JPH0920926A - Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic

Info

Publication number
JPH0920926A
JPH0920926A JP7167556A JP16755695A JPH0920926A JP H0920926 A JPH0920926 A JP H0920926A JP 7167556 A JP7167556 A JP 7167556A JP 16755695 A JP16755695 A JP 16755695A JP H0920926 A JPH0920926 A JP H0920926A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
ecp
plastic strain
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7167556A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Yasunari Yoshitomi
康成 吉冨
Masao Yabumoto
政男 籔本
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7167556A priority Critical patent/JPH0920926A/en
Publication of JPH0920926A publication Critical patent/JPH0920926A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a low-magnetostriction material by measuring the magnetic flux density of a grain oriented silicon steel sheet and also the visibility of ECP to determine plastic strain and previously grasping, in the stage before finish annealing, whether the sheet is a material capable of giving low magnetostriction or not. SOLUTION: The magnetic flux densities and ECP visibilities of plural finish annealed grain oriented silicon steel sheets are measured respectively to determine plastic strains, and the prescribed grain oriented silicon steel sheet is selected on the basis of these values and subjected to flattening annealing. As the basis of selection of the finish annealed grain oriented silicon steel sheet, this steel sheet simultaneously satisfies the following inequalities: B8>=1.90T, where B8 is a value after annealing at 850 deg.C for 4hr; 0.7<=Sb/Sbsr<=1, where Sb is a plastic strain determined on the basis of the value of ECP of the steel sheet after finish annealing and Sbsr is a plastic strain determined on the basis of the value of ECP of the steel sheet prepared by applying the above annealing to the finish annealed steel sheet, and these plastic strains can be measured by the visibility of ECP.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はトランスなどの鉄心
に用いられ、鉄損および磁歪特性の優れた高磁束密度一
方向性電磁鋼板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet which is used in an iron core of a transformer or the like and has excellent iron loss and magnetostriction characteristics.

【0002】[0002]

【従来の技術】現在、実用化されている一方向性電磁鋼
板は主として変圧器に使用され、材料の磁気特性である
鉄損は低いことが望まれている。加えて、機器スペース
の効率的な利用のため、現行の中型変圧器は人間の生活
範囲により密着した場所へ設置され始めている。この結
果、生活環境において電磁鋼板の伸縮(磁歪)による騒
音が一層顕在化するに至った。
2. Description of the Related Art Currently used unidirectional electrical steel sheets are mainly used for transformers, and it is desired that iron loss, which is a magnetic characteristic of materials, be low. In addition, in order to use the equipment space efficiently, the current medium-sized transformers are starting to be installed in a place that is closer to the range of human life. As a result, the noise caused by the expansion and contraction (magnetostriction) of the magnetic steel sheet has become more prominent in the living environment.

【0003】変圧器の低騒音化には材料の低磁歪化が必
須である。低磁歪化には最終製品の内部歪を可能な限り
低減させれば良いと考えられてきた(特願平6−945
10号、画期的な方向性珪素鋼板オリエントコア・ハイ
ビーの開発:OHM1972.2等)。内部歪を低減す
る方法としては約800〜880℃の温度で鋼板を焼鈍
する歪取焼鈍がある。これは平坦化焼鈍において施さ
れ、鋼板形状を平坦化すると同時に内部歪を開放、低減
させている。
To reduce the noise of a transformer, it is essential to reduce the magnetostriction of the material. It has been considered that the internal strain of the final product should be reduced as much as possible to reduce the magnetostriction (Japanese Patent Application No. 6-945).
No. 10, development of epoch-making oriented silicon steel sheet Orient Core HiBi: OHM1972.2. As a method of reducing the internal strain, there is strain relief annealing in which the steel sheet is annealed at a temperature of about 800 to 880 ° C. This is applied in the flattening annealing to flatten the shape of the steel sheet and at the same time release and reduce the internal strain.

