JPH09204226A - Pressure controller - Google Patents

Pressure controller

Info

Publication number
JPH09204226A
JPH09204226A JP8010975A JP1097596A JPH09204226A JP H09204226 A JPH09204226 A JP H09204226A JP 8010975 A JP8010975 A JP 8010975A JP 1097596 A JP1097596 A JP 1097596A JP H09204226 A JPH09204226 A JP H09204226A
Authority
JP
Japan
Prior art keywords
control valve
pressure
control
flow rate
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8010975A
Other languages
Japanese (ja)
Inventor
Mitsuaki Nakada
光昭 中田
Masashi Fujitsuka
正史 藤塚
Shuichi Matsumoto
秀一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8010975A priority Critical patent/JPH09204226A/en
Publication of JPH09204226A publication Critical patent/JPH09204226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform pressure control according to a fixed control parameter even when process conditions are changed. SOLUTION: This device is provided with an arithmetic circuit 7 for calculating the aperture of control valve from process conditions and control valve characteristics while using the flow rate of control valve 3 as the manipulated variable of control circuit 6 so that the flow rate of control valve can become this manipulated variable. Besides, control valve entrance pressure 8, control valve exit pressure 9, temperature 10 of object to flow through the control valve and one of the molecules of object to flow through the control valve are used as the process conditions. Besides, control set values are used as the control valve entrance pressure, control valve exit pressure, the temperature of object to flow through the control valve and the molecular quantity of object to flow through the control valve. When the flow rate change of the control valve is predicted, this flow rate change is inputted to the arithmetic circuit and feed forward control is performed for the manipulated variable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、プロセス制御に
関し、特にフィードバック制御による圧力制御装置の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to process control, and more particularly to improvement of a pressure control device by feedback control.

【0002】[0002]

【従来の技術】図9は従来のフィードバック制御による
圧力制御装置のシステム構成図である。図において、1
はガス供給系統、2は被制御部すなわち反応槽A、3は
反応槽の圧力調節弁、4はガス排出系統、5は反応槽2
の圧力を測定する圧力計、6は制御回路である。
2. Description of the Related Art FIG. 9 is a system configuration diagram of a conventional pressure control device by feedback control. In the figure, 1
Is a gas supply system, 2 is a controlled part, that is, a reaction tank A, 3 is a pressure control valve of the reaction tank, 4 is a gas discharge system, and 5 is a reaction tank 2.
Is a pressure gauge for measuring the pressure of, and 6 is a control circuit.

【0003】従来の圧力制御装置は上記のように構成さ
れ、例えば制御回路6にPID制御回路を用いる。圧力
計5の測定値を制御回路6のプロセス量として与え、反
応槽2の圧力設定値とプロセス量の偏差からPID制御
回路6により操作量を計算する。この場合、制御の操作
量は調節弁3の弁開度であり、調節弁3開度をフィード
バック制御することにより反応槽2の圧力制御を行って
いる。
The conventional pressure control device is constructed as described above, and uses a PID control circuit for the control circuit 6, for example. The measured value of the pressure gauge 5 is given as the process amount of the control circuit 6, and the manipulated variable is calculated by the PID control circuit 6 from the deviation between the pressure set value of the reaction tank 2 and the process amount. In this case, the operation amount of control is the valve opening degree of the control valve 3, and the pressure control of the reaction tank 2 is performed by feedback-controlling the control valve 3 opening degree.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の圧
力制御装置では、圧力(反応槽2の圧力、調節弁3の入
口圧力すなわち1次圧力、調節弁3の出口圧力すなわち
2次圧力)、調節弁3を流れるガス分子量、ガス温度等
のプロセス条件が異なると同量の弁開度の変化に対し調
節弁3を流れる物体の流量変化が異なるため、制御量と
操作量の関係であるプロセスゲインが異なり、プロセス
条件に応じて制御パラメータを変えなくてはならないと
いう問題点があった。
In the conventional pressure control device as described above, the pressure (the pressure of the reaction tank 2, the inlet pressure of the control valve 3, that is, the primary pressure, the outlet pressure of the control valve 3, that is, the secondary pressure) is used. When the process conditions such as the molecular weight of the gas flowing through the control valve 3 and the gas temperature are different, the flow rate change of the object flowing through the control valve 3 is different with respect to the change of the valve opening of the same amount. There is a problem that the process gain is different and the control parameter has to be changed according to the process condition.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、プロセス条件が変化した場合も
一定の制御パラメータで圧力制御を行えるような圧力制
御装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a pressure control device capable of performing pressure control with constant control parameters even when process conditions change. To do.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
圧力制御装置は、制御回路の操作量として調節弁を流れ
る流量を用い、調節弁を流れる流量が上記操作量となる
ようにプロセス条件および調節弁の固有特性から調節弁
開度を算出する演算回路を備えたものである。
A pressure control device according to claim 1 of the present invention uses a flow rate flowing through a control valve as an operation amount of a control circuit, and processes so that the flow rate through the control valve becomes the operation amount. It is provided with an arithmetic circuit for calculating the control valve opening from the condition and the characteristic characteristic of the control valve.

