FIG. 15 is a schematic diagram of a combustion chamber shape of a direct injection spark ignition engine in the same as above.

【符号の説明】[Explanation of symbols]

12b 燃焼室頂部 12c 吸気側ルーフ面 12d 排気側ルーフ面 13a ピストン頂面 13b キャビティ 14 燃焼室 15 インジェクタ 16 吸気ポート 23 点火プラグ 23a 発火部 LEX 延長線 12b Combustion chamber top part 12c Intake side roof surface 12d Exhaust side roof surface 13a Piston top surface 13b Cavity 14 Combustion chamber 15 Injector 16 Intake port 23 Spark plug 23a Ignition part LEX extension line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 61/14 310 F02M 61/14 310D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F02M 61/14 310 F02M 61/14 310D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸気ポートを通過して供給される筒内吸
入空気にタンブル流を生起させる筒内直噴式火花点火エ
ンジンの燃焼室構造において、 燃焼室の吸気側ルーフ面に開口する上記吸気ポートを、
上記筒内吸入空気が燃焼室頂部から排気側ルーフ面へ巻
回してタンブル流を生成するように上記排気側ルーフ面
の延長線に対しほぼ平行か或は鋭角に配設し、 またピストン頂面に、上記排気側ルーフ面側からのタン
ブル流を上記吸気側ルーフ面方向へターンさせると共に
インジェクタからの燃料噴霧を衝突後反射可能な曲面形
状のキャビティを形成し、 さらにこのキャビティに流入したタンブル流及びこのキ
ャビティに衝突した燃料噴霧の流出位置或は流出方向に
点火プラグの発火部を配設したことを特徴とする筒内直
噴式火花点火エンジンの燃焼室構造。
1. A combustion chamber structure of a direct injection spark ignition engine for producing a tumble flow in a cylinder intake air supplied through an intake port, wherein the intake port is open to a roof surface of an intake side of the combustion chamber. To
The cylinder intake air is arranged substantially parallel or at an acute angle to the extension line of the exhaust side roof surface so as to be wound from the top of the combustion chamber to the exhaust side roof surface to generate a tumble flow, and the piston top surface. , The tumble flow from the exhaust side roof surface side is turned to the intake side roof surface direction, and a cavity with a curved surface shape that can reflect the fuel spray from the injector after collision is formed. And a combustion chamber structure of a direct injection spark ignition engine in a cylinder, wherein an ignition part of an ignition plug is arranged at an outflow position or an outflow direction of fuel spray colliding with the cavity.
【請求項2】 筒内吸入空気にタンブル流を生起させる
筒内直噴式火花点火エンジンの燃焼室構造において、 燃焼室の吸気側ルーフ面に開口する吸気ポートを、該吸
気ポートからの空気流がピストン頂面方向へ指向するよ
うに、シリンダ軸線に対する傾斜角度を鋭角に配設し、 上記ピストン頂面に、上記吸気側ルーフ面側からのタン
ブル流を排気側ルーフ面方向にターンさせると共にイン
ジェクタからの燃料噴霧を衝突後反射可能な曲面形状の
キャビティを形成し、 上記キャビティに流入したタンブル流及びこのキャビテ
ィに衝突した燃料噴霧の流出位置或いは流出方向に点火
プラグの発火部を配設したことを特徴とする筒内直噴式
火花点火エンジンの燃焼室構造。
2. In a combustion chamber structure of a direct injection type spark ignition engine for producing a tumble flow in a cylinder intake air, an intake port opened to a roof surface of an intake side of the combustion chamber is provided with an air flow from the intake port. The inclination angle with respect to the cylinder axis is arranged at an acute angle so as to be directed toward the piston top surface, and the tumble flow from the intake side roof surface side is turned to the exhaust side roof surface direction on the piston top surface and from the injector. After forming a curved cavity capable of reflecting the fuel spray after collision, the ignition part of the ignition plug is arranged at the outflow position or the outflow direction of the tumble flow that has flowed into the cavity and the fuel spray that has collided with this cavity. Combustion chamber structure of direct injection spark ignition engine featuring.
【請求項3】 前記タンブル流のエンジン1回転あたり
の回転量を0.5〜1.7としたことを特徴とする請求項1或
いは請求項2記載の筒内直噴式火花点火エンジンの燃焼
室構造。
3. The combustion chamber structure for a direct injection spark ignition engine according to claim 1, wherein the amount of rotation of the tumble flow per one rotation of the engine is 0.5 to 1.7.
JP02433196A 1996-02-09 1996-02-09 Combustion chamber structure of in-cylinder direct injection spark ignition engine Expired - Fee Related JP3681080B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02433196A JP3681080B2 (en) 1996-02-09 1996-02-09 Combustion chamber structure of in-cylinder direct injection spark ignition engine
GB9702648A GB2310003B (en) 1996-02-09 1997-02-10 Combustion chamber for in-cylinder direct fuel injection engine
US08/796,482 US5960767A (en) 1996-02-09 1997-02-10 Combustion chamber of in-cylinder direct fuel injection engine
DE19705023A DE19705023B4 (en) 1996-02-09 1997-02-10 Combustion chamber of a fuel directly into a cylinder injecting engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02433196A JP3681080B2 (en) 1996-02-09 1996-02-09 Combustion chamber structure of in-cylinder direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH09209762A true JPH09209762A (en) 1997-08-12
JP3681080B2 JP3681080B2 (en) 2005-08-10

