JPH09209068A - High strength aluminum alloy excellent in hardenability - Google Patents

High strength aluminum alloy excellent in hardenability

Info

Publication number
JPH09209068A
JPH09209068A JP1643996A JP1643996A JPH09209068A JP H09209068 A JPH09209068 A JP H09209068A JP 1643996 A JP1643996 A JP 1643996A JP 1643996 A JP1643996 A JP 1643996A JP H09209068 A JPH09209068 A JP H09209068A
Authority
JP
Japan
Prior art keywords
amount
excess
hardenability
aluminum alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1643996A
Other languages
Japanese (ja)
Inventor
Masao Kikuchi
正夫 菊池
Makoto Saga
誠 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1643996A priority Critical patent/JPH09209068A/en
Publication of JPH09209068A publication Critical patent/JPH09209068A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength aluminum alloy excellent in hardenability and suitable for materials for vehicle, electrical equipment, building, etc., including automobile structural material. SOLUTION: This aluminum alloy has a composition which consists of, by weight, 0.3-1.6% Mg, 0.4-1.6% Si, 0.02-0.08% Sn, and the balance Al with inevitable impurities and in which the amount of Mg2 Si and the amount of excess Si in excess of Mg2 Si balance composition satisfy relational equation (the amount of Mg2 Si)>=1.6-1.2×(the amount of excess Si) [where (the amount of excess Si)=(the amount of total Si)-(the amount of Si as Mg2 Si) is satisfiedl. Further, the aluminum alloy can contain, as specific elements, small amounts of Cu, Zn, Mn, Cr, Zr, V, Fe, and Ti. By this method, the high strength aluminum alloy, excellent in hardenability and having >=300MPa tensile strength after T6 treatment, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼入性に優れ、自
動車の構造材をはじめ、車両、電気機器、建築用等の材
料に適した高強度を有するアルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy which has excellent hardenability and is suitable for use as a structural material for automobiles, vehicles, electrical equipment, construction materials, and the like.

【0002】[0002]

【従来の技術】従来より、Al−Mg−Si系合金は押
出性に優れる上に、熱処理によって高強度が得られるた
め、車両、船舶、建築等の用途に広く使用されている。
近年、自動車の軽量化の観点から、アルミニウム合金の
押出型材が自動車の構造部材に適用されるようになり、
その材料として、上記のAl−Mg−Si系合金が注目
されている。本系合金は熱処理型合金であるため、通常
は溶体化・焼入れ後、時効処理を行って使用されるが、
JISA6063合金やJISA6NO1合金など、一
部の合金は焼入性に優れているため、この溶体化・焼入
れ処理を省略し、押出加工後そのまま時効処理を行える
ので製造コストを節約できるという利点を有している。
しかしながら、これらの焼入性に優れた合金はいずれも
時効処理後の強度が低く、構造材としては強度不足であ
った。
2. Description of the Related Art Conventionally, Al-Mg-Si alloys have been widely used for applications such as vehicles, ships, and constructions because they have excellent extrudability and high strength by heat treatment.
In recent years, from the viewpoint of reducing the weight of automobiles, extruded aluminum alloy materials have come to be applied to structural members of automobiles,
As the material thereof, the Al-Mg-Si based alloy described above is drawing attention. Since this alloy is a heat treatment type alloy, it is usually used after aging treatment after solution heat treatment.
Since some alloys such as JISA6063 alloy and JISA6NO1 alloy have excellent hardenability, this solution treatment / hardening treatment can be omitted, and aging treatment can be performed as it is after extrusion processing, which has the advantage of saving manufacturing costs. ing.
However, all of these alloys having excellent hardenability had low strength after aging treatment and were insufficient in strength as structural materials.

