JPH0920751A - Production of disulfides - Google Patents

Production of disulfides

Info

Publication number
JPH0920751A
JPH0920751A JP7196172A JP19617295A JPH0920751A JP H0920751 A JPH0920751 A JP H0920751A JP 7196172 A JP7196172 A JP 7196172A JP 19617295 A JP19617295 A JP 19617295A JP H0920751 A JPH0920751 A JP H0920751A
Authority
JP
Japan
Prior art keywords
alkali metal
metal hydroxide
mol
disulfides
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7196172A
Other languages
Japanese (ja)
Other versions
JP3787791B2 (en
Inventor
Hiroshi Miyaji
洋 宮地
Yasushi Ishihara
康 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP19617295A priority Critical patent/JP3787791B2/en
Publication of JPH0920751A publication Critical patent/JPH0920751A/en
Application granted granted Critical
Publication of JP3787791B2 publication Critical patent/JP3787791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-quality disulfide in high yield useful as a raw material for various synthetic chemicals such as a surfactant, a dye, a medicine, an agrochemical, etc., including a raw material for various additives required for producing rubber, a plastics, etc. SOLUTION: This disulfide as the objective compound, such as dicyclohexyl disulfide of the formula is obtained by reacting a monochloro-substituted compound (e.g. chlorocyclohexane) with an alkali metal sulfide (e.g. sodium sulfide) or a mixture containing it in the presence of a solvent (e.g. a 1-3C aliphatic alcohol such as methanol) and an alkali metal hydroxide (e.g. sodium hydroxide) at 72-110 deg.C inner temperature under normal temperature to 1.9kg/cm<2> G. The amounts of the reagents used are preferably 0.2-0.4mol of the alkali metal hydroxide and 0.8-3.0mol of the solvent based on 1mol of the monochloro- substituted compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脂肪族、脂環族および
芳香族ジスルフィド類の製造方法に関するものである。
更に詳しくは、本発明は、高収率でかつ、品質のよい前
記ジスルフィド類を効率的に製造する方法に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a method for producing aliphatic, alicyclic and aromatic disulfides.
More specifically, the present invention relates to a method for efficiently producing the above-mentioned disulfides with high yield and quality.

【0002】[0002]

【従来の技術および発明が解決する課題】脂肪族または
芳香族ジスルフィド類の一般的合成法としては、チオー
ル類を酸化する方法、二硫化ナトリウムとハロゲン化ア
ルキルあるいはハロゲン化アリールと反応させる方法、
二硫化ナトリウムとアルキル硫酸エステル塩あるいはア
ルキルジアゾニウム塩とを反応させる方法、などが知ら
れている〔有機化学のハンドブック−有機合成化学協会
編(1979)〕。
BACKGROUND OF THE INVENTION As a general method for synthesizing aliphatic or aromatic disulfides, a method of oxidizing thiols, a method of reacting sodium disulfide with an alkyl halide or an aryl halide,
A method of reacting sodium disulfide with an alkyl sulfate ester salt or an alkyl diazonium salt is known [Handbook of Organic Chemistry-Organic Synthetic Chemistry Society (1979)].

【0003】また、脂環式炭化水素のジスルフィド類を
得る公知方法としては、シクロヘキセンと硫化水素を硫
黄の存在下で150℃で反応させる方法〔J.Che
m.Socy.,1947、1532(1947)〕、
シクロヘキサノールと多硫化アンチモンをジオキサンの
存在下、200℃で反応させる方法〔日本化学雑誌、7
2、372(1951)〕、シクロヘキサノンと硫化水
素を900〜1000気圧、130℃で反応させる方法
〔J.Am.Chem.Soc.,74、3982(1
952)〕などがあるが、いずれも苛酷な条件で収率が
低く、工業的な製造方法としては問題がある。
Further, as a known method for obtaining alicyclic hydrocarbon disulfides, a method in which cyclohexene and hydrogen sulfide are reacted at 150 ° C. in the presence of sulfur [J. Che
m. Soc. , 1947, 1532 (1947)],
Method of reacting cyclohexanol and antimony polysulfide in the presence of dioxane at 200 ° C. [Nippon Kagaku Shimbun, 7
2, 372 (1951)], a method of reacting cyclohexanone and hydrogen sulfide at 900 to 1000 atm and 130 ° C. [J. Am. Chem. Soc. , 74, 3982 (1
952)] and the like, but all of them have a low yield under severe conditions and are problematic as an industrial production method.