【0007】本発明の請求項2に係る圧力制御装置は、
上記プロセス条件として、調節弁入口圧力、調節弁出口
圧力、調節弁を流れる物体の温度、および調節弁を流れ
る物体の分子量のうちの少なくとも一つを用いるもので
ある。
A pressure control device according to claim 2 of the present invention comprises:
At least one of the control valve inlet pressure, the control valve outlet pressure, the temperature of the object flowing through the control valve, and the molecular weight of the object flowing through the control valve is used as the process condition.

【0008】本発明の請求項3に係る圧力制御装置は、
上記調節弁入口圧力、調節弁出口圧力、調節弁を流れる
物体の温度、または調節弁を流れる物体の分子量として
制御設定値を用いるものである。
A pressure control device according to claim 3 of the present invention is
The control set value is used as the control valve inlet pressure, the control valve outlet pressure, the temperature of the object flowing through the control valve, or the molecular weight of the object flowing through the control valve.

【0009】本発明の請求項4に係る圧力制御装置は、
調節弁の流量変化が予期された場合に、上記流量変化を
演算回路に入力して操作量に対してフィードフォワード
制御を行うものである。
A pressure control device according to claim 4 of the present invention is
When a change in the flow rate of the control valve is expected, the change in the flow rate is input to the arithmetic circuit to perform feedforward control on the manipulated variable.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の実施の形態1による圧力
制御装置のシステム構成図である。図において、1〜6
は上記従来装置と同一のものである。7は演算回路であ
り、例えばマイクロプロセッサを使用したディジタル演
算器等が用いられる。8は調節弁3の入口圧力すなわち
一次圧力を測定する圧力計、9は調節弁3の出口圧力す
なわち二次圧力を測定する圧力計、10は調節弁3を流
れるガスの温度を測定する温度計である。図2は演算回
路のフローチャートの例である。図3は燃料電池発電シ
ステムの差圧制御系に圧力制御装置を使用する場合の機
器構成例であり、図4〜6は実際に図3の機器構成にお
いて圧力制御試験を行った結果である。
Embodiment 1. 1 is a system configuration diagram of a pressure control device according to a first embodiment of the present invention. In the figure, 1-6
Is the same as the above conventional device. Reference numeral 7 denotes an arithmetic circuit, which is, for example, a digital arithmetic unit using a microprocessor. 8 is a pressure gauge that measures the inlet pressure of the control valve 3, that is, the primary pressure, 9 is a pressure gauge that measures the outlet pressure of the control valve 3, that is, the secondary pressure, and 10 is a thermometer that measures the temperature of the gas flowing through the control valve 3. Is. FIG. 2 is an example of a flowchart of the arithmetic circuit. FIG. 3 is an example of equipment configuration when a pressure control device is used in the differential pressure control system of the fuel cell power generation system, and FIGS. 4 to 6 are results of actually performing a pressure control test in the equipment configuration of FIG.

【0011】図1のように構成された圧力制御装置にお
いて、PID制御回路6により設定値とプロセス量(す
なわち圧力計5の測定値)から操作量が求められる。こ
の操作量として調節弁3を流れる流量を用い、操作量す
なわち指示流量を演算回路7に入力する。演算回路7に
おいては、操作量(すなわち調節弁3を流れる流量)と
プロセス条件の関係式から指示流量を流すのに必要な弁
のCv値を算出する。得られたCv値と使用している調
節弁の固有Cv値(すなわち固有特性)の関係から指示
する調節弁3の弁開度を決定する。これにより指示流量
を流すための弁開度を調節弁3に指示する。
In the pressure control device constructed as shown in FIG. 1, the PID control circuit 6 obtains the manipulated variable from the set value and the process amount (that is, the measured value of the pressure gauge 5). The flow rate flowing through the control valve 3 is used as this operation amount, and the operation amount, that is, the instructed flow rate is input to the arithmetic circuit 7. In the arithmetic circuit 7, the Cv value of the valve required to flow the instructed flow rate is calculated from the relational expression of the operation amount (that is, the flow rate flowing through the control valve 3) and the process condition. The valve opening degree of the control valve 3 to be instructed is determined from the relationship between the obtained Cv value and the characteristic Cv value (that is, the characteristic) of the control valve used. As a result, the control valve 3 is instructed about the valve opening degree for flowing the instructed flow rate.