【0003】[0003]

【発明が解決しようとする課題】そこで、焼入性に優
れ、溶体化・焼入れ処理を省略して、押出加工後そのま
ま時効処理を行うだけで、構造材として十分な強度が得
られるアルミニウム合金が望まれている。本発明は以上
の事情を背景として、焼入性に優れるとともに、T6処
理によって300MPa以上の引張強さが得られる高強
度アルミニウム合金を提供することを目的としたもので
ある。
Therefore, an aluminum alloy which has excellent hardenability and which has sufficient strength as a structural material can be obtained by omitting the solution heat treatment and the aging treatment after extrusion. Is desired. In view of the above circumstances, the present invention has an object to provide a high-strength aluminum alloy that is excellent in hardenability and that can obtain a tensile strength of 300 MPa or more by T6 treatment.

【0004】[0004]

【課題を解決するための手段】従来、Al−Mg−Si
系合金の焼入性はMg2 Si量および過剰Si量の増大
とともに低下するとされていた(たとえば、軽金属学会
編、「アルミニウムの組織と性質」(1991))。一
方、時効処理後の強度を上昇させるには、Mg 2 Si量
や過剰Si量を増大させる必要がある。このように、焼
入性の向上と時効処理後の高強度を両立させることはこ
れまで困難とされてきた。しかしながら、本発明者は、
Al−Mg−Si系合金の焼入性および時効硬化能に及
ぼす合金成分および添加元素の影響について種々検討し
た結果、本系合金の成分組成を適切に選択するととも
に、CuおよびSnを添加し、さらに、Mg 2 Si量と
過剰Si量の関係を特定することによって上記目的を達
成できることを見い出し、本発明をなすに至ったもので
ある。
Conventionally, Al--Mg--Si is conventionally used.
The hardenability of system alloys is MgTwoIncrease in Si content and excess Si content
It was supposed to decrease with
Editor, "Aluminum Structure and Properties" (1991)). one
In order to increase the strength after aging treatment, Mg TwoSi amount
It is necessary to increase the amount of excess Si. Baked like this
It is not possible to achieve both improved penetration and high strength after aging treatment.
It has been difficult until now. However, the inventor
It affects the hardenability and age hardening ability of Al-Mg-Si alloys.
Various studies were conducted on the effects of the volatile alloy components and additive elements.
As a result, it was found that the composition of the alloy of this system should be selected appropriately.
Cu and Sn are added to the TwoSi amount and
Achieved the above objective by specifying the relationship of excess Si amount
It was discovered that it could be accomplished and made the present invention.
is there.

【0005】すなわち、本発明は、(1)重量%で、 Mg:0.3〜1.6% Si:0.4〜1.6% Sn:0.02〜0.08% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 (Mg2 Si量)≧1.6−1.2×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
That is, the present invention contains (1) wt% Mg: 0.3 to 1.6% Si: 0.4 to 1.6% Sn: 0.02 to 0.08%, In addition, the amount of Mg 2 Si (wt%) and the amount of Si (wt%) that is in excess of the Mg 2 Si balance composition is (Mg 2 Si amount) ≧ 1.6-1.2 × (excess Si amount) (Excess Si amount) = (Total Si amount) − (Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.

【0006】(2)上記(1)記載のアルミニウム合金
において、さらに、 Cu:0.05〜1.0% Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金。
(2) In the aluminum alloy described in (1) above, further, Cu: 0.05 to 1.0% Zn: 0.03 to 1.5% Mn: 0.03 to 0.1% Cr: 0.03 to 0.1% Zr: 0.03 to 0.1% V: 0.03 to 0.1% Fe: 0.03 to 0.6% Ti: 0.005 to 0.2% A high-strength aluminum alloy having excellent hardenability, which contains one or more of the above.

【0007】(3)重量%で、 Mg:0.3〜1.6% Si:0.4〜1.6% Cu:0.3〜1.0% Sn:0.02〜0.08% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 1.6−1.2×(過剰Si量)≧(Mg2 Si量)≧
1.0−1.2×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
(3) In weight%, Mg: 0.3 to 1.6% Si: 0.4 to 1.6% Cu: 0.3 to 1.0% Sn: 0.02 to 0.08% containing and Mg 2 Si amount excessive Si amount than (wt%) and Mg 2 Si balanced composition (wt%) is, 1.6-1.2 × (excess Si content) ≧ (Mg 2 Si content ) ≧
1.0-1.2 × (amount of excess Si) where (amount of excess Si) = (total amount of Si) − (Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.