【0004】また、ジシクロヘキシルジスルフィドは、
ゴム、プラスチックの製造に欠くことのできない各種添
加剤の原料を始めとして、界面活性剤、染料、医農薬な
ど各種合成薬品の原料として有用な化合物であるが、こ
れを工業的に製造する方法に関する報告例は少ない。
Further, dicyclohexyl disulfide is
It is a compound useful as a raw material for various synthetic chemicals such as surfactants, dyes, pharmaceuticals and agrochemicals, as well as raw materials for various additives that are indispensable for the production of rubber and plastics. There are few reports.

【0005】クロルシクロヘキサンを原料とするジシク
ロヘキシルジスルフィドの製造方法としては、エタノー
ル溶媒下での二硫化ナトリウムとの反応方法(チェコス
ロバキア国特許CS77−2376号公報)、界面活性
剤を含む水を溶媒とする過剰の二硫化ナトリウムとの反
応方法(チェコスロバキア国特許CS81−4309号
公報)などが提案されているが、生成物の組成や廃液処
理などに問題があり、経済的に製造しようとする目的か
らは満足できるものでなかった。
As a method for producing dicyclohexyl disulfide using chlorocyclohexane as a raw material, a reaction method with sodium disulfide in an ethanol solvent (Czechoslovak Patent CS77-2376), water containing a surfactant as a solvent is used. Although a reaction method with excess sodium disulfide (Czech Slovak Patent No. CS81-4309) has been proposed, there is a problem in the composition of the product and the treatment of the waste liquid, and the purpose is to economically produce the product. I was not satisfied with it.

【0006】また、特公昭60−30667号公報にお
いて、メタノールと水の混合溶媒下、クロルシクロヘキ
サン、硫化ナトリウム、硫黄を厳密なモル比設定下で反
応させる方法が提案された。この方法は、工業的な製造
方法としては有意義な方法ではあるが、さらに生産性を
向上させるため、溶媒使用量を低減させたりすると生成
物の純度不良や収率の低下を伴うなどの欠点を抱えてお
り、前述の目的達成に至るものではなかった。
Further, Japanese Patent Publication No. 60-30667 proposed a method of reacting chlorocyclohexane, sodium sulfide and sulfur in a mixed solvent of methanol and water under a strict molar ratio setting. Although this method is a meaningful method as an industrial manufacturing method, in order to further improve the productivity, when the amount of solvent used is reduced, there are drawbacks such as poor purity of the product and a decrease in yield. I had it, and did not reach the purpose mentioned above.

【0007】[0007]

【課題を解決するための手段】本発明者らは前述の特公
昭60−30667号公報に記載されている発明のさら
なる改良を図り、より経済的にかかるジスルフィド類を
製造する方法について鋭意検討の結果、アルカリ金属水
酸化物を共存させて反応せしめることにより、上記課題
を解決し得ることを見出して本発明に到達した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made intensive studies on a method for producing such disulfides more economically with the aim of further improving the invention described in Japanese Patent Publication No. 60-30667. As a result, they have reached the present invention by finding that the above problems can be solved by reacting them in the presence of an alkali metal hydroxide.

【0008】すなわち、本発明は、モノクロル置換化合
物を溶媒の存在下、アルカリ金属硫化物またはそれを含
む混合物と反応させるに際し、アルカリ金属水酸化物を
共存させ反応せしめることを特徴とするジスルフィド類
の製造方法を提供するものである。本発明をその具体的
実施態様として示せば、本発明は、クロルシクロヘキサ
ンをメタノール等の溶媒下、アルカリ金属硫化物あるい
はそれを含む混合物と反応せしめるに際し、アルカリ金
属水酸化物を、好ましくはクロルシクロヘキサン1モル
に対して0.1〜0.6モルの範囲で共存させることを
特徴とするジシクロヘキシルジスルフィドを効率的に製
造する方法である。ジシクロヘキシルジスルフィドは、
下記構造式によって示される。
That is, according to the present invention, when a monochloro-substituted compound is reacted with an alkali metal sulfide or a mixture containing the same in the presence of a solvent, the disulfides are characterized by reacting with an alkali metal hydroxide. A manufacturing method is provided. Illustrating the present invention as a specific embodiment thereof, the present invention comprises reacting chlorcyclohexane with an alkali metal sulfide or a mixture containing the same in a solvent such as methanol. This is a method for efficiently producing dicyclohexyl disulfide, which is characterized in that it is allowed to coexist in the range of 0.1 to 0.6 mol with respect to 1 mol. Dicyclohexyl disulfide is
It is represented by the following structural formula.