【0012】図2を用いて演算回路の動作を詳細に説明
する。ステップ1ST1は調節弁3のCv値と指示流量す
なわち調節弁流量(F)、並びにプロセス条件すなわち
調節弁一次圧力(P1)、調節弁二次圧力(P2)、調節
弁3を流れる気体分子量(M)、および調節弁3を流れ
る気体温度(T)との関係式を収納し、操作量(すなわ
ち指示流量)と各プロセス条件から指示流量(F)を流
すのに必要な弁のCv値(Cv)を算出する。なお、上
記関係式は例えば刊行物(「機械工学便覧」改訂第6
版、日本機械学会発行)に記載されているものを用い
た。ステップ2ST2ではステップ1ST1において得られた
Cv値(Cv)と使用している調節弁3の固有Cv値
(Cv’)から調節弁開度(L)を決定する。なお、図
2のステップ2ST2の関係式は調節弁3に開度と流量が
比例関係にあるリニア特性の調節弁を用いた場合の例で
あり、開度と流量が対数関係にあるイコールパーセント
特性の調節弁を用いた場合は、関係式として例えばL=
{1−α×log(Cv/Cv’)}×100が用いられ
る。但しαは調節弁の性能による係数であり、リニア特
性の調節弁の関係式にもこの種の補正を加えてもよい。
ステップ3ST3ではステップ2ST2において得られた調節
弁開度を調節弁3に指示する。
The operation of the arithmetic circuit will be described in detail with reference to FIG. Step 1 ST1 is the Cv value of the control valve 3 and the indicated flow rate, that is, the control valve flow rate (F), as well as the process condition, that is, the control valve primary pressure (P 1 ), the control valve secondary pressure (P 2 ), and the molecular weight of the gas flowing through the control valve 3. (M) and the relational expression between the temperature of the gas flowing through the control valve 3 (T) and the Cv value of the valve required to flow the indicated flow rate (F) from the manipulated variable (that is, the indicated flow rate) and each process condition. Calculate (Cv). In addition, the above relational expression is, for example, a publication (“Mechanical Engineering Handbook”, revised No. 6
Edition, published by the Japan Society of Mechanical Engineers). In step 2ST2, the control valve opening (L) is determined from the Cv value (Cv) obtained in step 1ST1 and the unique Cv value (Cv ') of the control valve 3 being used. The relational expression of step 2ST2 in FIG. 2 is an example of the case where a linear control valve having a proportional relationship between the opening and the flow rate is used as the control valve 3, and an equal percentage characteristic where the opening and the flow rate have a logarithmic relationship. When the control valve of is used, as a relational expression, for example, L =
{1-α × log (Cv / Cv ′)} × 100 is used. However, α is a coefficient depending on the performance of the control valve, and this type of correction may be added to the relational expression of the control valve having the linear characteristic.
In step 3ST3, the control valve opening degree obtained in step 2ST2 is instructed to the control valve 3.

【0013】すなわち、圧力制御の操作量として調節弁
3を流れるガス流量を使用する。つまり圧力変動に対
し、操作量として調節弁3にどれだけのガスを流せば良
いかを指示する。この流量の指示に対し、演算回路7に
おいて、その時々でのプロセス条件から指示流量を流す
ための弁開度を計算し調節弁3に指示する。このため、
プロセス条件が変化した場合でも一定のプロセスゲイン
になるため、制御パラメータを変える必要がない。
That is, the flow rate of gas flowing through the control valve 3 is used as the manipulated variable for pressure control. That is, how much gas should be supplied to the control valve 3 as an operation amount in response to pressure fluctuations. In response to this flow rate instruction, the arithmetic circuit 7 calculates the valve opening degree for flowing the instructed flow rate from the process conditions at each time and instructs the control valve 3. For this reason,
Even if the process conditions change, the process gain is constant, so there is no need to change the control parameters.