【0008】(4)上記(3)記載のアルミニウム合金
において、さらに、 Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金にある。
(4) In the aluminum alloy described in (3) above, Zn: 0.03 to 1.5% Mn: 0.03 to 0.1% Cr: 0.03 to 0.1% Zr: 0.03 to 0.1% V: 0.03 to 0.1% Fe: 0.03 to 0.6% Ti: 0.005 to 0.2% One or more of these are contained. It is a high-strength aluminum alloy with excellent hardenability.

【0009】[0009]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分組成の限定理由を述べる。Mg:Mgは本発
明で対象としている系の合金で基本となる合金元素であ
り、Siとともに化合物を形成して強度の上昇に寄与す
る。Mg量が0.3%未満では、析出硬化によって強度
の向上に寄与するMg2 Siの生成量が少なくなるた
め、十分な強度が得られず、一方、1.6%を越えれば
焼入性が低下する上に、押出加工性も低下することか
ら、Mg量は0.3〜1.6%の範囲内とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the component composition will be described. Mg: Mg is a basic alloy element in the alloy of the system targeted in the present invention, and forms a compound with Si to contribute to an increase in strength. If the amount of Mg is less than 0.3%, the amount of Mg 2 Si that contributes to the improvement of strength due to precipitation hardening decreases, so sufficient strength cannot be obtained, while if it exceeds 1.6%, the hardenability is increased. In addition to the decrease in Mg content, the extrusion processability also decreases, so the Mg content was made 0.3 to 1.6%.

【0010】Si:Siも本発明の系の合金で基本とな
る合金元素であって、Mgとともに化合物を形成して強
度の向上に寄与する。Siが0.4%未満では硬化に寄
与するMg2 Siの生成量が少なくなるため、十分な強
度が得られず、一方、1.6%を越えると、凝固の際に
粗大Si相が晶出して押出加工性や曲げ加工性を低下さ
せる。従って、Si量は0.4〜1.6%の範囲とし
た。焼入性と強度のバランスからは0.7〜1.5%が
好ましい。
Si: Si is also an alloying element that is a basic element of the alloy of the present invention, and forms a compound with Mg, contributing to the improvement of strength. If Si is less than 0.4%, the amount of Mg 2 Si that contributes to hardening is small, so sufficient strength cannot be obtained. On the other hand, if it exceeds 1.6%, a coarse Si phase is crystallized during solidification. To reduce extrusion processability and bending processability. Therefore, the amount of Si is set to the range of 0.4 to 1.6%. From the viewpoint of balance between hardenability and strength, 0.7 to 1.5% is preferable.

【0011】Sn:Snは本発明での焼入性を確保する
ための必須の元素である。従来、Snは低温時効を抑制
するが、高温時効を促進させるため、焼入性にとっては
不利な元素とされてきた(たとえば、「アルミニウムお
よびその合金材料中の微量元素と諸性質」(軽金属学会
・研究部会報告、1983))。しかしながら、本発明
者が本系合金の焼入性に及ぼすSn添加量の影響を詳細
に調査した結果、0.08%以下の添加量であれば、焼
入性を低下させることなく、逆に向上させることが明ら
かとなった。0.08%を越えると焼入性が低下するば
かりでなく、耐食性も低下する。なお、0.02%未満
の添加では上記のような焼入性向上の効果は現れなかっ
た。従って、Snの添加量は0.02〜0.08%とし
た。
Sn: Sn is an essential element for ensuring the hardenability in the present invention. Conventionally, Sn suppresses low-temperature aging, but promotes high-temperature aging, so it has been considered as a disadvantageous element for hardenability (for example, “trace elements and various properties in aluminum and its alloy materials” (Japan Institute of Light Metals). -Research group report, 1983)). However, as a result of a detailed investigation by the inventor of the effect of the addition amount of Sn on the hardenability of the present system alloy, if the addition amount is 0.08% or less, the hardenability is not deteriorated and conversely It became clear to improve. If it exceeds 0.08%, not only hardenability is deteriorated, but also corrosion resistance is deteriorated. The addition of less than 0.02% did not show the effect of improving the hardenability as described above. Therefore, the addition amount of Sn is set to 0.02 to 0.08%.