【0004】関連する技術として、例えば特開昭60−
262981号公報で示されているような、鋼板の伸び
を0.5%以下に抑制し、鉄損悪化を防ぐ方法、あるい
は特開昭61−159529号公報に示されるように、
鋼板温度を700〜850℃における張力を0.35〜
1.0kg/mm2 として形状矯正し、それ以後の鋼板の張
力を0.35kg/mm2 以下として連続焼鈍により歪取を
行う方法、特開平5−209226号公報で示されてい
るように、ハースロールで0.6〜0.8kg/mm2 に張
力を制御し、鉄損悪化を防ぐ方法などが提案されてい
る。
As a related technique, for example, JP-A-60-
Japanese Patent No. 262981 discloses a method of suppressing elongation of a steel sheet to 0.5% or less to prevent deterioration of iron loss, or, as disclosed in JP-A-61-159529,
Tension at a steel plate temperature of 700 to 850 ° C. is 0.35 to
A method in which the shape is corrected to 1.0 kg / mm 2 and the strain of the steel sheet after that is set to 0.35 kg / mm 2 or less to perform strain relief by continuous annealing, as disclosed in JP-A-5-209226, A method of controlling the tension to 0.6 to 0.8 kg / mm 2 with a hearth roll to prevent deterioration of iron loss has been proposed.

【0005】従来の一方向性電磁鋼板では平坦化焼鈍条
件を最適化し、内部歪を解放させ、磁気特性向上、主に
低鉄損化を図っていた。しかしながら、磁歪に大きな影
響を与える内部歪は、間接的に鋼板の鉄損、磁歪で評価
されるのみで、定量評価は行われていなかった。
In the conventional unidirectional electrical steel sheet, the flattening annealing conditions were optimized to release the internal strain, improve the magnetic properties, and mainly reduce the iron loss. However, the internal strain that greatly affects the magnetostriction is indirectly evaluated only by the iron loss and magnetostriction of the steel sheet, and has not been quantitatively evaluated.

【0006】内部歪には容易に歪取焼鈍で解放される弾
性歪と、解放されにくい塑性歪があり、形状矯正、平坦
化には塑性歪が主に支配的である。弾性歪の解放は歪取
焼鈍後の磁気特性向上により認識される。時に、平坦化
焼鈍を施すと磁気特性が悪化する場合がある。これは以
下のように考えられている。仕上焼鈍後の湾曲した板を
平坦化焼鈍するため、鋼板形状を矯正し過ぎると転位が
多く導入される。転位により塑性歪が増えることで磁気
特性が悪化する。
Internal strains include elastic strains that are easily released by strain relief annealing and plastic strains that are difficult to release, and plastic strains are mainly dominant in shape correction and flattening. The release of elastic strain is recognized by the improved magnetic properties after strain relief annealing. At times, when flattening annealing is performed, magnetic properties may deteriorate. This is considered as follows. Since the curved plate after the finish annealing is flattened and annealed, if the steel plate shape is overcorrected, many dislocations are introduced. Dislocation causes an increase in plastic strain, which deteriorates magnetic properties.

【0007】特開昭61−159529号公報では先に
800℃で形状矯正を行い、次いで840℃低張力で鋼
板を通板することで形状矯正時に導入された内部歪を解
放する方法を提示している。後半の焼鈍で、ある少量の
転位は開放されることになるが、湾曲したコイル形状か
ら平坦化された最終形状に変形されたことは転位が導入
されたことを意味し、塑性歪として鋼板に残存する。従
って、磁歪は塑性歪がある限り完全に0にはならない。
Japanese Unexamined Patent Publication (Kokai) No. 61-159529 discloses a method of first performing shape correction at 800 ° C. and then passing a steel sheet at a low tension of 840 ° C. to release the internal strain introduced during shape correction. ing. In the latter half of annealing, a certain small amount of dislocations will be released, but the fact that the curved coil shape was deformed to the final flattened shape means that dislocations were introduced, and as a plastic strain, To remain. Therefore, the magnetostriction does not become zero as long as there is plastic strain.