【0009】[0009]

【化1】 以下、本発明について詳細に説明する。Embedded image Hereinafter, the present invention will be described in detail.

【0010】本発明の実施において、反応で共存させる
アルカリ金属水酸化物としては、水酸化リチウム、水酸
化ナトリウム、または水酸化カリウムあるいはそれを含
む水溶液が好適である。水溶液としては、5%〜48%
程度の濃度のものが好ましく、特に安価で、かつ、取扱
いやすい面から48%水酸化ナトリウム水溶液を用いる
ことが最も好ましい。
In the practice of the present invention, the alkali metal hydroxide coexisted in the reaction is preferably lithium hydroxide, sodium hydroxide, potassium hydroxide or an aqueous solution containing the same. 5% to 48% as an aqueous solution
It is preferable to use a 48% aqueous solution of sodium hydroxide, since it is preferable to use a 48% aqueous solution of sodium hydroxide because it is inexpensive and easy to handle.

【0011】このアルカリ金属水酸化物の共存量は、例
えばジシクロヘキシルジスルフィドを得るの場合、クロ
ルシクロヘキサン1モルに対して約0.1〜約0.6モ
ルの範囲、特に0.2〜0.4モルの範囲が好ましく、
同一反応条件下の共存なしに比べ、クロルシクロヘキサ
ン基準のジシクロヘキシルジスルフィドの収率が3〜8
%向上し、副生成物であるジシクロヘキシルトリスルフ
ィドの副生率が約1/3に減少する。
In the case of obtaining dicyclohexyl disulfide, for example, the amount of the alkali metal hydroxide coexisting is in the range of about 0.1 to about 0.6 mol, particularly 0.2 to 0.4, relative to 1 mol of chlorocyclohexane. A molar range is preferred,
The yield of dicyclohexyl disulfide based on chlorocyclohexane is 3 to 8 as compared with the case without coexistence under the same reaction conditions.
%, The by-product ratio of dicyclohexyl trisulfide as a by-product is reduced to about 1/3.

【0012】本発明ではアルカリ金属水酸化物の共存量
が、モノクロル置換化合物1モルに対して0.1モル未
満の場合は、収率や品質向上への効果は小さくなる傾向
があり、逆に、0.6モルを超えると効果は頭打ちにな
る一方、産廃量が増加していくので好ましくない。
In the present invention, when the amount of the alkali metal hydroxide coexisting is less than 0.1 mol with respect to 1 mol of the monochloro-substituted compound, the effect on yield and quality improvement tends to be small. If the amount exceeds 0.6 mol, the effect will reach the ceiling, but the amount of industrial waste will increase, which is not preferable.

【0013】本発明の実施においては、アルカリ金属水
酸化物を共存させる際、溶媒を使用する。本発明におい
て使用する溶媒は、炭素数1〜3の脂肪族アルコール類
あるいはそれを50%程度以上含む水溶液等であり、安
価でかつ汎用的であり、さらには収率が高く副生物の生
成率が少ないなどの観点から、メタノールが特に好まし
い。
In the practice of the present invention, a solvent is used when the alkali metal hydroxide is allowed to coexist. The solvent used in the present invention is an aliphatic alcohol having 1 to 3 carbon atoms or an aqueous solution containing about 50% or more thereof, which is inexpensive and versatile, and has a high yield and a by-product production rate. Methanol is particularly preferable from the viewpoint of low content.

【0014】メタノール溶媒は、例えばジシクロヘキシ
ルジスルフィドを得るの場合、クロルシクロヘキサン1
モルに対して約0.8〜約3.0モルの範囲、特に1.
2〜2.0モルの範囲で使用することが好ましい。0.
8モル未満の場合は、ジシクロヘキシルジスルフィドの
収率が低下し、3.0モルを超えると、副生成物である
ジシクロヘキシルモノスルフィドの生成率が増加するの
で好ましくない。
The methanol solvent is, for example, chlorocyclohexane 1 in the case of obtaining dicyclohexyl disulfide.
The range is from about 0.8 to about 3.0 moles, especially 1.
It is preferably used in the range of 2 to 2.0 mol. 0.
When the amount is less than 8 mol, the yield of dicyclohexyl disulfide decreases, and when the amount exceeds 3.0 mol, the production rate of the by-product dicyclohexyl monosulfide increases, which is not preferable.