【0012】Cu:Cuは時効硬化を促進し、合金の強
度を高める元素であり、Cu量が多いほど時効処理後の
強度は高くなる。Mg2 Si量や過剰Si量が高くてT
6処理によって300MPa以上の引張強さが確保でき
る場合には、Cuは特に添加する必要はないが、添加す
れば強度はさらに高くなる。これに対して、Mg2 Si
量や過剰Si量が低くて、これだけではT6処理後の引
張強さが300MPaに到達しない場合にはCuの添加
によって強度を向上させることが必須となる。
Cu: Cu is an element that promotes age hardening and enhances the strength of the alloy. The greater the amount of Cu, the higher the strength after aging treatment. Since the amount of Mg 2 Si and the amount of excess Si are high, T
When the tensile strength of 300 MPa or more can be secured by the 6 treatment, it is not necessary to add Cu, but if it is added, the strength is further increased. On the other hand, Mg 2 Si
If the amount and the amount of excess Si are low and the tensile strength after T6 treatment does not reach 300 MPa by itself, it is essential to improve the strength by adding Cu.

【0013】ここで、Mg2 Si量、過剰Si量および
Cu量の関係について説明する。本発明者がT6処理後
の引張強さに及ぼすMg2 Si量および過剰Si量の影
響を調査した結果、Mg2 Si量と過剰Si量が次式
(1)を満足する時にT6処理後の引張強さが300M
Paを越えることが明らかになった。 (Mg2 Si量)≧1.6−1.2×(過剰Si量) ・・・(1) 従って、上記(1)式を満足する場合には、Cuの添加
は必須ではないが、添加すれば強度はさらに高くなる。
The relationship between the amount of Mg 2 Si, the amount of excess Si and the amount of Cu will be described. The present inventor investigated the influence of the Mg 2 Si amount and the excess Si amount on the tensile strength after the T6 treatment. As a result, when the Mg 2 Si amount and the excess Si amount satisfy the following equation (1), Tensile strength is 300M
It became clear that it exceeded Pa. (Mg 2 Si amount) ≧ 1.6-1.2 × (excess Si amount) (1) Therefore, when the above formula (1) is satisfied, addition of Cu is not essential, but addition is required. If this is done, the strength becomes even higher.

【0014】この場合、0.05%未満では強度向上の
効果はなく、1.0%を越えると耐食性が低下する。よ
って、Mg2 Si量および過剰Si量が (Mg2 Si量)≧1.6−1.2×(過剰Si量) なる関係式を満足する場合のCuの添加量は0.05〜
1.0%とした。つぎに、Mg2 Si量および過剰Si
量が上記(1)式を満足しない場合には、Cu添加によ
って強度を向上させる必要がある。この場合、耐食性か
ら規定されるCu量の上限である1.0%を添加しても
Mg2 Si量および過剰Si量が次式(2)を満足しな
い場合にはT6処理後の引張強さが300MPaに到達
しない。 (Mg2 Si量)≧1.0−1.2×(過剰Si量) ・・・・(2)
In this case, if it is less than 0.05%, there is no effect of improving the strength, and if it exceeds 1.0%, the corrosion resistance decreases. Therefore, when the Mg 2 Si amount and the excess Si amount satisfy the relational expression of (Mg 2 Si amount) ≧ 1.6-1.2 × (excess Si amount), the addition amount of Cu is 0.05 to
1.0%. Next, the amount of Mg 2 Si and excess Si
When the amount does not satisfy the above formula (1), it is necessary to improve the strength by adding Cu. In this case, if the Mg 2 Si amount and the excess Si amount do not satisfy the following formula (2) even if 1.0%, which is the upper limit of the Cu amount specified by the corrosion resistance, is added, the tensile strength after T6 treatment Does not reach 300 MPa. (Amount of Mg 2 Si) ≧ 1.0-1.2 × (Amount of excess Si) (2)