【0014】なお、圧力や温度などのプロセス条件とし
ては例えば実測値が用いられるが、必ずしも実測値を用
いる必要はなく、設定値を用いることも可能である。制
御遅れの大きい制御系においてはプロセス条件に実測値
を使用すると実測値の変動に伴う調節弁開度の変化に対
し制御が対応できず、圧力変動が生じる。このような場
合はプロセス条件に制御設定値を用いることで上述の圧
力変動を取り除くことができる。
Although actual measured values are used as process conditions such as pressure and temperature, it is not always necessary to use actual measured values, and set values can also be used. When a measured value is used as a process condition in a control system with a large control delay, control cannot cope with changes in the control valve opening due to fluctuations in the measured value, resulting in pressure fluctuations. In such a case, the above-mentioned pressure fluctuation can be eliminated by using the control set value as the process condition.

【0015】次に図3のように構成された加圧型燃料電
池発電システムに従来の圧力制御装置および本実施の形
態による圧力制御装置をそれぞれ用いた場合の圧力制御
試験結果について説明する。図3において、11は溶融
炭酸塩型燃料電池、12は筐体(圧力容器)、13は差
圧計、14は圧力制御装置である。燃料電池11は筐体
12の中に配置され、筐体12内部圧力を圧力制御し、
かつ筐体12圧力に対する電池室2内圧力の圧力差(差
圧)を一定の設定値にするように圧力制御を行ってい
る。なお、図3ではカソードの差圧制御について特記し
ており、アノード側にも同様の圧力制御系が構成されて
いる。
Next, the pressure control test results when the conventional pressure control device and the pressure control device according to the present embodiment are used in the pressurized fuel cell power generation system configured as shown in FIG. 3 will be described. In FIG. 3, 11 is a molten carbonate fuel cell, 12 is a casing (pressure vessel), 13 is a differential pressure gauge, and 14 is a pressure control device. The fuel cell 11 is arranged in the housing 12, and controls the internal pressure of the housing 12,
Moreover, the pressure control is performed so that the pressure difference (differential pressure) of the pressure in the battery chamber 2 with respect to the pressure of the housing 12 becomes a constant set value. In FIG. 3, the differential pressure control of the cathode is specifically noted, and a similar pressure control system is also configured on the anode side.

【0016】図4〜6は図3に示す加圧型燃料電池発電
システムの圧力制御系においてカソードの差圧制御を行
った試験結果であり、(a)は筐体圧力の変化、(b)
は筐体とカソードとの差圧を示している。各図(b)に
示すように差圧は筐体12圧力に対し一定値(-100mmA
q)で制御させて、各図(a)に示すように筐体12圧
力を低い圧力(0.1kg/cm2G)から高い圧力(4kg/cm2G)
まで、段階的に変化させている。図4は圧力制御装置1
4に図9に示した従来の圧力制御装置を用い、低い筐体
12圧力でPID制御の制御パラメータを調節し、筐体
12圧力を変化させた場合の圧力制御試験の結果であ
り、図5は圧力制御装置14に図4と同様に図9に示し
た従来の圧力制御装置を用い、高い筐体12圧力でPI
D制御パラメータを調節し、筐体12圧力を変化させた
場合の圧力制御試験結果である。図6は圧力制御装置1
4に本実施の形態による圧力制御装置を用い、一定の制
御パラメータで筐体12圧力を変化させた場合の圧力制
御試験結果である。各図において、曲線Aはカソード差
圧の実測値、曲線Bは操作量を示す。なお、圧力制御装
置14に本実施の形態による圧力制御装置を用いた場合
に、調節弁一次圧力、温度はそれぞれ圧力計、温度計
(図示せず)による実測値、調節弁二次圧力は大気圧
(設定値)、ガス分子量はカソードガス組成から求めら
れる値を用いている。
FIGS. 4 to 6 show the test results of the differential pressure control of the cathode in the pressure control system of the pressurized fuel cell power generation system shown in FIG. 3, where (a) is the change in casing pressure and (b) is the result.
Indicates the pressure difference between the housing and the cathode. As shown in each figure (b), the differential pressure is a constant value (-100mmA
q) to control the housing 12 pressure from low pressure (0.1 kg / cm 2 G) to high pressure (4 kg / cm 2 G) as shown in each figure (a).
Up to stepwise. FIG. 4 shows the pressure control device 1.
4 is a result of a pressure control test when the conventional pressure control device shown in FIG. 9 is used and the control parameter of PID control is adjusted at a low housing 12 pressure to change the housing 12 pressure. 4 uses the conventional pressure control device shown in FIG. 9 for the pressure control device 14 as in FIG.
It is a pressure control test result when D control parameter is adjusted and the case 12 pressure is changed. FIG. 6 shows the pressure control device 1.
4 is a pressure control test result when the pressure control device according to the present embodiment is used and the pressure of the casing 12 is changed with a constant control parameter. In each figure, the curve A shows the measured value of the cathode differential pressure, and the curve B shows the manipulated variable. When the pressure control device according to the present embodiment is used as the pressure control device 14, the control valve primary pressure and temperature are measured by a pressure gauge and a thermometer (not shown), and the control valve secondary pressure is large. As the atmospheric pressure (set value) and the gas molecular weight, the values obtained from the cathode gas composition are used.