【0008】上記に述べたように、鋼板の平坦化と低歪
化は、転位導入の視点からみると相反する行為で、現行
では両特性の優先度で製品特性が決定され、両特性とも
優れた製品は製造が非常に困難である。更に、磁歪は最
終製品になってから評価され、低磁歪化のために製造途
中での選別が難しく、所望の低磁歪材を短期間に必要量
得ることは困難であった。従って、仕上焼鈍後の段階で
塑性歪が非常に多く、非低磁歪材であっても製品になる
までは判別できず歩留りが悪かった。
As described above, flattening and low distortion of steel sheet are contradictory actions from the viewpoint of introducing dislocations. Currently, product characteristics are determined by priority of both characteristics, and both characteristics are excellent. Products are very difficult to manufacture. Further, the magnetostriction was evaluated after the final product, and it was difficult to select it during the production because of the low magnetostriction, and it was difficult to obtain a desired low magnetostrictive material in a required amount in a short period of time. Therefore, the plastic strain was very large in the stage after the finish annealing, and even a non-low magnetostrictive material could not be identified until it became a product, and the yield was poor.

【0009】[0009]

【発明が解決しようとする課題】本発明は、低磁歪を得
ることのできる材料か否かを仕上焼鈍後、平坦化焼鈍前
の段階で把握可能な指標を提供することにより効率的な
低磁歪材の製造を可能とする一方向性電磁鋼板の製造法
を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an efficient low magnetostriction by providing an index capable of grasping whether or not a material capable of obtaining low magnetostriction can be grasped after finishing annealing and before flattening annealing. The present invention provides a method for producing a grain-oriented electrical steel sheet that enables the production of a material.

【0010】[0010]

【課題を解決するための手段】本発明が対象としている
一方向性電磁鋼板の製造法は、一方向性スラブを熱間圧
延し、必要に応じて熱延板焼鈍をし、通常の1回圧延ま
たは2回圧延工程で処理した後、脱炭焼鈍をし、必要に
応じて窒化処理をした後、最終仕上焼鈍を施し、更にコ
ーティング液を塗布し焼き付ける平坦化焼鈍を行う一連
の工程から構成される。この一連の工程において、従来
定量化されていなかった塑性歪をパラメータにし、平坦
化焼鈍後の塑性歪のみではなく、従来見落とされていた
仕上焼鈍の塑性歪を測定し、規定量以下の塑性歪を持つ
板を決められた条件により平坦化焼鈍することを特徴と
する磁歪特性の優れた一方向性電磁鋼板の製造法を提供
するものである。
Means for Solving the Problems The method for producing a grain-oriented electrical steel sheet according to the present invention is carried out by hot rolling a grain-oriented slab and annealing the hot-rolled sheet if necessary, followed by a normal one-time rolling. Consists of a series of steps in which flattening annealing is carried out after decarburization annealing after performing rolling or double rolling process, nitriding treatment if necessary, final finishing annealing, coating with coating liquid and baking. To be done. In this series of steps, the plastic strain that was not previously quantified was used as a parameter, and not only the plastic strain after the flattening annealing was measured, but the plastic strain of the conventionally neglected finish annealing was measured, and the plastic strain of a specified amount or less was measured. The present invention provides a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetostriction characteristics, which is characterized by performing flattening annealing of a sheet having a certain temperature under predetermined conditions.