【0015】また、上記(2)式は満足するが、(1)
式を満足しない場合、すなわち、 1.6−1.2×(過剰Si量)≧(Mg2 Si量)≧1.0−1.2 ×(過剰Si量) ・・・・・・・・(3) を満足する場合、この範囲内でMg2 Si量および過剰
Si量を上限まで含有すると、0.4%以上のCu添加
でT6処理後の引張強さは300MPaを越える。従っ
て、Mg2 Si量および過剰Si量が、 1.6−1.2×(過剰Si量)≧(Mg2 Si量)≧
1.0−1.2×(過剰Si量) なる関係式を満足する場合のCuの添加量は0.4〜
1.0%とした。
Further, although the above expression (2) is satisfied, (1)
When the formula is not satisfied, that is, 1.6-1.2 × (excess Si amount) ≧ (Mg 2 Si amount) ≧ 1.0-1.2 × (excess Si amount) ... When (3) is satisfied, if the Mg 2 Si content and the excess Si content are contained up to the upper limits within this range, the tensile strength after T6 treatment exceeds 300 MPa with Cu addition of 0.4% or more. Therefore, the Mg 2 Si amount and the excess Si amount are 1.6-1.2 × (excess Si amount) ≧ (Mg 2 Si amount) ≧
1.0-1.2 × (excess Si amount) When the relational expression is satisfied, the addition amount of Cu is 0.4 to
1.0%.

【0016】上記の基本組成以外に、Zn,Mn,C
r,Zr,V,Fe,Tiの中から1種以上を含有させ
ることも有効である。Zn:Znは合金の時効硬化性の
向上を通じて強度の向上に寄与する元素であり、その含
有量が0.03%未満では上記の効果が不十分であり、
一方、1.5%を越えると曲げ加工性および耐食性が低
下する。そのため、Znを添加する場合のZn量は0.
03〜1.5%の範囲内とした。
In addition to the above basic composition, Zn, Mn, C
It is also effective to contain one or more of r, Zr, V, Fe and Ti. Zn: Zn is an element that contributes to the improvement of strength through the improvement of age hardenability of the alloy, and if the content thereof is less than 0.03%, the above effect is insufficient,
On the other hand, if it exceeds 1.5%, bending workability and corrosion resistance decrease. Therefore, the amount of Zn when Zn is added is 0.
It was set within the range of 03 to 1.5%.

【0017】Mn,Cr,Zr,V:これらの元素は強
度の向上と結晶粒の微細化に有効な元素であるが、いず
れも含有量が0.03%未満では上記の効果が十分に得
られず、一方、0.1%を越えると焼入性が低下する。
従って、Mn,Cr,ZrおよびVの含有量はいずれも
0.03〜0.1%の範囲内とした。Fe:Feは本
来、不可避的不純物として、アルミニウム合金中に含ま
れる元素であるが、やはり強度の向上と結晶粒の微細化
に有効であり、0.03〜0.6%の範囲内で添加して
も良い。この場合、0.03%未満では上記の効果が十
分に得られず、一方、0.6%を越えると上記効果は飽
和するばかりでなく、巨大金属間化合物が生成されて押
出加工性、曲げ加工性等に悪影響を及ぼす恐れがある。
従って、Feの含有量は0.03〜0.6%の範囲内と
した。
Mn, Cr, Zr, V: These elements are elements effective for improving strength and refining crystal grains, but if the content is less than 0.03%, the above effect is sufficiently obtained. However, if it exceeds 0.1%, the hardenability deteriorates.
Therefore, the contents of Mn, Cr, Zr and V are all within the range of 0.03 to 0.1%. Fe: Fe is an element that is originally contained in an aluminum alloy as an unavoidable impurity, but it is also effective in improving strength and refining crystal grains, and is added within the range of 0.03 to 0.6%. You may. In this case, if it is less than 0.03%, the above effect is not sufficiently obtained, while if it exceeds 0.6%, the above effect is not only saturated, but also a giant intermetallic compound is formed to cause extrusion processability and bending. It may adversely affect workability.
Therefore, the content of Fe is set within the range of 0.03 to 0.6%.