【0017】図4においてはPID制御パラメータを低
い圧力で調節しているため、高い圧力ではプロセスゲイ
ンが大きくなり、差圧の圧力変動が大きくなっている。
なお、各図において、A1,A2は差圧制御を行ってい
る調節弁を切り替えたため生じた圧力変動であり、全て
の試験において同様の変動が生じている。図5において
はPID制御パラメータを高い圧力で調節しているた
め、低い圧力ではプロセスゲインが小さくなり、A1,
A2の圧力変動に対する調節弁の変化が遅くなり差圧の
圧力変動が大きくなっている。これに対して、図6では
全ての圧力範囲において一定の差圧制御が行えているこ
とが分かる。
In FIG. 4, since the PID control parameter is adjusted at a low pressure, the process gain becomes large at a high pressure, and the pressure fluctuation of the differential pressure becomes large.
In each figure, A1 and A2 are pressure fluctuations caused by switching the control valve that performs differential pressure control, and similar fluctuations occur in all tests. In FIG. 5, since the PID control parameter is adjusted at a high pressure, the process gain becomes small at a low pressure, and A1,
The change of the control valve with respect to the pressure fluctuation of A2 becomes slow and the pressure fluctuation of the differential pressure becomes large. On the other hand, in FIG. 6, it can be seen that a constant differential pressure control is performed in the entire pressure range.

【0018】実施の形態2.図7は実施の形態2を示
し、この発明による圧力制御装置を流量制御装置として
兼用する場合の構成例である。図において、1〜10は
実施の形態1と同一のものである。15は三方バルブ、
16は反応槽Bである。
Embodiment 2. FIG. 7 shows the second embodiment, which is an example of a configuration in which the pressure control device according to the present invention is also used as a flow rate control device. In the figure, 1 to 10 are the same as those in the first embodiment. 15 is a three-way valve,
16 is a reaction tank B.

【0019】このように構成された系において、反応槽
A2の圧力を制御する場合、三方バルブ15によりガス
を排出系統4に流し、実施の形態1と同様に圧力制御を
行う。反応槽A2の圧力制御を行わず、反応槽B16に
一定流量を流す場合には三方バルブ15を切り替え、反
応槽B16にガスを流す。ここでPID制御の操作量を
所望の流量で例えば一定にすることにより、実施の形態
1で図2を用いて説明したのと同様に演算回路7が調節
弁3を流れるガス流量を上記所望流量で一定にするよう
調節弁開度を指示し、反応槽B16に流れるガス流量を
制御する。このようにすでに構成されている圧力制御装
置を兼用できるので、新たに流量制御装置を用意する必
要がない。
In the system constructed as described above, when the pressure in the reaction tank A2 is controlled, the gas is caused to flow to the exhaust system 4 by the three-way valve 15, and the pressure control is performed as in the first embodiment. When a constant flow rate is supplied to the reaction tank B16 without controlling the pressure of the reaction tank A2, the three-way valve 15 is switched and a gas is supplied to the reaction tank B16. Here, by setting the operation amount of the PID control to be a desired flow rate, for example, the operation flow rate of the gas flowing through the control valve 3 by the arithmetic circuit 7 is set to the desired flow rate in the same manner as described with reference to FIG. 2 in the first embodiment. The control valve opening degree is instructed so as to be kept constant by, and the gas flow rate flowing into the reaction tank B16 is controlled. Since the pressure control device already configured in this way can also be used, it is not necessary to newly prepare a flow rate control device.