【0015】本発明の実施において、反応温度および圧
力は、溶媒その他が還流する温度、すなわち、72〜1
10℃の範囲と常圧〜2.1kg/cm2 Gの範囲、特
に90〜100℃の温度の範囲、1.2〜1.8kg/
cm2 Gの圧力の範囲が好ましく、常圧、還流下の反応
に比べ、反応時間が約1/3に短縮できる。
In the practice of the present invention, the reaction temperature and pressure are such that the solvent or the like is refluxed, that is, 72 to 1
10 ° C. range and atmospheric pressure to 2.1 kg / cm 2 G range, especially 90 to 100 ° C. temperature range, 1.2 to 1.8 kg /
The pressure range of cm 2 G is preferable, and the reaction time can be shortened to about 1/3 as compared with the reaction under normal pressure and reflux.

【0016】反応する温度が溶媒その他が還流する温度
以下、すなわち、72℃未満では、同等の収率を得るに
は長時間の反応を必要とし、また110℃を超えるとク
ロルシクロヘキサンの脱塩酸によるシクロへキセンの副
生が顕著になるので好ましくない。
When the reaction temperature is lower than the reflux temperature of the solvent or the like, that is, less than 72 ° C., it takes a long time to obtain an equivalent yield, and when it exceeds 110 ° C., dechlorination of chlorocyclohexane is required. It is not preferable because the by-product of cyclohexene becomes remarkable.

【0017】本発明のように、反応系にアルカリ金属水
酸化物を共存させると、加圧下、高温で反応させても、
アルカリ金属水酸化物が共存しない場合に見られるよう
なシクロヘキシルメルカプタン、ジシクロヘキシルトリ
スルフィドの著しい副生が、抑制される。また、反応も
加速されるので品質のよいジシクロヘキシルジスルフィ
ドを短時間に高収率で得ることができる。
When an alkali metal hydroxide is allowed to coexist in the reaction system as in the present invention, even if the reaction is carried out at high temperature under pressure,
A significant by-product of cyclohexyl mercaptan and dicyclohexyl trisulfide, which is observed when alkali metal hydroxide does not coexist, is suppressed. In addition, since the reaction is also accelerated, high quality dicyclohexyl disulfide can be obtained in a short time in a high yield.

【0018】本発明で使用できるアルカリ金属硫化物と
しては、硫化ナトリウム、硫化カリウムなどがあり、特
に安価でかつ工業的に出回っている硫化ナトリウムが好
ましく用いられる。かかる硫化ナトリウムの種類として
は、、無水物、二水塩、9水塩などがあり、特に安価で
かつ水の含有率が比較的少ない二水塩が好ましく用いら
れる。
Examples of the alkali metal sulfide usable in the present invention include sodium sulfide and potassium sulfide, and sodium sulfide, which is inexpensive and industrially available, is preferably used. Examples of such sodium sulfide include anhydrides, dihydrates, and 9-hydrates, and dihydrates that are inexpensive and have a relatively low water content are preferably used.

【0019】アルカリ金属硫化物の使用量は、例えばジ
シクロヘキシルジスルフィドを得るの場合、クロルシク
ロヘキサン1モルに対して約0.5〜約0.8モルの範
囲であり、特にクロルシクロヘキサンと硫化ナトリウム
からのジシクロヘキシルモノスルフィドの効率のよい収
率を考えると、0.65〜0.70モルノ範囲で使用す
ることが望ましい。
The amount of the alkali metal sulfide used is, for example, in the case of obtaining dicyclohexyl disulfide, in the range of about 0.5 to about 0.8 mol, based on 1 mol of chlorocyclohexane, and particularly from chlorocyclohexane and sodium sulfide. Considering the efficient yield of dicyclohexyl monosulfide, it is desirable to use it in the range of 0.65 to 0.70 mol.

【0020】また、使用するイオウの量は、クロルシク
ロヘキサン1モルに対して約0.4〜約0.6モルの範
囲であり、特に副生物のシクロヘキシルメルカプタン、
ジシクロヘキシルモノスルフィド、ジシクロヘキシルト
リスルフィドの生成を抑制し、高純度のジシクロヘキシ
ルジスルフィドを得るには、0.45〜0.50モルの
範囲で使用することが好ましい。
The amount of sulfur used is in the range of about 0.4 to about 0.6 mol per mol of chlorocyclohexane, especially by-product cyclohexyl mercaptan,
In order to suppress the formation of dicyclohexyl monosulfide and dicyclohexyl trisulfide and obtain high-purity dicyclohexyl disulfide, it is preferable to use it in the range of 0.45 to 0.50 mol.