【0011】すなわち、本発明の要旨は次の通りであ
る。 複数の仕上焼鈍後の一方向性電磁鋼板の磁束密度およ
びECPの鮮明度を各々測定して塑性歪を求め、これら
の値を基に所定の一方向性電磁鋼板を選択し、平坦化焼
鈍することを特徴とする一方向性電磁鋼板の製造方法。 仕上焼鈍後の一方向性電磁鋼板の選択基準として、下
記(1)、(2)を同時に満足することを特徴とする上
記記載の磁歪特性の優れた一方向性電磁鋼板の製造方
法。 (1)B8 ≧1.90T 但し、B8 は850℃×4hr焼鈍後の値 (2)0.7≦Sb /Sbsr ≦1 但し、Sb :仕上焼鈍後の鋼板のECPの値を基に求め
た塑性歪、 Ssbr :仕上焼鈍板に同上の焼鈍を行った鋼板のECP
の値を基に求めた塑性歪 *これらの塑性歪はECPの鮮明度から測定される。 上記記載の平坦化焼鈍後の一方向性電磁鋼板のう
ち、更に、0.8≦S/Ssr≦1を満足するものを選択
することを特徴とする磁歪特性の優れた一方向性電磁鋼
板の製造方法。 但し、S:製品の鋼板のECPの値を基に求めた塑性
歪、 Ssr:850℃×4hrの焼鈍後の製品の鋼板のECPの
値を基に求めた塑性歪
That is, the gist of the present invention is as follows. The magnetic flux density and ECP definition of a plurality of finish-annealed electrical steel sheets are measured to determine the plastic strain, and a predetermined one-directional electrical steel sheet is selected based on these values and flattened and annealed. A method for producing a grain-oriented electrical steel sheet, comprising: The method for producing a unidirectional electrical steel sheet having excellent magnetostrictive properties as set forth above, wherein the following criteria (1) and (2) are simultaneously satisfied as a selection criterion for the unidirectional electrical steel sheet after finish annealing. (1) B8 ≧ 1.90T, where B8 is the value after annealing at 850 ° C. for 4 hours (2) 0.7 ≦ Sb / Sbsr ≦ 1, where Sb: was determined based on the ECP value of the steel sheet after finish annealing Plastic strain, Ssbr: ECP of the steel sheet annealed to the finish annealed sheet
Plastic strain obtained based on the value of * These plastic strains are measured from the sharpness of ECP. Among the unidirectional electrical steel sheets after the flattening annealing described above, further selected is one that satisfies 0.8 ≦ S / Ssr ≦ 1. Production method. However, S: plastic strain obtained based on the ECP value of the steel sheet of the product, Ssr: plastic strain obtained based on the ECP value of the steel sheet of the product after annealing at 850 ° C. for 4 hours

【0012】以下実験結果を基に説明する。実験に用い
た材料は工場で仕上焼鈍を行ったSi:3.25%を含
む板厚0.23mmと0.35mmの高磁束密度一方向性電
磁鋼板(フォルステライト被膜付き)をフープ状に切り
出したものである。
A description will be given below based on the experimental results. The material used for the experiment was a finish annealing at the factory. A high magnetic flux density unidirectional electrical steel sheet (with forsterite coating) of 0.23 mm and 0.35 mm containing Si: 3.25% was cut out into a hoop shape. It is a thing.

【0013】この仕上焼鈍板の塑性歪を測定するためE
CP(Electron Channnelling Pattern) を用いた。これ
は結晶質材料に歪が加わるとECPが不鮮明となる現象
を利用し、特定の擬菊池線のコントラストをパラメータ
として歪を測定する方法である(「材料」P147 第
40巻 第454号1991年7月、等)。この現象の
機構に関しては、転位などが格子欠陥の周りの弾性的な
結晶面の湾曲のために電子線が影響を受け、ECPが不
鮮明になるという定性的な説明がなされている。
To measure the plastic strain of this finish annealed sheet, E
CP (Electron Channnelling Pattern) was used. This is a method of measuring strain using the phenomenon that the ECP becomes unclear when strain is applied to a crystalline material, using the contrast of a particular pseudo-Kikuchi line as a parameter (“Materials” P147, Vol. 40, No. 454, 1991). July, etc.). Regarding the mechanism of this phenomenon, there is a qualitative explanation that the electron beam is affected by dislocations or the like due to the elastic curvature of the crystal plane around the lattice defect, and the ECP becomes unclear.