【0020】実施の形態3.図8は実施の形態3を示
し、圧力制御中に予期している流量変化に対し、制御回
路の操作量をフィードフォワード制御する例である。図
において、1〜10は実施の形態1と同一のものであ
る。11は溶融炭酸塩型の燃料電池、17は負荷抵抗装
置である。ここで反応槽2は溶融炭酸塩型燃料電池11
のカソード室とする。なお、図8では筐体等を記載して
いないが、図3と同様の差圧制御系が構成されている。
Embodiment 3 FIG. 8 shows the third embodiment, which is an example in which the feed-forward control of the manipulated variable of the control circuit is performed with respect to the expected flow rate change during the pressure control. In the figure, 1 to 10 are the same as those in the first embodiment. Reference numeral 11 is a molten carbonate type fuel cell, and 17 is a load resistance device. Here, the reaction tank 2 is a molten carbonate fuel cell 11
Of the cathode chamber. Although the housing and the like are not shown in FIG. 8, a differential pressure control system similar to that in FIG. 3 is configured.

【0021】このように構成された系においては、溶融
炭酸塩型燃料電池11の負荷制御を行い、かつカソード
室2の圧力を制御する。ここで溶融炭酸塩型燃料電池1
1の負荷を変化させた場合において、カソード室2内で
消費される電極反応量が変化し、調節弁3に流れるガス
流量が変化する。この流量変化量は負荷変化量から計算
できるものであるから、負荷指令を演算回路7に入力す
ることで、PID制御の操作量に対しフィードフォワー
ド制御を行う。これにより、溶融炭酸塩型燃料電池11
の負荷変動により生じるカソード室2の圧力変動を小さ
くすることになる。
In the system constructed as described above, the load of the molten carbonate fuel cell 11 is controlled and the pressure of the cathode chamber 2 is controlled. Here, molten carbonate fuel cell 1
When the load of 1 is changed, the amount of electrode reaction consumed in the cathode chamber 2 changes, and the flow rate of gas flowing through the control valve 3 changes. Since this flow rate change amount can be calculated from the load change amount, a load command is input to the arithmetic circuit 7 to perform feedforward control for the operation amount of the PID control. Thereby, the molten carbonate fuel cell 11
The pressure fluctuation in the cathode chamber 2 caused by the load fluctuation is reduced.

【0022】この実施の形態ではPID制御の操作量に
調節弁3を流れる流量を用いていることにより、予期し
ている流量変化に対する圧力変動に対しフィードフォワ
ード制御を行う際に、PID制御の操作量を変化させれ
ばこれが容易に可能である。
In this embodiment, since the flow rate of the control valve 3 is used as the operation amount of the PID control, the PID control operation is performed when the feedforward control is performed with respect to the pressure fluctuation with respect to the expected flow rate change. This is easily possible with varying amounts.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、被制御
部の圧力を測定する圧力計、上記被制御部の圧力を調節
する調節弁、および上記圧力計の測定値と設定値との偏
差から操作量を算出し、該操作量に応じて上記調節弁開
度を制御する制御回路を備えるものにおいて、上記操作
量として上記調節弁を流れる流量を用い、調節弁を流れ
る流量が上記操作量となるようにプロセス条件および調
節弁の固有特性から上記調節弁開度を算出する演算回路
を備えたので、制御量と操作量の関係であるプロセスゲ
インが一定となり、制御パラメータを変化させることな
く圧力制御を行うことができる。
As described above, according to the present invention, the pressure gauge for measuring the pressure of the controlled portion, the control valve for adjusting the pressure of the controlled portion, and the measured value and the set value of the pressure gauge. Of the control circuit for calculating the manipulated variable from the deviation of the control valve and controlling the opening of the control valve according to the manipulated variable. Since the arithmetic circuit for calculating the control valve opening from the process condition and the characteristic characteristic of the control valve to obtain the manipulated variable is provided, the process gain, which is the relationship between the controlled variable and the manipulated variable, becomes constant and the control parameter is changed. It is possible to perform pressure control without using.