【0021】以下、実施例を示し本発明を具体的に説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0022】[0022]

【実施例】【Example】

(実施例1)逆流コンデンサ、温度計、滴下ロート、攪
拌機を備えた500ml容の四つ口フラスコにメタノー
ル65.6g(2.1モル)、硫化ナトリウム107.
0g(60%含量として0.82モル)、硫黄19.0
g(0.59モル)、48%水酸化ナトリウム水溶液2
0.0g(0.24モル)を仕込み、加熱して、液温6
0〜65℃を保持しながら30分間撹拌した。次いで、
この液が還流するまで加熱し、純度97.5%のクロル
シクロヘキサン150.0g(1.23モル)を滴下ロ
ートから少量ずつ添加した。添加終了後、還流状態を維
持しながら、15時間反応を続けた。液温を50℃以下
にした後、析出する塩化ナトリウムを小型遠心分離機を
用いて濾過し、その濾液を分液ロートに移し、分相する
未反応の多硫化ナトリウムを含む水、メタノール層を分
離して油層139.0gを得た。この油層をガスクロマ
トグラフで分析すると、ジシクロヘキシルジスルフィド
の含有率76.2%でクロルシクロヘキサンからの収率
は75%であった。 (実施例2)48%水酸化ナトリウム水溶液の仕込量を
42.0g(0.50モル)とした以外は実施例1と同
様の操作を行って、油層132.5gを得た。この油層
をガスクロマトグラフで分析するとジシクロヘキシルジ
スルフィドの含有率は85.0%で、クロルシクロヘキ
サンからの収率は80%であった。 (実施例3)48%水酸化ナトリウム水溶液の仕込量を
63.0g(0.76モル)とした以外は実施例1〜2
と同様の操作を行って、油層133.0gを得た。この
油層をガスクロマトグラフで分析するとジシクロヘキシ
ルジスルフィドの含有率は84.8%でクロルシクロヘ
キサンからの収率は80%であった。 (実施例4)48%水酸化ナトリウム水溶液の代わり
に、85%水酸化カリウム水溶液の仕込量を32.9g
(0.50モル)とした以外は、実施例1〜3と同様の
操作を行なって、油層131.9gを得た。この油層を
ガスクロマトグラフで分析するとジシクロヘキシルジス
ルフィドの含有率は83.5%で、クロルシクロヘキサ
ンからの収率は78%であった。 (実施例5)メタノールの仕込量を46.3g(1.4
5モル)とした以外は実施例2と同様の操作を行って、
油層143.7gを得た。この油層をガスクロマトグラ
フで分析するとジシクロヘキシルジスルフィドの含有率
は74.8%でクロルシクロヘキサンからの収率は76
%であった。 (実施例6)温度計、攪拌機を備えた500ml容の加
圧容器を用いる以外は実施例4と同様の仕込みを行い、
締切り、撹拌下、加熱して液温を60〜65℃に維持し
ながら30分間反応した。次いで、加圧ポンプを用いて
純度97.5%のクロルシクロへキサンを実施例5と同
一量添加した。さらに、加熱を続け、液温が100℃に
到達したら同温度を維持しながら5時間反応を続けた。
この間の圧力は最大1.8kg/cm2 Gであった。以
後、実施例4と同様の操作を行って油層135.1gを
得た。この油層をガスクロマトグラフで分析するとジシ
クロヘキシルジスルフィドの含有率は82.7%でクロ
ルシクロヘキサンからの収率は79%であった。 (比較例1)48%水酸化ナトリウムの仕込みをやめた
以外は実施例1〜3と同様の操作を行って油層138.
7gを得た。この油層をガスクロマトグラフで分析する
とジシクロヘキシルジスルフィドの含有率は73.2%
でクロルシクロヘキサンからの収率は72%であった。 (比較例2)48%水酸化ナトリウムの仕込みをやめた
以外は実施例4と同様の操作を行って油層141.2g
を得た。この油層をガスクロマトグラフで分析するとジ
シクロヘキシルジスルフィドの含有率は67.2%でク
ロルシクロへキサンからの収率は67%であった。 (比較例3)メタノールの使用量を193g(6.0モ
ル)とした以外は実施例2と同様の操作を行って油層1
34.0gを得た。この油層をガスクロマトグラフで分
析するとジシクロヘキシルジスルフィドの含有率は8
5.5%でクロルシクロヘキサンからの収率は81%で
あった。 (比較例4)48%水酸化ナトリウムの仕込みをやめた
以外は実施例5と同様の操作を行って油層147.1g
を得た。この油層をガスクロマトグラフで分析するとジ
シクロヘキシルジスルフィドの含有率は52.9%でク
ロルシクロヘキサンからの収率は55%であった。
(Example 1) 65.6 g (2.1 mol) of methanol and 107. sodium sulfide were placed in a 500 ml four-necked flask equipped with a back-flow condenser, a thermometer, a dropping funnel, and a stirrer.
0 g (0.82 mol as 60% content), sulfur 19.0
g (0.59 mol), 48% sodium hydroxide aqueous solution 2
Charge 0.0 g (0.24 mol) and heat to a liquid temperature of 6
The mixture was stirred for 30 minutes while maintaining 0 to 65 ° C. Then
The solution was heated to reflux, and 150.0 g (1.23 mol) of chlorocyclohexane having a purity of 97.5% was added little by little from a dropping funnel. After the addition was completed, the reaction was continued for 15 hours while maintaining the reflux state. After the liquid temperature was set to 50 ° C. or lower, the precipitated sodium chloride was filtered using a small centrifuge, the filtrate was transferred to a separating funnel, and the water containing the unreacted sodium polysulfide and the methanol layer were separated. Separation gave 139.0 g of an oil layer. When this oil layer was analyzed by gas chromatography, the dicyclohexyldisulfide content was 76.2% and the yield from chlorocyclohexane was 75%. (Example 2) The same operation as in Example 1 was carried out except that the amount of the 48% aqueous sodium hydroxide solution charged was 42.0 g (0.50 mol) to obtain 132.5 g of an oil layer. When this oil layer was analyzed by gas chromatography, the dicyclohexyl disulfide content was 85.0%, and the yield from chlorocyclohexane was 80%. (Example 3) Examples 1 and 2 except that the amount of 48% sodium hydroxide aqueous solution charged was 63.0 g (0.76 mol).