【0014】ここで平坦化焼鈍を行う前の仕上焼鈍板の
塑性歪値をSb 、その後、この板を無張力で850℃、
4時間の焼鈍を施した後の塑性歪値をSbsr とした。こ
れらの比Sb /Sbsr によって鋼板の塑性歪を評価し
た。更に磁歪も測定した。この結果を図1に示す。
Here, the plastic strain value of the finish annealed plate before the flattening annealing is Sb, and thereafter, this plate is 850 ° C. without tension.
The plastic strain value after annealing for 4 hours was taken as Sbsr. The plastic strain of the steel sheet was evaluated by these ratios Sb / Sbsr. Further, magnetostriction was also measured. The result is shown in FIG.

【0015】次に、この仕上焼鈍板を幅150mmのフー
プ状にスリットし、平坦化焼鈍炉へ通した。始めに張力
コーティング液をフープに塗布するため燐酸アルミニウ
ム、無水クロム酸を主成分とするものを使用した。炉温
は880℃、860℃、840℃、820℃と条件を変
え、鋼板に付与する張力は0.3〜1.2kg/mm2 まで
変えてその形状と塑性歪、および磁歪を測定した。ここ
で、上記仕上焼鈍板と同様に、処理後の平坦化焼鈍板の
塑性歪値をS、850℃,4時間の焼鈍を施した後の塑
性歪値をSsrとした。これらの比S/Ssrによって平坦
化焼鈍板の塑性歪を評価した。同様に磁歪も測定した。
Next, this finished annealed plate was slit into a hoop shape having a width of 150 mm and passed through a flattening annealing furnace. First, in order to apply the tension coating liquid to the hoops, those containing aluminum phosphate and chromic anhydride as main components were used. The furnace temperature was changed to 880 ° C., 860 ° C., 840 ° C. and 820 ° C., the tension applied to the steel sheet was changed to 0.3 to 1.2 kg / mm 2 , and its shape, plastic strain, and magnetostriction were measured. Here, similarly to the finish annealed plate, the plastic strain value of the flattened annealed plate after the treatment was S, and the plastic strain value after annealing at 850 ° C. for 4 hours was Ssr. The plastic strain of the flattened annealed plate was evaluated by these ratios S / Ssr. Similarly, the magnetostriction was measured.

【0016】次に上記知見を踏まえて、本発明の限定理
由について述べる。850℃×4hr焼鈍後の値B8 <
1.90だと、磁歪が2×10-6以上となるので望まし
くない。また、Sb /Sbsr は0.7未満になると、塑
性歪が大きくなり磁歪が急激に増加する(図1)。また
1では完全に塑性歪がない状態である。従って、この範
囲は0.7〜1が極めて望ましい。
Next, based on the above findings, the reasons for limitation of the present invention will be described. Value after annealing at 850 ° C x 4hr B8 <
If it is 1.90, the magnetostriction becomes 2 × 10 −6 or more, which is not desirable. When Sb / Sbsr is less than 0.7, plastic strain increases and magnetostriction sharply increases (FIG. 1). Further, in the case of 1, there is completely no plastic strain. Therefore, it is extremely desirable that the range is 0.7 to 1.

【0017】一方、仕上焼鈍板において塑性歪が大きく
なると磁歪のみならず形状も悪化する。平坦化焼鈍にお
いて形状を矯正するが、S/Ssrが大きいほど転位が導
入されることが今回の実験により更に明確になった。従
って、S/Ssrを併せて規定すると更に低磁歪材を効果
的に選択できる。この転位導入量はSb /Sbsr が0.
8未満になると急激に増加する。従って、この範囲は
0.8〜1が極めて望ましい(図2参照)。
On the other hand, when the plastic strain increases in the finished annealed sheet, not only the magnetostriction but also the shape deteriorates. Although the shape is corrected by the flattening annealing, it was further clarified by this experiment that dislocations are introduced as S / Ssr is larger. Therefore, if S / Ssr is also specified, a lower magnetostrictive material can be effectively selected. The amount of this dislocation introduced was Sb / Sbsr of 0.
When it is less than 8, it rapidly increases. Therefore, it is extremely desirable that this range is 0.8 to 1 (see FIG. 2).