【0018】また、Tiは一般に鋳塊の結晶粒微細化の
ため、単独あるいは微量のBと組み合わせて添加する。
この場合、Tiの含有量が0.005%未満では上記の
効果は得られず、0.2%を越えるとその効果は飽和す
る。従って、Tiの含有量は0.005〜0.2%の範
囲内とする。Bの添加量は0.0005〜0.03%が
有利である。以上のように、本発明では合金の成分組成
を適切に調整するとともに、CuおよびSnを添加し、
さらにMg2 Si量と過剰Si量の関係を特定すること
によって、焼入性に優れるとともに、T6処理によって
300MPa以上の引張強さを示す高強度アルミニウム
合金が得られる。
Further, Ti is generally added alone or in combination with a slight amount of B in order to refine the crystal grains of the ingot.
In this case, if the Ti content is less than 0.005%, the above effect cannot be obtained, and if it exceeds 0.2%, the effect is saturated. Therefore, the Ti content is set within the range of 0.005 to 0.2%. The amount of B added is preferably 0.0005 to 0.03%. As described above, in the present invention, the composition of the alloy is appropriately adjusted, and Cu and Sn are added,
Further, by specifying the relationship between the amount of Mg 2 Si and the amount of excess Si, it is possible to obtain a high strength aluminum alloy having excellent hardenability and having a tensile strength of 300 MPa or more by the T6 treatment.

【0019】[0019]

【実施例】次に、本発明を実施例で説明する。表1に示
す化学成分を有する各合金を常法により、溶解、鋳造
し、面削、均質化処理を行って熱間押出用素材とした。
これらの素材を500℃で5分間予備加熱後、20m/
分の押出速度で熱間押出成形を行い、押出型材を作製し
た。型材の形状は板厚2mm、一辺40mmのロ型であ
る。押出後、50mm長さの試験片を切り出し、540
℃×30分の溶体化処理を施し、その温度から水冷およ
び空冷した後、180℃×8時間の時効処理を行った。
このようにして得られた各合金について、引張試験を実
施し、引張特性と焼入性を評価した。
EXAMPLES Next, the present invention will be described with reference to Examples. Each alloy having the chemical composition shown in Table 1 was melted, casted, chamfered and homogenized by a conventional method to obtain a material for hot extrusion.
After preheating these materials at 500 ° C for 5 minutes,
Hot extrusion molding was performed at an extrusion speed of minutes to produce an extrusion mold material. The shape of the mold material is a square shape having a plate thickness of 2 mm and a side of 40 mm. After extrusion, cut out a test piece of 50 mm in length, 540
After solution treatment at 30 ° C. for 30 minutes, water cooling and air cooling from that temperature, aging treatment at 180 ° C. for 8 hours was performed.
A tensile test was performed on each of the alloys thus obtained, and the tensile properties and hardenability were evaluated.

【0020】[0020]

【表1】 [Table 1]

【0021】焼入性は溶体化後空冷した場合と水冷した
場合の180℃×8時間時効後の引張強さの比で評価し
た。さらに、耐食性、押出性および曲げ加工性について
も評価した。耐食性は500時間の塩水噴霧後の錆発生
状況から〇:錆無し、△:錆小、×:錆大の三段階に評
価した。押出性は押出型材の作製の際の押出成形の容易
さを、比較材のJISA6063合金を100として相
対評価した。また、曲げ加工性はパンチ半径200mm
でプレス曲げ試験によって行い、〇:良好、△:しわ有
り、×:割れの3段階で評価した。それらの結果を表2
に示す。
The hardenability was evaluated by the ratio of tensile strength after aging for 8 hours at 180 ° C. when air-cooled after solution heat treatment and when water-cooled. Furthermore, corrosion resistance, extrudability and bending workability were also evaluated. Corrosion resistance was evaluated on the basis of the rust occurrence state after 500 hours of salt water spraying, in three grades of ◯: no rust, Δ: small rust, ×: large rust. The extrudability was evaluated relative to the ease of extrusion molding when producing an extruded mold material by setting JIS A6063 alloy as a comparative material to 100. The bending radius is 200 mm for punches.
A press bending test was performed and evaluated in three grades of ◯: good, Δ: wrinkle, and ×: crack. Table 2 shows the results.
Shown in