【0024】また、上記プロセス条件として調節弁入口
圧力、調節弁出口圧力、調節弁を流れる物体の温度、ま
たは調節弁を流れる物体の分子量のうちの少なくとも一
つを用い、これらのうちの少なくとも一つは制御設定値
を用いることにより、制御遅れの大きい制御系における
測定値の変動に伴う調節弁開度の変化と制御速度の差異
による圧力変動を取り除き、制御遅れの大きい系につい
ても安定に圧力制御を行うことができる。
Further, at least one of the control valve inlet pressure, the control valve outlet pressure, the temperature of the object flowing through the control valve, and the molecular weight of the object flowing through the control valve is used as the process condition, and at least one of them is used. First, by using the control set value, pressure fluctuations due to changes in the control valve opening and differences in control speed due to fluctuations in measured values in control systems with large control delays are eliminated, and stable pressures are maintained even in systems with large control delays. Control can be performed.

【0025】また、調節弁の流量変化が予期された場合
に、上記流量変化を演算回路に入力して操作量に対して
フィードフォワード制御を行うので、流量変化による圧
力変動を小さくできる。
Further, when a change in the flow rate of the control valve is expected, the change in the flow rate is input to the arithmetic circuit to perform the feedforward control on the manipulated variable, so that the pressure fluctuation due to the change in the flow rate can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による圧力制御装置の
システム構成図である。
FIG. 1 is a system configuration diagram of a pressure control device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1に係わる演算回路の動
作を説明するフローチャートである。
FIG. 2 is a flowchart explaining the operation of the arithmetic circuit according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1に係わる加圧型燃料
電池発電システムの圧力制御系の構成図である。
FIG. 3 is a configuration diagram of a pressure control system of the pressurized fuel cell power generation system according to Embodiment 1 of the present invention.

【図4】 従来の装置を用いた圧力制御系の制御試験結
果を示す特性図である。
FIG. 4 is a characteristic diagram showing a control test result of a pressure control system using a conventional device.

【図5】 従来の装置を用いた圧力制御系の制御試験結
果を示す特性図である。
FIG. 5 is a characteristic diagram showing a control test result of a pressure control system using a conventional device.

【図6】 実施の形態1による装置を用いた圧力制御系
の制御試験結果を示す特性図である。
FIG. 6 is a characteristic diagram showing a control test result of a pressure control system using the device according to the first embodiment.

【図7】 本発明の実施の形態2を示すシステム構成図
である。
FIG. 7 is a system configuration diagram showing a second embodiment of the present invention.

【図8】 本発明の実施の形態3を示すシステム構成図
である。
FIG. 8 is a system configuration diagram showing a third embodiment of the present invention.

【図9】 従来の圧力制御装置のシステム構成図であ
る。
FIG. 9 is a system configuration diagram of a conventional pressure control device.

【符号の説明】[Explanation of symbols]

1 ガス供給系統、 2,16 反応層、 3 圧力調
節弁、 4 ガス排出系統、 5,8,9 圧力計、
6 制御回路、 7 演算回路、 10 温度計、 1
1 溶融炭酸塩型燃料電池、 12 筐体、 13 差
圧計、 15三方バルブ、 17 負荷抵抗。
1 gas supply system, 2,16 reaction layer, 3 pressure control valve, 4 gas discharge system, 5,8,9 pressure gauge,
6 control circuits, 7 arithmetic circuits, 10 thermometers, 1
1 molten carbonate fuel cell, 12 casing, 13 differential pressure gauge, 15 three-way valve, 17 load resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被制御部の圧力を測定する圧力計、上記
被制御部の圧力を調節する調節弁、および上記圧力計の
測定値と設定値との偏差から操作量を算出し、該操作量
に応じて上記調節弁開度を制御する制御回路を備えるも
のにおいて、上記操作量として上記調節弁を流れる流量
を用い、調節弁を流れる流量が上記操作量となるように
プロセス条件および調節弁の固有特性から上記調節弁開
度を算出する演算回路を備えたことを特徴とする圧力制
御装置。
1. A pressure gauge for measuring the pressure of a controlled portion, a control valve for adjusting the pressure of the controlled portion, and an operation amount calculated from a deviation between a measured value and a set value of the pressure gauge, and the operation amount. In a control circuit for controlling the opening of the control valve according to the amount, the flow rate of the control valve is used as the operation amount, and the process condition and the control valve are set so that the flow rate of the control valve becomes the operation amount. A pressure control device comprising an arithmetic circuit for calculating the control valve opening degree from the characteristic characteristic of the pressure control device.
【請求項2】 上記プロセス条件として、調節弁入口圧
力、調節弁出口圧力、調節弁を流れる物体の温度、およ
び調節弁を流れる物体の分子量のうちの少なくとも一つ
を用いることを特徴とする請求項1記載の圧力制御装
置。
2. The process condition is at least one of a control valve inlet pressure, a control valve outlet pressure, a temperature of an object flowing through the control valve, and a molecular weight of an object flowing through the control valve. Item 1. The pressure control device according to item 1.
【請求項3】 上記調節弁入口圧力、調節弁出口圧力、
調節弁を流れる物体の温度、または調節弁を流れる物体
の分子量として制御設定値を用いることを特徴とする請
求項2記載の圧力制御装置。
3. The control valve inlet pressure, the control valve outlet pressure,
The pressure control device according to claim 2, wherein a control set value is used as a temperature of an object flowing through the control valve or a molecular weight of the object flowing through the control valve.
【請求項4】 調節弁の流量変化が予期された場合に、
上記流量変化を演算回路に入力して操作量に対してフィ
ードフォワード制御を行うことを特徴とする請求項1記
載の圧力制御装置。
4. When the flow rate change of the control valve is expected,
The pressure control device according to claim 1, wherein the flow rate change is input to an arithmetic circuit to perform feedforward control on an operation amount.
JP8010975A 1996-01-25 1996-01-25 Pressure controller Pending JPH09204226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8010975A JPH09204226A (en) 1996-01-25 1996-01-25 Pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8010975A JPH09204226A (en) 1996-01-25 1996-01-25 Pressure controller