【0018】[0018]

【作用】この製造法により従来において塑性歪を定量化
できず、最終製品で磁歪を評価していた電磁鋼板の製造
法を改善し、仕上焼鈍後に低塑性歪材を選択、処理する
ことで低磁歪材を効率的に製造することができる。以下
実施例を基に説明する。
[Operation] By this manufacturing method, the plastic strain cannot be quantified in the past, and the manufacturing method of the electromagnetic steel sheet that evaluated the magnetostriction in the final product was improved, and low plastic strain material was selected and treated after finish annealing. The magnetostrictive material can be efficiently manufactured. An example will be described below.

【0019】[0019]

【実施例】【Example】

(実施例1)工場で板厚0.23mmの脱炭焼鈍、窒化処
理した鋼板を仕上焼鈍後、これを平坦化焼鈍炉で処理
し、ECPにより塑性歪の測定を行った。塑性歪と磁歪
の関係を図1に示す。ECPで測定された塑性歪(S/
Ssr)が増加するにつれ磁歪も増加する。50Hz、1.
9Tの励磁において1.0×10-6以下の磁歪を得るた
めには0.85よりも塑性歪が少ないことが必要であ
る。また上記領域に磁歪がある場合では仕上焼鈍後の塑
性歪が0.7より少なくなっていた。
(Example 1) After decarburizing and nitriding a steel sheet having a plate thickness of 0.23 mm in a factory, the steel sheet was finish-annealed, treated in a flattening annealing furnace, and the plastic strain was measured by ECP. The relationship between plastic strain and magnetostriction is shown in FIG. Plastic strain (S /
Magnetostriction increases as Ssr) increases. 50Hz, 1.
In order to obtain a magnetostriction of 1.0 × 10 −6 or less at 9T excitation, it is necessary that the plastic strain is less than 0.85. Further, when there was magnetostriction in the above region, the plastic strain after finish annealing was less than 0.7.

【0020】磁歪が1.0×10-6以下の鋼板では、
0.3kg/mm2 の圧縮力を磁歪測定方向に加えた場合、
磁歪はほとんど増加しなかった。仕上焼鈍後に塑性歪の
少ない仕上焼鈍板を選別したため、同一量の1.0×1
-6以下の鋼板を生産するための平坦化焼鈍量は従来法
の50%で済み、平坦化焼鈍の処理時間が50%短縮さ
れた。
For a steel plate having a magnetostriction of 1.0 × 10 -6 or less,
When a compressive force of 0.3 kg / mm 2 is applied in the magnetostriction measurement direction,
Magnetostriction hardly increased. After selecting the finish annealed sheet with less plastic strain after finish annealing, the same amount of 1.0 x 1
0 -6 flattening annealing amount to produce the following steel sheet requires only 50% of the conventional method, the processing time of the flattening annealing was reduced by 50%.

【0021】(実施例2)それぞれの条件で焼鈍を行っ
た板厚0.35mmの鋼板を仕上焼鈍後、および平坦化焼
鈍後の塑性歪を測定した後で、磁歪を測定した(図
2)。平坦化焼鈍後の塑性歪を0.8より小さくすると
磁歪は低減する。しかしながら、この範囲内で磁歪のば
らつきがあり、0.5×10-6以上の磁歪を示す鋼板も
あった。
(Example 2) Magnetostriction was measured after finishing annealing of a steel sheet having a thickness of 0.35 mm, which was annealed under each condition, and after measuring plastic strain after flattening annealing (Fig. 2). . If the plastic strain after flattening annealing is made smaller than 0.8, the magnetostriction is reduced. However, there were variations in magnetostriction within this range, and some steel sheets showed a magnetostriction of 0.5 × 10 −6 or more.

【0022】仕上焼鈍後の塑性歪をSb /Sbsr >0.
7と規定すると、ほとんどの鋼板は0.5×10-6以下
の磁歪を示した。また、上の規定を行った場合、0.5
×10-6以下の磁歪を示す材料の全材料に対する比率は
22%(従来法)→46%(平坦化焼鈍後の塑性歪規
定)→100%(平坦化焼鈍、仕上焼鈍後の塑性歪規
定)と、選別後の割合が増した。効率的な製造が図れ、
製造に関する貢献は高い。
The plastic strain after finish annealing is Sb / Sbsr> 0.
When defined as 7, most steel sheets exhibited a magnetostriction of 0.5 × 10 −6 or less. If the above rule is applied, 0.5
The ratio of materials showing magnetostriction of × 10 -6 or less to all materials is 22% (conventional method) → 46% (plastic strain regulation after flattening annealing) → 100% (plastic strain regulation after flattening annealing and finish annealing) ), And the ratio after selection increased. Efficient manufacturing,
Manufacturing contributions are high.

【0023】(実施例3)平坦化焼鈍を表1に示す条件
で行い、塑性歪、磁歪を測定した。上記結果から明らか
なように、仕上焼鈍の塑性歪が少なく、かつ平坦化焼鈍
の張力が低い条件で低磁歪が得られている。また、仕上
焼鈍後で低磁歪材の選別を行ったとすれば、平坦化焼鈍
の処理量は表1の試料に関して同一量の0.5×10-6
以下の磁歪材を製造するための平坦化焼鈍量は、従来法
の50%行うだけでよく、製造工程に対する貢献は非常
に大きい。
Example 3 Flattening annealing was performed under the conditions shown in Table 1 to measure plastic strain and magnetostriction. As is clear from the above results, low magnetostriction is obtained under the condition that the plastic strain of finish annealing is small and the tension of flattening annealing is low. If the low magnetostrictive material is selected after the finish annealing, the flattening annealing treatment amount is 0.5 × 10 −6 , which is the same as that of the sample in Table 1.
The flattening annealing amount for manufacturing the following magnetostrictive material is 50% of that in the conventional method, and the contribution to the manufacturing process is very large.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明により50Hz、1.9Tにおいて
0.5×10-6以下の磁歪を有する一方向性電磁鋼板が
得られる。また圧縮力0.3×10-6kg/mm2 を加えて
も、本発明製品の磁歪は1.5×10-6を超えることは
ない。
According to the present invention, a grain-oriented electrical steel sheet having a magnetostriction of 0.5 × 10 −6 or less at 50 Hz and 1.9 T can be obtained. Further, even if a compressive force of 0.3 × 10 −6 kg / mm 2 is applied, the magnetostriction of the product of the present invention does not exceed 1.5 × 10 −6 .

【図面の簡単な説明】[Brief description of drawings]

【図1】平坦化焼鈍後の塑性歪に対する磁歪の関係を表
したものである。
FIG. 1 shows the relationship between magnetostriction and plastic strain after flattening annealing.