【0022】[0022]

【表2】 [Table 2]

【0023】No.1〜30はいずれも合金の成分組成
が本発明で規定する範囲内で、かつMg2 Si量と過剰
Si量の関係が本発明で規定する条件を満たした例であ
る。これらの場合は、いずれも焼入性が良好(空冷材と
水冷材の引張強さの比が0.8以上)で、引張強さが3
00MPa以上の高強度が得られ、その他の特性も良好
である。
No. 1 to 30 are examples in which the composition of the alloy is within the range specified by the present invention and the relationship between the amount of Mg 2 Si and the excess Si satisfies the conditions specified by the present invention. In all of these cases, the hardenability is good (the ratio of the tensile strength of the air-cooled material to the water-cooled material is 0.8 or more), and the tensile strength is 3
A high strength of 00 MPa or more is obtained, and other properties are also good.

【0024】これに対して、No.31〜39および4
1〜45は合金の成分範囲が本発明で規定する条件を満
たさなかったため、全ての特性を同時に満足することは
できなかった。すなわち、No.31および32は焼入
性、耐食性、押出性および曲げ加工性は良好であるがT
6処理後の強度が低く、No.33は強度、焼入性およ
び耐食性には優れているが、押出性および曲げ加工性に
劣り、No.34〜39は焼入性に劣る。
On the other hand, in No. 31-39 and 4
In Nos. 1 to 45, the composition range of the alloy did not satisfy the conditions specified in the present invention, so that all the properties could not be satisfied at the same time. That is, No. 31 and 32 have good hardenability, corrosion resistance, extrudability and bendability, but T
No. 6 has low strength after the treatment. No. 33 is excellent in strength, hardenability and corrosion resistance, but poor in extrudability and bending workability. 34-39 are inferior in hardenability.

【0025】No.41焼入性、押出性および曲げ加工
性に優れているが、T6処理後の引張強さが300MP
aに達しない。また、No.41〜45は強度、焼入性
および耐食性のいずれにおいても劣っている。No.4
0は合金の成分組成は本発明で規定する範囲内である
が、Mg2 Si量と過剰Si量の関係が本発明で規定す
る関係式を満たさないため、No.T6処理後の強度が
300MPaに満たなかった。
No. 41 It has excellent hardenability, extrudability and bending workability, but the tensile strength after T6 treatment is 300MP.
It does not reach a. In addition, No. Nos. 41 to 45 are inferior in strength, hardenability and corrosion resistance. No. Four
No. 0 indicates that the composition of the alloy is within the range specified by the present invention, but the relationship between the amount of Mg 2 Si and the excess Si does not satisfy the relational expression specified by the present invention. The strength after T6 treatment was less than 300 MPa.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明に
よると焼入性が良好で、耐食性、押出性、曲げ加工性に
も優れ、かつT6処理後の引張強さが300MPa以上
の高強度アルミニウム合金を得ることができる。
As is apparent from the above description, according to the present invention, the hardenability is good, the corrosion resistance, the extrudability and the bending workability are excellent, and the tensile strength after the T6 treatment is 300 MPa or more. A strong aluminum alloy can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:0.3〜1.6% Si:0.4〜1.6% Sn:0.02〜0.08% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 (Mg2 Si量)≧1.6−1.2×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
1. By weight%, Mg: 0.3 to 1.6% Si: 0.4 to 1.6% Sn: 0.02 to 0.08%, and the amount of Mg 2 Si (weight: %) And the amount of Si (wt%) in excess of the Mg 2 Si balance composition is (Mg 2 Si amount) ≧ 1.6−1.2 × (excess Si amount) where (excess Si amount) = ( Total Si amount)-(Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.
【請求項2】 請求項1記載のアルミニウム合金におい
て、さらに、 Cu:0.05〜1.0% Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金。
2. The aluminum alloy according to claim 1, further comprising: Cu: 0.05 to 1.0% Zn: 0.03 to 1.5% Mn: 0.03 to 0.1% Cr: 0. 03-0.1% Zr: 0.03-0.1% V: 0.03-0.1% Fe: 0.03-0.6% Ti: 0.005-0.2% 1 of A high-strength aluminum alloy with excellent hardenability that contains one or more kinds.
【請求項3】 重量%で、 Mg:0.3〜1.6% Si:0.4〜1.6% Cu:0.3〜1.0% Sn:0.02〜0.08% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 1.6−1.2×(過剰Si量)≧(Mg2 Si量)≧
1.0−1.2×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
3. By weight%, Mg: 0.3 to 1.6% Si: 0.4 to 1.6% Cu: 0.3 to 1.0% Sn: 0.02 to 0.08% The content of Mg 2 Si (wt%) and the excess Si content (wt%) of the Mg 2 Si balance composition is 1.6-1.2 × (excess Si content) ≧ (Mg 2 Si content) ≧
1.0-1.2 × (amount of excess Si) where (amount of excess Si) = (total amount of Si) − (Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.
【請求項4】 請求項1記載のアルミニウム合金におい
て、さらに、 Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金。
4. The aluminum alloy according to claim 1, further comprising: Zn: 0.03 to 1.5% Mn: 0.03 to 0.1% Cr: 0.03 to 0.1% Zr: 0. Quenching containing one or more of 03-0.1% V: 0.03-0.1% Fe: 0.03-0.6% Ti: 0.005-0.2% High strength aluminum alloy with excellent properties.
JP1643996A 1996-02-01 1996-02-01 High strength aluminum alloy excellent in hardenability Withdrawn JPH09209068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1643996A JPH09209068A (en) 1996-02-01 1996-02-01 High strength aluminum alloy excellent in hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1643996A JPH09209068A (en) 1996-02-01 1996-02-01 High strength aluminum alloy excellent in hardenability

Publications (1)

Publication Number Publication Date
JPH09209068A true JPH09209068A (en) 1997-08-12

Family

ID=11916273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1643996A Withdrawn JPH09209068A (en) 1996-02-01 1996-02-01 High strength aluminum alloy excellent in hardenability

Country Status (1)

Country Link
JP (1) JPH09209068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
KR20180095591A (en) * 2015-12-18 2018-08-27 노벨리스 인크. High strength 6XXX aluminum alloys and methods for making them
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
CN112725666A (en) * 2020-11-24 2021-04-30 宁波科诺精工科技有限公司 Aluminum alloy with cold heading non-cracking effect

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
KR20180095591A (en) * 2015-12-18 2018-08-27 노벨리스 인크. High strength 6XXX aluminum alloys and methods for making them
JP2019501288A (en) * 2015-12-18 2019-01-17 ノベリス・インコーポレイテッドNovelis Inc. High strength 6XXX aluminum alloy and manufacturing method thereof
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
EP3390678B1 (en) 2015-12-18 2020-11-25 Novelis, Inc. High strength 6xxx aluminum alloys and methods of making the same
US11920229B2 (en) 2015-12-18 2024-03-05 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
CN112725666A (en) * 2020-11-24 2021-04-30 宁波科诺精工科技有限公司 Aluminum alloy with cold heading non-cracking effect

Similar Documents

Publication Publication Date Title
JP2697400B2 (en) Aluminum alloy for forging
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JP3670706B2 (en) Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPH10219413A (en) Production of high strength aluminum alloy excellent in intergranular corrosion resistance
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
KR100909699B1 (en) Aluminum alloy with improved impact energy and extrusion made from the same
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH0941064A (en) Production of aluminum alloy for casting and aluminum alloy casting material
JPS6154853B2 (en)
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH0547616B2 (en)
JP3248263B2 (en) Al-Mn alloy for cryogenic forming
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JP2006097104A (en) 6,000-series aluminum extruded material superior in paint-baking hardenability, and manufacturing method therefor
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401