The same operation as above was performed to obtain 133.0 g of an oil layer. When this oil layer was analyzed by gas chromatography, the content of dicyclohexyl disulfide was 84.8% and the yield from chlorocyclohexane was 80%. (Example 4) Instead of the 48% sodium hydroxide aqueous solution, an amount of the 85% potassium hydroxide aqueous solution charged was 32.9 g.
The same operation as in Examples 1 to 3 was carried out except that (0.50 mol) was obtained to obtain 131.9 g of an oil layer. When this oil layer was analyzed by gas chromatography, the dicyclohexyl disulfide content was 83.5%, and the yield from chlorocyclohexane was 78%. (Example 5) The charged amount of methanol was 46.3 g (1.4
(5 mol), except that the same operation as in Example 2 was performed,
143.7 g of an oil layer was obtained. When this oil layer was analyzed by gas chromatography, the dicyclohexyl disulfide content was 74.8% and the yield from chlorocyclohexane was 76.
%Met. (Example 6) The same preparation as in Example 4 was carried out except that a 500 ml pressure vessel equipped with a thermometer and a stirrer was used.
The reaction was carried out for 30 minutes while maintaining the liquid temperature at 60 to 65 ° C by heating under a deadline and stirring. Then, using a pressure pump, 97.5% pure chlorocyclohexane was added in the same amount as in Example 5. Further, heating was continued, and when the liquid temperature reached 100 ° C., the reaction was continued for 5 hours while maintaining the same temperature.
The maximum pressure during this period was 1.8 kg / cm 2 G. Thereafter, the same operation as in Example 4 was carried out to obtain 135.1 g of an oil layer. When this oil layer was analyzed by gas chromatography, the dicyclohexyl disulfide content was 82.7%, and the yield from chlorocyclohexane was 79%. (Comparative Example 1) The same procedure as in Examples 1 to 3 was carried out except that the charging of 48% sodium hydroxide was stopped.
7 g were obtained. When this oil layer is analyzed by gas chromatography, the content of dicyclohexyl disulfide is 73.2%.
The yield from chlorocyclohexane was 72%. (Comparative Example 2) An oil layer of 141.2 g was prepared in the same manner as in Example 4 except that the addition of 48% sodium hydroxide was stopped.
I got When this oil layer was analyzed by gas chromatography, the content of dicyclohexyldisulfide was 67.2%, and the yield from chlorocyclohexane was 67%. (Comparative Example 3) Oil layer 1 was prepared in the same manner as in Example 2 except that the amount of methanol used was 193 g (6.0 mol).
34.0 g was obtained. When this oil layer is analyzed by gas chromatography, the content of dicyclohexyl disulfide is 8
At 5.5%, the yield from chlorocyclohexane was 81%. (Comparative Example 4) An oil layer of 147.1 g was prepared in the same manner as in Example 5, except that the addition of 48% sodium hydroxide was stopped.
I got When this oil layer was analyzed by gas chromatography, the dicyclohexyl disulfide content was 52.9% and the yield from chlorocyclohexane was 55%.

【0023】実施例1〜6の結果、および比較例1〜4
の結果を、それぞれ第1表および第2表にまとめて示
す。
Results of Examples 1 to 6 and Comparative Examples 1 to 4
The results are shown in Tables 1 and 2 respectively.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明の製造方法は、安価でかつ汎用的
である薬品を共存下反応させることにより、大幅な溶媒
使用量の低減や製造する時間の短縮を可能とするもので
あり、本発明により、品質、収率に支障をきたすことな
く工業的規模でジシクロヘキシルジスルフィドを効率
的、経済的に製造することが可能となった。
EFFECT OF THE INVENTION The production method of the present invention makes it possible to significantly reduce the amount of solvent used and the production time by reacting inexpensive and general-purpose chemicals in the coexistence. The invention makes it possible to efficiently and economically produce dicyclohexyldisulfide on an industrial scale without affecting the quality and yield.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 モノクロル置換化合物を溶媒の存在下、
アルカリ金属硫化物またはそれを含む混合物と反応させ
るに際し、アルカリ金属水酸化物を共存させ反応せしめ
ることを特徴とするジスルフィド類の製造方法。
1. A monochloro-substituted compound in the presence of a solvent,
A process for producing disulfides, which comprises reacting with an alkali metal hydroxide in the reaction with an alkali metal sulfide or a mixture containing the same.
【請求項2】 前記アルカリ金属水酸化物が、水酸化リ
チウム、水酸化ナトリウムおよび水酸化カリウムから選
ばれたひとつであることを特徴とする請求項1記載のジ
スルフィド類の製造方法。
2. The method for producing disulfides according to claim 1, wherein the alkali metal hydroxide is one selected from lithium hydroxide, sodium hydroxide and potassium hydroxide.
【請求項3】 前記アルカリ金属水酸化物が、水酸化ナ
トリウムであることを特徴とする請求項1記載のジスル
フィド類の製造方法。
3. The method for producing disulfides according to claim 1, wherein the alkali metal hydroxide is sodium hydroxide.
【請求項4】 前記アルカリ金属水酸化物が、該アルカ
リ金属水酸化物を含む水溶液であることを特徴とする請
求項1、2または3記載のジスルフィド類の製造方法。
4. The method for producing disulfides according to claim 1, 2 or 3, wherein the alkali metal hydroxide is an aqueous solution containing the alkali metal hydroxide.
【請求項5】 前記アルカリ金属水酸化物を、モノクロ
ル置換化合物1モルに対して0.1〜0.6モルの範囲
で共存させることを特徴とする請求項1、2、3または
4記載のジスルフィド類の製造方法。
5. The method according to claim 1, wherein the alkali metal hydroxide is allowed to coexist in the range of 0.1 to 0.6 mol per mol of the monochloro-substituted compound. Method for producing disulfides.
【請求項6】 内液の温度を72〜110℃の範囲、圧
力を常圧〜1.9kg/cm2 Gの範囲として反応せし
めることを特徴とする請求項1記載のジスルフィド類の
製造方法。
6. The process for producing disulfides according to claim 1, wherein the reaction is carried out at a temperature of the internal liquid of 72 to 110 ° C. and a pressure of atmospheric pressure to 1.9 kg / cm 2 G.
【請求項7】 使用する溶媒が炭素数1〜3の脂肪族ア
ルコールであることを特徴とする請求項1記載のジスル
フィド類の製造方法。
7. The method for producing disulfides according to claim 1, wherein the solvent used is an aliphatic alcohol having 1 to 3 carbon atoms.
【請求項8】 前記溶媒を、モノクロル置換化合物1モ
ルに対して0.8〜3.0モルの範囲で用いる請求項7
記載のジスルフィド類の製造方法。
8. The solvent is used in the range of 0.8 to 3.0 mol per mol of the monochloro-substituted compound.
A method for producing the disulfides described.
【請求項9】 前記モノクロル置換化合物がクロルシク
ロヘキサンであることを特徴とする請求項1〜8記載の
ジスルフィド類の製造方法。
9. The method for producing disulfides according to claim 1, wherein the monochloro-substituted compound is chlorocyclohexane.
JP19617295A 1995-07-07 1995-07-07 A method for producing dicyclohexyl disulfide. Expired - Lifetime JP3787791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19617295A JP3787791B2 (en) 1995-07-07 1995-07-07 A method for producing dicyclohexyl disulfide.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19617295A JP3787791B2 (en) 1995-07-07 1995-07-07 A method for producing dicyclohexyl disulfide.

Publications (2)

Publication Number Publication Date
JPH0920751A true JPH0920751A (en) 1997-01-21
JP3787791B2 JP3787791B2 (en) 2006-06-21

Family

ID=16353404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19617295A Expired - Lifetime JP3787791B2 (en) 1995-07-07 1995-07-07 A method for producing dicyclohexyl disulfide.

Country Status (1)

Country Link
JP (1) JP3787791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326786A (en) * 2006-06-06 2007-12-20 Nippon Soda Co Ltd Method for producing disulfide compound
JP2007326850A (en) * 2006-05-09 2007-12-20 Toray Fine Chemicals Co Ltd Method for producing dicyclohexyl disulfide
CN102993069A (en) * 2011-09-19 2013-03-27 河南省汤阴县永新助剂厂 Automatic salt separation technique and device in dicyclohexyl disulfide reaction
CN115417798A (en) * 2022-08-15 2022-12-02 山东戴瑞克新材料有限公司 Continuous liquid separation process for dicyclohexyl disulfide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326850A (en) * 2006-05-09 2007-12-20 Toray Fine Chemicals Co Ltd Method for producing dicyclohexyl disulfide
JP2007326786A (en) * 2006-06-06 2007-12-20 Nippon Soda Co Ltd Method for producing disulfide compound
CN102993069A (en) * 2011-09-19 2013-03-27 河南省汤阴县永新助剂厂 Automatic salt separation technique and device in dicyclohexyl disulfide reaction
CN115417798A (en) * 2022-08-15 2022-12-02 山东戴瑞克新材料有限公司 Continuous liquid separation process for dicyclohexyl disulfide

Also Published As

Publication number Publication date
JP3787791B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US3752841A (en) Process for the preparation of carbamates of alkylthiolhydroxamates and intermediates
US7550630B2 (en) Process for producing N-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-1,1,1-trifluoromethanesulfonamide
US3927085A (en) Process for the production of a mercaptocarboxylic acid
JPH0920751A (en) Production of disulfides
JPH0135809B2 (en)
US2520401A (en) Production of thiosulfenamides
JPS59122456A (en) Preparation of dicyclohexyl disulfide
JPH07258204A (en) Production of thioaryl compound
JP5060700B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JP2938208B2 (en) Method for producing β-mercaptocarboxylic acids
JPS6354712B2 (en)
JPS61286347A (en) Production of 2,4,6-tribromophenyl acrylate
US2684371A (en) Process for the production of diphenylhydantioin
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
JP4038024B2 (en) Process for producing 1-chloro-4-arylbutanes
JPH01149762A (en) Production of 4-(alkylsulfonyl)-2-aminophenol
JP2002020365A (en) Method for producing 2-(methylsulfonyl)ethylamine
JP3412246B2 (en) Method for producing 2-halogeno-1-alkene derivative
US2764619A (en) Preparation of 1, 1, 1-trihalo-2-chloro-2-methylalkanes
JPH089590B2 (en) Process for producing 4-alkylsulfonyl-1-alkyl-2-chlorobenzene and said compound
JP3061315B2 (en) Method for producing dialkyl dicarbonate
JPS5828874B2 (en) Method for producing 2,2&#39;-bis(4-substituted phenol) sulfide
EP0005280B1 (en) A process for the reduction of carboxylic acid halides to corresponding aldehydes
JP3174968B2 (en) Method for producing 2-halogeno-6-substituted thiobenzonitrile
JP2007326786A (en) Method for producing disulfide compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term