【図2】仕上焼鈍後、および平坦化焼鈍後の塑性歪と磁
歪の関係を表したものである。
FIG. 2 shows the relationship between plastic strain and magnetostriction after finish annealing and after flattening annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 穂高 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hodaka Hotaka 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の仕上焼鈍後の一方向性電磁鋼板の
磁束密度およびECP(Electron Channnelling Patter
n) の鮮明度を各々測定して塑性歪を求め、これらの値
を基に所定の一方向性電磁鋼板を選択し、平坦化焼鈍す
ることを特徴とする一方向性電磁鋼板の製造方法。
1. A magnetic flux density and an ECP (Electron Channnelling Patter) of a grain-oriented electrical steel sheet after a plurality of finish annealings.
A method for producing a unidirectional electrical steel sheet, characterized in that each of the sharpnesses of n) is measured to obtain a plastic strain, a predetermined unidirectional electrical steel sheet is selected based on these values, and flattening annealing is performed.
【請求項2】 仕上焼鈍後の一方向性電磁鋼板の選択基
準として、下記(1)、(2)を同時に満足することを
特徴とする請求項1記載の磁歪特性の優れた一方向性電
磁鋼板の製造方法。 (1)B8 ≧1.90T 但し、B8 は850℃×4hr焼鈍後の値 (2)0.7≦Sb /Sbsr ≦1 但し、Sb :仕上焼鈍後の鋼板のECPの値を基に求め
た塑性歪、 Ssbr :仕上焼鈍板に同上の焼鈍を行った鋼板のECP
の値を基に求めた塑性歪 *これらの塑性歪はECPの鮮明度から測定される。
2. The unidirectional electromagnetic wave having excellent magnetostrictive properties according to claim 1, wherein the following criteria (1) and (2) are simultaneously satisfied as selection criteria for the unidirectional electromagnetic steel sheet after finish annealing. Steel plate manufacturing method. (1) B8 ≧ 1.90T, where B8 is the value after annealing at 850 ° C. for 4 hours (2) 0.7 ≦ Sb / Sbsr ≦ 1, where Sb: was determined based on the ECP value of the steel sheet after finish annealing Plastic strain, Ssbr: ECP of the steel sheet annealed to the finish annealed sheet
Plastic strain obtained based on the value of * These plastic strains are measured from the sharpness of ECP.
【請求項3】 請求項2記載の平坦化焼鈍後の一方向性
電磁鋼板のうち、更に、0.8≦S/Ssr≦1を満足す
るものを選択することを特徴とする磁歪特性の優れた一
方向性電磁鋼板の製造方法。 但し、S:製品の鋼板のECPの値を基に求めた塑性
歪、 Ssr:850℃×4hrの焼鈍後の製品の鋼板のECPの
値を基に求めた塑性歪
3. An excellent magnetostrictive property, characterized in that, of the grain-oriented electrical steel sheets after the flattening annealing according to claim 2, one further satisfying 0.8 ≦ S / Ssr ≦ 1 is selected. Method for producing unidirectional electrical steel sheet. However, S: plastic strain obtained based on the ECP value of the steel sheet of the product, Ssr: plastic strain obtained based on the ECP value of the steel sheet of the product after annealing at 850 ° C. for 4 hours
JP7167556A 1995-07-03 1995-07-03 Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic Withdrawn JPH0920926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7167556A JPH0920926A (en) 1995-07-03 1995-07-03 Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7167556A JPH0920926A (en) 1995-07-03 1995-07-03 Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic

Publications (1)

Publication Number Publication Date
JPH0920926A true JPH0920926A (en) 1997-01-21

Family

ID=15851919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7167556A Withdrawn JPH0920926A (en) 1995-07-03 1995-07-03 Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic

Country Status (1)

Country Link
JP (1) JPH0920926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160340A2 (en) * 2000-05-30 2001-12-05 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
JP2002069594A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp Silicon steel sheet for low-noise transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160340A2 (en) * 2000-05-30 2001-12-05 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
EP1160340A3 (en) * 2000-05-30 2003-11-26 Nippon Steel Corporation Grain-oriented electrical steel sheet for low-noise transformer
JP2002069594A (en) * 2000-08-25 2002-03-08 Nippon Steel Corp Silicon steel sheet for low-noise transformer
JP4585101B2 (en) * 2000-08-25 2010-11-24 新日本製鐵株式会社 Low noise transformer electrical steel sheet

Similar Documents

Publication Publication Date Title
EP2963130B1 (en) Method for producing grain-orientated electrical steel sheets
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
EP3733895B1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
WO2016159349A1 (en) Manufacturing method for unidirectional electromagnetic steel sheet
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JPH0920926A (en) Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP2579717B2 (en) Decarburization annealing method for grain-oriented electrical steel sheets with excellent magnetic flux density and film adhesion
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP2003027196A (en) Method of manufacturing ultra-high mangnetic flux density grain-oriented silicon steel sheet having high magnetic flerd iron loss and excellent film characteristic
JPH02232319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH07305115A (en) Production of grain-oriented silicon steel sheet excellent in core loss and magnetostrictive property
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPS59226115A (en) Production of unidirectionally oriented silicon steel plate having homogeneous forsterite insulating film
WO2023074908A1 (en) Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH07268469A (en) Sheet material for grain oriented silicon steel sheet with high magnetic flux density
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903