Family

ID=12135207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02433196A Expired - Fee Related JP3681080B2 (en) 1996-02-09 1996-02-09 Combustion chamber structure of in-cylinder direct injection spark ignition engine

Country Status (3)

Country Link
JP (1) JP3681080B2 (en)
DE (1) DE19705023B4 (en)
GB (1) GB2310003B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258053A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Direct injection type internal combustion engine and combustion method for the same
WO2007000907A1 (en) 2005-06-28 2007-01-04 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
CN116378844A (en) * 2023-06-05 2023-07-04 潍柴动力股份有限公司 Air passage structure, cylinder cover and miller molded line engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770256B1 (en) * 1997-10-24 1999-12-10 Renault DIRECT INJECTION ENGINE AND CONTROLLED IGNITION
FR2772073B1 (en) * 1997-12-08 2000-02-04 Renault DIRECT IGNITION AND DIRECT INJECTION INTERNAL COMBUSTION ENGINE
FR2772074B1 (en) * 1997-12-08 2000-02-04 Renault DIRECT IGNITION AND DIRECT INJECTION INTERNAL COMBUSTION ENGINE
DE19801607A1 (en) * 1998-01-17 1999-07-22 Audi Ag Internal combustion engine and mixture preparation method for an internal combustion engine
DE19809066A1 (en) * 1998-03-04 1999-09-09 Audi Ag IC engine with direct fuel injection
DE69913510T2 (en) * 1998-04-10 2004-09-30 Renault S.A.S. EXTERNAL IGNITION AND DIRECTLY INJECTED INTERNAL COMBUSTION ENGINE
JP3974268B2 (en) * 1998-09-08 2007-09-12 ヤマハ発動機株式会社 In-cylinder injection engine
JP3721879B2 (en) * 1999-08-30 2005-11-30 日産自動車株式会社 In-cylinder direct injection spark ignition engine
US6666186B2 (en) 2001-02-01 2003-12-23 Avl List Gmbh Spark ignited internal combustion engine with at least one cylinder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335634A (en) * 1991-05-14 1994-08-09 Mazda Motor Corporation Combustion chamber structure for an engine
JPH0642352A (en) * 1992-07-22 1994-02-15 Fuji Heavy Ind Ltd Construction of combustion chamber in internal combustion engine
GB2276206A (en) * 1993-03-18 1994-09-21 Ford Motor Co Fuel injected engine.
DE19510053C2 (en) * 1994-04-08 1997-09-04 Ford Werke Ag Multi-cylinder reciprocating internal combustion engine
JP2628138B2 (en) * 1994-05-06 1997-07-09 本田技研工業株式会社 Intake port structure for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258053A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Direct injection type internal combustion engine and combustion method for the same
WO2007000907A1 (en) 2005-06-28 2007-01-04 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
US7926463B2 (en) 2005-06-28 2011-04-19 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
CN116378844A (en) * 2023-06-05 2023-07-04 潍柴动力股份有限公司 Air passage structure, cylinder cover and miller molded line engine
CN116378844B (en) * 2023-06-05 2023-08-18 潍柴动力股份有限公司 Air passage structure, cylinder cover and miller molded line engine

Also Published As

Publication number Publication date
GB2310003A (en) 1997-08-13
JP3681080B2 (en) 2005-08-10
GB9702648D0 (en) 1997-04-02
DE19705023A1 (en) 1997-08-28
GB2310003B (en) 1998-04-08
DE19705023B4 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US5960767A (en) Combustion chamber of in-cylinder direct fuel injection engine
EP0694682B1 (en) A spark-ignited direct fuel injection engine
US6976468B2 (en) Direct injection gasoline engine
US7464687B2 (en) Direct-injection engine, method of controlling the same, piston used in the same and fuel injection valve used in the same
KR20030022040A (en) Controller for spark ignition type direct injection engine
JPH10131758A (en) Inner-cylinder injection type engine
JP2001342836A (en) Spark ignition type direct injection engine
JP2002339789A (en) Control device for spark ignition type direct-injection engine and fuel injection time setting method
JP3681080B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JP2002295260A (en) Jump spark ignition type direct-injection engine
JP2001207854A (en) Spark ignition type reciprocating engine
JP4026784B2 (en) In-cylinder injection engine
JP3781536B2 (en) Combustion chamber structure of in-cylinder injection engine
JP2001355449A (en) Compressed self-ignition type internal combustion engine
JP2001271650A (en) Spark ignition type direct injection engine
JP4108806B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JPH11210472A (en) Structure of combustion chamber in cylinder injection type spark ignition engine
EP1088972B1 (en) In-cylinder direct-injection spark-ignition engine
JPH1054246A (en) In-cylinder injection type engine
JP3832043B2 (en) In-cylinder injection engine
JP3586963B2 (en) Engine intake system
JPH0670368B2 (en) Spark ignition engine
JP3468055B2 (en) Lean-burn internal combustion engine
JPH05321795A (en) Fuel supplying device for engine
JP3695056B2 (en) In-cylinder direct fuel injection spark ignition engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees