JPH09206597A - Platinum-iron alloy electrode catalyst and fuel cell - Google Patents

Platinum-iron alloy electrode catalyst and fuel cell

Info

Publication number
JPH09206597A
JPH09206597A JP8035397A JP3539796A JPH09206597A JP H09206597 A JPH09206597 A JP H09206597A JP 8035397 A JP8035397 A JP 8035397A JP 3539796 A JP3539796 A JP 3539796A JP H09206597 A JPH09206597 A JP H09206597A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode catalyst
electrode
platinum
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8035397A
Other languages
Japanese (ja)
Inventor
Taizo Yamamoto
泰三 山本
Chikayuki Takada
慎之 高田
Hirohiko Koseki
宏彦 小関
Seiichi Katahira
清市 片平
Hideaki Kita
英明 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP8035397A priority Critical patent/JPH09206597A/en
Publication of JPH09206597A publication Critical patent/JPH09206597A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To develop a highly active electrode catalyst for a fuel cell by recognizing the problem that a divergent increase in overvoltage has a serious effect on the lowering of the cell voltage of the fuel cell and noticing an electrode catalyst supposed to be related to the concn. overvoltage. SOLUTION: This electrode catalyst contains a tetragonal platinum-iron alloy. The tetragonal platinum-iron alloy is a platinum-iron alloy contg. preferably 25-75 atomic %, more preferably 40-60 atomic % or more pereferably 45-55 atomic % iron. By using an electrode carrying the electrode catalyst to constitute a fuel cell, a decrease in the concn. overvoltage is suppressed even if the fuel cell is operated and the current density is increased, and hence the cell voltage of the cell is not decreased. The I-V characteristic in the fuel cell is shown in the figure, the curve (e) shows the characteristic when Pt/Fe atomic %=50/50, and the curve (f) shows the characteristic when platinum is 100%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種電気分解或い
は燃料電池の電極に使用される電極触媒及び該電極触媒
を担持した電極を用いた燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrocatalyst used for electrodes of various electrolysis or fuel cells, and a fuel cell using an electrode carrying the electrocatalyst.

【0002】[0002]

【従来の技術】燃料電池の電極には、燃料を酸化するた
めの燃料極としての陰極及び供給された酸素を還元する
空気極としての陽極があり、これらの各電極上での反応
を促進し、燃料電池の性能を高めるために、電極触媒を
各電極に担持させることが行われている。
2. Description of the Related Art An electrode of a fuel cell has a cathode as a fuel electrode for oxidizing a fuel and an anode as an air electrode for reducing supplied oxygen, and promotes a reaction on each of these electrodes. In order to improve the performance of the fuel cell, it is carried out to carry an electrode catalyst on each electrode.

【0003】燃料として水素、酸化剤として空気(酸
素)を用いる燃料電池のI−V特性(電流密度に対する
セル電圧)は、理論的には、一例として図1の曲線aに
示すような約1.2Vを通り直線状の出力特性を有する
と考えられるが、実際には次の(i)〜 (iii)の原因
で、同図曲線bに示すように、電流密度の増加に従い大
きく湾曲してセル電圧が低下し劣化する特性となってい
ることが既に知られている。その原因を大別すると、
(i)電極上での反応物質(水素、酸素等)の反応速度
に起因するものとして、図1において、曲線aと曲線c
で挟まれる量で示される活性化過電圧ηa による損失、
(ii)電池の電解質等の内部抵抗に起因するものとし
て、図1において、曲線cと曲線dで挟まれる量で示さ
れる抵抗過電圧ηr による損失、(iii)電極上での反応
場(通常、電極に存在する触媒上)への反応物質又は反
応生成物の移動のし易さに起因するものとして、図1に
おいて、曲線dと曲線bにより挟まれる量で示される濃
度過電圧ηc による損失、が挙げられる。
The theoretical IV characteristic (cell voltage with respect to current density) of a fuel cell using hydrogen as a fuel and air (oxygen) as an oxidant is, as an example, about 1 as shown by a curve a in FIG. It is considered that the linear output characteristic is passed through 0.2 V, but in reality, due to the following causes (i) to (iii), as shown by the curve b in the figure, it is greatly curved as the current density increases. It has already been known that the cell voltage is lowered and deteriorates. Broadly speaking, the cause is
(I) In FIG. 1, the curves a and c are attributed to the reaction rates of the reaction substances (hydrogen, oxygen, etc.) on the electrodes.
Loss due to activation overvoltage η a , which is represented by the amount sandwiched by
(Ii) Loss due to resistance overvoltage η r shown in FIG. 1 as an amount sandwiched between curve c and curve d in FIG. 1 due to internal resistance of the electrolyte of the battery, (iii) reaction field on the electrode (usually , The loss due to the concentration overvoltage η c shown by the amount sandwiched between the curve d and the curve b in FIG. 1 as a result of the ease of migration of the reaction substance or reaction product to the catalyst existing on the electrode). , Can be mentioned.

【0004】全過電圧をη、電流密度をIとした場合、
活性化過電圧ηa 、抵抗過電圧ηr、濃度過電圧ηc
間には、次の式(1)〜式(4)が成立することが既に
報告されている(喜多他著「電気化学の基礎」技報堂出
版発行,第200頁)。
When the total overvoltage is η and the current density is I,
It has already been reported that the following equations (1) to (4) hold among the activation overvoltage η a , the resistance overvoltage η r , and the concentration overvoltage η c (Kita et al., “Basics of Electrochemistry”). (Published by Gihodo Publishing, p. 200).

【0005】[0005]

【数1】 [Equation 1]

【0006】上記各式において、a、bは定数、IL
限界電流密度と呼ばれる値で、反応物質又は反応生成物
が反応のために移動できる限界量によって決まる定数で
ある。この移動限界量は、通例、反応物質又は反応生成
物が拡散によって移動するため、電極の構造(多孔性、
厚さ等)や、物質の濃度などによって変わる。また、R
は抵抗である。
[0006] In the above formulas, a, b are constants, the I L a value called limiting current density, reactants or reaction products is a constant determined by the limit amount that can be moved for the reaction. This movement limit amount is usually the structure of the electrode (porosity, porosity, because the reactants or reaction products move by diffusion).
Thickness, etc.) and the concentration of the substance. Also, R
Is resistance.

【0007】式(4)より判るように、電流密度Iが限
界電流密度IL に近づくと、濃度過電圧ηc は発散的に
増大する。
As can be seen from the equation (4), when the current density I approaches the limit current density I L , the concentration overvoltage η c increases divergently.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、濃度過
電圧ηc の発散的増大が、燃料電池のセル電圧の低下に
大きな影響を与えるという問題点を認識し、濃度過電圧
ηc と関連があると考えられる電極触媒に着目し、燃料
電池用の高活性な電極触媒を開発し、該電極触媒を担持
した電極を用いた燃料電池を提供することを目的とす
る。
The present inventors have recognized the problem that the divergent increase of the concentration overvoltage η c has a great influence on the decrease of the cell voltage of the fuel cell, and have a problem with the concentration overvoltage η c. It aims at developing a highly active electrocatalyst for a fuel cell, and providing a fuel cell using an electrode carrying the electrocatalyst, focusing on the electrode catalyst which is considered to exist.

【0009】[0009]

【課題を解決するための手段】上記した問題点に鑑み、
本発明者らは、濃度過電圧の低下の原因と推測される酸
素の触媒上への吸着を弱めることに着目し、種々の金属
や合金材料の電極触媒への利用可能性について鋭意探索
した結果、特定の結晶構造の白金−鉄合金が、濃度過電
圧の増加の少ない燃料電池の電極触媒に好適であること
を見いだし、本発明に至った。
[Means for Solving the Problems] In view of the above problems,
The present inventors focused on weakening the adsorption of oxygen on the catalyst, which is presumed to be the cause of the decrease in concentration overvoltage, and as a result of diligent search for availability of various metals and alloy materials to the electrode catalyst, The inventors have found that a platinum-iron alloy having a specific crystal structure is suitable for an electrode catalyst of a fuel cell that causes little increase in concentration overvoltage, and has reached the present invention.

【0010】すなわち、本発明の電極触媒は、正方晶の
白金−鉄合金を包含することを特徴とする。正方晶の白
金−鉄合金は、好ましくは25〜75原子%、さらに好
ましくは40〜60原子%、最も好ましくは45〜55
原子%の鉄を含有する白金−鉄合金であることが望まし
い。鉄の原子%が25未満、或いは75を越えると、該
白金−鉄合金を担持した電極を用いた燃料電池では、濃
度過電圧の増加の影響が無視できず、燃料電池の性能上
好ましくはない。
That is, the electrode catalyst of the present invention is characterized by including a tetragonal platinum-iron alloy. The tetragonal platinum-iron alloy is preferably 25 to 75 atom%, more preferably 40 to 60 atom%, most preferably 45 to 55 atom%.
A platinum-iron alloy containing atomic% iron is desirable. If the atomic% of iron is less than 25 or exceeds 75, the influence of the increase in concentration overvoltage cannot be ignored in the fuel cell using the electrode supporting the platinum-iron alloy, which is not preferable in terms of fuel cell performance.

【0011】また、本発明の燃料電池は、上記特徴を有
する電極触媒を担持した電極を用いることを特徴とす
る。
Further, the fuel cell of the present invention is characterized by using an electrode carrying an electrode catalyst having the above characteristics.

【0012】本発明の電極触媒は、白金−鉄合金の結晶
の形態が正方晶であることが重要である。正方晶が崩れ
ると、濃度過電圧ηc 損失が原因のセル電圧が低下し、
燃料電池の性能が低下し、好ましくない。
In the electrode catalyst of the present invention, it is important that the crystal form of the platinum-iron alloy is tetragonal. When the tetragonal crystal collapses, the cell voltage decreases due to the concentration overvoltage η c loss,
The performance of the fuel cell deteriorates, which is not preferable.

【0013】本発明の電極触媒による燃料電池における
濃度過電圧ηc の低下の減少化効果は、恐らく、本発明
の電極触媒に対する酸素の吸着力が従来の電極触媒に対
する吸着力に比べて弱いために生ずるものであろうと考
えられる。
The effect of reducing the decrease in the concentration overvoltage η c in the fuel cell by the electrocatalyst of the present invention is probably because the adsorbing power of oxygen to the electrocatalyst of the present invention is weaker than that of the conventional electrocatalyst. It is thought to occur.

【0014】本発明の電極触媒は、酸素の還元作用が行
われる陽極のみならず、燃料極においても耐CO被毒触
媒としての適用が可能である。
The electrode catalyst of the present invention can be applied as a CO poisoning-resistant catalyst not only to the anode where oxygen is reduced, but also to the fuel electrode.

【0015】本発明の電極触媒は、電極材料に担持させ
て使用することができ、その電極触媒の担持方法は、例
えば、カーボン等の電極材料からなる電極上に、触媒粉
体を含むペーストを適用して触媒層を形成してもよい。
The electrode catalyst of the present invention can be used by supporting it on an electrode material. The method of supporting the electrode catalyst is, for example, a paste containing catalyst powder on an electrode made of an electrode material such as carbon. It may be applied to form a catalyst layer.

【0016】[0016]

【実施例】【Example】

〔実施例1〕テフロンディスパージョン(ダイキン工業
(株)製、D−1)により撥水化したポーラスカーボン
からなる電極上に、イオン交換樹脂分散液(ナフィオン
溶液:アルドリッチ社製)及び触媒粉体よりなり、触媒
成分の異なる2種類のペーストを印刷法にて適用して次
の2種類の触媒層が形成された電極(空気極)を各々製
造した。即ち、電極触媒としてPtのみからなり且つP
t担持量が0.3mg/cm2 の空気極と、電極触媒と
して原子比Pt/Feが50/50からなる正方晶のP
t−Fe合金を適用しPt成分の担持量が0.3mg/
cm2 の空気極を得た。
[Example 1] An ion exchange resin dispersion liquid (Nafion solution: manufactured by Aldrich) and a catalyst powder were formed on an electrode made of porous carbon that was made water repellent by Teflon dispersion (D-1 manufactured by Daikin Industries, Ltd.). Then, two kinds of pastes having different catalyst components were applied by a printing method to manufacture electrodes (air electrodes) on which the following two kinds of catalyst layers were formed. That is, the electrode catalyst consists of only Pt and P
An air electrode having a supported t amount of 0.3 mg / cm 2 and a tetragonal P having an atomic ratio Pt / Fe of 50/50 as an electrode catalyst.
Applying a t-Fe alloy, the supported amount of Pt component is 0.3 mg /
A cathode of cm 2 was obtained.

【0017】一方、燃料極として、上記空気極と同様に
して、Pt担持量が0.5mg/cm2 の電極を製造し
た。
On the other hand, as a fuel electrode, an electrode having a Pt carrying amount of 0.5 mg / cm 2 was manufactured in the same manner as the air electrode.

【0018】前記工程で得られた空気極と燃料極の間に
ナフィオン115膜(商品名:米国デュポン社製)を挟
んで、ホットプレスすることにより、電極触媒の種類の
異なる2種の単電池(セル有効面積が20.25c
2 ,□45)を各々製造した。この各燃料電池の陰極
に水素ガスを、陽極に空気を流し、電池温度70℃で運
転して、電流密度に対するセル電圧を測定した。その結
果を図2の電流密度−電圧特性のグラフに示す。図2
中、曲線eは原子比Pt/Feが50/50、曲線fは
Pt100%の電極触媒を使用した場合をそれぞれ示
す。
The Nafion 115 membrane (trade name: manufactured by DuPont, USA) is sandwiched between the air electrode and the fuel electrode obtained in the above step, and hot pressed to form two types of single cells having different kinds of electrode catalysts. (The effective cell area is 20.25c
m 2 , □ 45) were produced respectively. Hydrogen gas was passed through the cathode and air was passed through the anode of each fuel cell, and the cell was operated at a cell temperature of 70 ° C. to measure the cell voltage with respect to the current density. The results are shown in the current density-voltage characteristic graph of FIG. FIG.
Among them, the curve e shows the case where the atomic ratio Pt / Fe is 50/50, and the curve f shows the case where the electrode catalyst with 100% Pt is used.

【0019】図2によれば、Pt100%のみのものよ
りも、原子比Pt/Feが50/50とした場合の方
が、電流密度に対するセル電圧の降下が少ないことがわ
かる。そのため、例えば、燃料電池を0.6Vで定常動
作させると、Pt100%のみのものよりも原子比Pt
/Feが50/50とした場合の方が、約60%の出力
増が見込めることがわかる。濃度過電圧の低減により、
電圧効率も向上し、高効率な燃料電池とすることができ
る。また、Pt100%の電極触媒では燃料電池の限界
電流密度が0.86A/cm2 であったのに対し、本実
施例1の原子比Pt/Fe=50/50の電極触媒で
は、1.04A/cm2 まで達成することができた。
According to FIG. 2, the cell voltage drop with respect to the current density is smaller when the atomic ratio Pt / Fe is 50/50 than when only Pt is 100%. Therefore, for example, when the fuel cell is steadily operated at 0.6 V, the atomic ratio Pt is higher than that of Pt 100% only.
It can be seen that an output increase of about 60% can be expected when / Fe is set to 50/50. By reducing the concentration overvoltage,
The voltage efficiency is improved, and a highly efficient fuel cell can be obtained. Further, the limiting current density of the fuel cell was 0.86 A / cm 2 with the electrode catalyst of 100% Pt, whereas it was 1.04 A with the electrode catalyst of the atomic ratio Pt / Fe = 50/50 of this Example 1. / Cm 2 could be achieved.

【0020】〔実施例2〕電極触媒として原子比Pt/
Feが50/50、40/60、60/40の正方晶の
Pt−Fe合金を用いて、前記実施例1と同様な方法に
より、材質の異なる3種類の電極を製造し、さらに各々
単電池を製造した。比較例として、Pt100%の電極
触媒を用いて同様に単電池を製造した。
[Example 2] Atomic ratio Pt /
Using a tetragonal Pt—Fe alloy having Fe of 50/50, 40/60, and 60/40, three types of electrodes having different materials were manufactured by the same method as in Example 1, and further each of them was a single cell. Was manufactured. As a comparative example, a single cell was similarly manufactured using an electrode catalyst containing 100% Pt.

【0021】さらに、前記実施例1と同様な方法で各単
電池について酸化剤を酸素とした場合の電流密度に対す
るセル電圧を測定した。そのセル電圧から濃度過電圧を
求めた。その結果を図3の電流密度−濃度過電圧特性の
グラフに示す。図3中、曲線g(○印)は原子比Pt/
Feが50/50、曲線h(◇印)は60/40、曲線
i(△印)は40/60の本発明の電極触媒を示し、□
印は原子比Pt/Feが100/0の比較例の電極触媒
を示す。
Further, the cell voltage with respect to the current density when oxygen was used as the oxidant was measured for each unit cell in the same manner as in Example 1 above. The concentration overvoltage was determined from the cell voltage. The results are shown in the graph of current density-concentration overvoltage characteristics in FIG. In FIG. 3, the curve g (circle) indicates the atomic ratio Pt /
Fe is 50/50, curve h (⋄) is 60/40, curve i (Δ) is the electrode catalyst of the present invention of 40/60, and
The mark indicates the electrode catalyst of the comparative example in which the atomic ratio Pt / Fe is 100/0.

【0022】図3によれば、原子比Pt/Feが50/
50とした場合が、最も電流密度に対するセル電圧の降
下が少ないことがわかる。
According to FIG. 3, the atomic ratio Pt / Fe is 50 /
It can be seen that when the value is 50, the cell voltage drop with respect to the current density is the smallest.

【0023】[0023]

【発明の効果】本発明の電極触媒を用いた燃料電池は、
濃度過電圧の低下が原因の出力の低下を抑制することが
できる。
The fuel cell using the electrode catalyst of the present invention is
It is possible to suppress a decrease in output due to a decrease in concentration overvoltage.

【0024】本発明の電極触媒は、濃度過電圧の低減効
果を有するので、該電極触媒を用いた燃料電池は、燃料
極及び空気極のいずれにおいてもそれらの反応ガスであ
る水素、酸素の利用率が向上し、供給ガス中のこれらの
反応ガス分圧が低い場合でも充分な出力を生ずる。
Since the electrocatalyst of the present invention has the effect of reducing the concentration overvoltage, the fuel cell using the electrocatalyst has a utilization rate of hydrogen and oxygen which are reaction gases thereof at both the fuel electrode and the air electrode. Is improved and sufficient output is produced even when the partial pressure of these reaction gases in the feed gas is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の、燃料として水素、酸化剤として空気
(酸素)を用いる燃料電池のI−V特性(電流密度に対
するセル電圧)の一例を示すグラフである。
FIG. 1 is a graph showing an example of IV characteristics (cell voltage with respect to current density) of a conventional fuel cell using hydrogen as a fuel and air (oxygen) as an oxidant.

【図2】Pt100%の電極触媒を担持した電極を用い
る燃料電池と、原子比Pt/Fe=50/50の正方晶
のPt−Fe合金を電極触媒として担持した電極を用い
た燃料電池による電流密度に対するセル電圧を示すグラ
フである。
FIG. 2 is a current obtained by a fuel cell using an electrode supporting a 100% Pt electrode catalyst and a fuel cell using an electrode supporting a tetragonal Pt—Fe alloy having an atomic ratio Pt / Fe = 50/50 as an electrode catalyst. It is a graph which shows the cell voltage with respect to a density.

【図3】原子比Pt/Fe=50/50,40/60,
60/40の各正方晶のPt−Fe合金、及びPt/F
e=100/0を電極触媒として担持した各電極を用い
た燃料電池による電流密度に対する濃度過電圧の特性を
示すグラフである。
FIG. 3 is an atomic ratio Pt / Fe = 50/50, 40/60,
60/40 tetragonal Pt-Fe alloy, and Pt / F
7 is a graph showing characteristics of concentration overvoltage with respect to current density in a fuel cell using each electrode carrying e = 100/0 as an electrode catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片平 清市 東京都千代田区外神田2丁目19番12号 株 式会社エクォス・リサーチ内 (72)発明者 喜多 英明 北海道札幌市白石区菊水2条2丁目4−23 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyokata Katahira 2-19-12 Sotokanda, Chiyoda-ku, Tokyo Equus Research Co., Ltd. Chome 4-23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正方晶の白金−鉄合金を包含することを
特徴とする電極触媒。
1. An electrode catalyst comprising a tetragonal platinum-iron alloy.
【請求項2】 25〜75原子%の鉄を含有する白金−
鉄合金を包含する請求項1記載の電極触媒。
2. Platinum containing 25-75 atomic% iron
The electrode catalyst according to claim 1, which contains an iron alloy.
【請求項3】 40〜60原子%の鉄を含有する白金−
鉄合金を包含する請求項1記載の電極触媒。
3. Platinum containing 40-60 atomic% iron
The electrode catalyst according to claim 1, which contains an iron alloy.
【請求項4】 45〜55原子%の鉄を含有する白金−
鉄合金を包含する請求項1記載の電極触媒。
4. Platinum containing 45-55 atomic% iron
The electrode catalyst according to claim 1, which contains an iron alloy.
【請求項5】 請求項1、2、3又は4記載の電極触媒
を担持した電極を用いる燃料電池。
5. A fuel cell using an electrode carrying the electrode catalyst according to claim 1, 2, 3, or 4.
JP8035397A 1996-01-30 1996-01-30 Platinum-iron alloy electrode catalyst and fuel cell Pending JPH09206597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8035397A JPH09206597A (en) 1996-01-30 1996-01-30 Platinum-iron alloy electrode catalyst and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8035397A JPH09206597A (en) 1996-01-30 1996-01-30 Platinum-iron alloy electrode catalyst and fuel cell

Publications (1)

Publication Number Publication Date
JPH09206597A true JPH09206597A (en) 1997-08-12

Family

ID=12440794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8035397A Pending JPH09206597A (en) 1996-01-30 1996-01-30 Platinum-iron alloy electrode catalyst and fuel cell

Country Status (1)

Country Link
JP (1) JPH09206597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077337A1 (en) * 2002-03-06 2003-09-18 Symyx Technologies, Inc. Fuel cell electrocatalyst containing pt, zn and one or both of fe and ni
WO2005034266A2 (en) * 2003-09-03 2005-04-14 Symyx Technologies, Inc. Platinum-nickel-iron fuel cell catalyst
US6911278B2 (en) 2001-09-17 2005-06-28 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell and process for producing the same
WO2005103337A1 (en) * 2004-04-23 2005-11-03 Tosoh Corporation Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
KR100823505B1 (en) * 2006-11-20 2008-04-21 삼성에스디아이 주식회사 Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system femprising same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911278B2 (en) 2001-09-17 2005-06-28 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell and process for producing the same
WO2003077337A1 (en) * 2002-03-06 2003-09-18 Symyx Technologies, Inc. Fuel cell electrocatalyst containing pt, zn and one or both of fe and ni
US8021798B2 (en) 2002-03-06 2011-09-20 Freeslate, Inc. Fuel cell electrocatalyst of Pt-Zn-Ni/Fe
WO2005034266A2 (en) * 2003-09-03 2005-04-14 Symyx Technologies, Inc. Platinum-nickel-iron fuel cell catalyst
WO2005034266A3 (en) * 2003-09-03 2006-08-03 Symyx Technologies Inc Platinum-nickel-iron fuel cell catalyst
WO2005103337A1 (en) * 2004-04-23 2005-11-03 Tosoh Corporation Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
US8343329B2 (en) 2004-04-23 2013-01-01 Tosoh Corporation Electrode for hydrogen generation, method for manufacturing the same and electrolysis method using the same
KR100823505B1 (en) * 2006-11-20 2008-04-21 삼성에스디아이 주식회사 Catalyst for fuel cell, method of preparing same membrane-electrode assembly for fuel cell and fuel cell system femprising same
US9105936B2 (en) 2006-11-20 2015-08-11 Samsung Sdi Co., Ltd. Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same

Similar Documents

Publication Publication Date Title
Watanabe et al. Self‐humidifying polymer electrolyte membranes for fuel cells
JP3634304B2 (en) Electrode structure for polymer electrolyte fuel cell
US7785728B2 (en) Palladium-based electrocatalysts and fuel cells employing such electrocatalysts
Eickes et al. Recoverable cathode performance loss in direct methanol fuel cells
Xu et al. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity
Inaba et al. Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells
JP3351285B2 (en) Anode electrode catalyst for polymer electrolyte fuel cells
JPH1131520A (en) Solid high molecular type fuel cell
JP4207120B2 (en) Catalytic electrode and electrochemical device
US7348090B2 (en) Fuel cell
JP3460793B2 (en) How the fuel cell works
JPH1145733A (en) Solid polimer fuel cell
JP2004134132A (en) Fuel regenerable fuel battery, method for generating electric power, and method for regenerating fuel
JPH10270057A (en) Solid high molecular fuel cell
JP3523484B2 (en) Fuel cell
JPH09206597A (en) Platinum-iron alloy electrode catalyst and fuel cell
JP5021885B2 (en) Fuel cell
JP2793523B2 (en) Polymer electrolyte fuel cell and method of operating the same
JP2002280002A (en) Solid polymer fuel cell and its damage preventing method
JPH05182679A (en) Collector for fuel cell and fuel cell using this collector
JP2002289202A (en) Method for lowering fuel cell cathode activating overvoltage
Song et al. The influence of oxygen additions to hydrogen in their electrode reactions at Pt/Nafion interface
JPH06150944A (en) Fuel cell electrode
WO2000036679A1 (en) Fuel cell anode configuration for co tolerance
JPH06231773A (en) Fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404