Publications (1)

Publication Number Publication Date
JPH09204226A true JPH09204226A (en) 1997-08-05

Family

ID=11765168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8010975A Pending JPH09204226A (en) 1996-01-25 1996-01-25 Pressure controller

Country Status (1)

Country Link
JP (1) JPH09204226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183357A (en) * 2003-11-28 2005-07-07 Honda Motor Co Ltd Reaction gas supplying device for fuel cell
JP2008047518A (en) * 2006-07-17 2008-02-28 Gm Global Technology Operations Inc Fuel cell anode stoichiometric control
JP2011204265A (en) * 2011-06-08 2011-10-13 Horiba Stec Co Ltd Mass flow controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183357A (en) * 2003-11-28 2005-07-07 Honda Motor Co Ltd Reaction gas supplying device for fuel cell
JP4647236B2 (en) * 2003-11-28 2011-03-09 本田技研工業株式会社 Fuel cell reactive gas supply device
JP2008047518A (en) * 2006-07-17 2008-02-28 Gm Global Technology Operations Inc Fuel cell anode stoichiometric control
US8524404B2 (en) 2006-07-17 2013-09-03 GM Global Technology Operations LLC Fuel cell anode stoichiometry control
JP2011204265A (en) * 2011-06-08 2011-10-13 Horiba Stec Co Ltd Mass flow controller

Similar Documents

Publication Publication Date Title
US7565792B2 (en) Fuel gas heating control equipment and gas turbine power generation facility provided with the fuel gas heating control equipment
US6651761B1 (en) Temperature control system for fuel cell electric vehicle cooling circuit
EP1196833A1 (en) System and method for a variable gain proportional-integral (pi) controller
JPH0561502A (en) Plant control system
JPH09204226A (en) Pressure controller
JPH11130403A (en) Method for controlling temperature of reformer for fuel cell
JP2019139913A (en) Fuel cell system
JP2612604B2 (en) Dew point control method of furnace atmosphere gas
JPS6231954A (en) Fuel cell differential pressure control device
JP2021064472A (en) Fuel cell system
JPH0719989A (en) Pressure control device for blowout type wind tunnel
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2005063743A (en) Control device of fuel cell system
JPH03108268A (en) Fuel cell reaction gas supply controller
JP2002117875A (en) Control apparatus of fuel cell system
JPS5813809B2 (en) Combustion control method using low excess air
JP2599815B2 (en) Reformer temperature controller for fuel cell power generation system
JP2619044B2 (en) Temperature control device
JPH08250139A (en) Fuel-cell generating system
JPS6356674B2 (en)
JP2577443B2 (en) Combustion control device
JPS6039772A (en) System for controlling pressure and flow rate in fuel cell power generation plant
JPH0349161A (en) Fuel cell power generating system
JPS6297265A (en) Fuel cell power generating plant
JP2656319B2 (en) Fuel cell power generation system