JPH09202697A - Production of bismuth-substituted type garnet - Google Patents

Production of bismuth-substituted type garnet

Info

Publication number
JPH09202697A
JPH09202697A JP791496A JP791496A JPH09202697A JP H09202697 A JPH09202697 A JP H09202697A JP 791496 A JP791496 A JP 791496A JP 791496 A JP791496 A JP 791496A JP H09202697 A JPH09202697 A JP H09202697A
Authority
JP
Japan
Prior art keywords
garnet
heat treatment
insertion loss
composition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP791496A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP791496A priority Critical patent/JPH09202697A/en
Publication of JPH09202697A publication Critical patent/JPH09202697A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variability of a composition and to reduce insertion loss, by heat-treating a Bi substitution type garnet grown by a liquid-phase growth method to reduce the composition value of Bi2 O3 . SOLUTION: A flux compound and a garnet growing component are packed into a crucible, heated and melted to give a growing solution, which is made into a supersaturated state by dropping the temperature. A garnet base is immersed in the solution and rotated for many hours to grow a Bi substitution type garnet comprising GdBi-based garnet single crystal or TbBi-based garnet single crystal. The Bi substitution type garnet is heat-treated in an atmosphere in 2-100% oxygen concentration at 1,030-1,190 deg.C for 0.5-40 hours to reduce the composition value of Bi2 O3 by 0.05-1.25wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,ファラデー効果を
有する光学用ガーネット材料の中でも,特にビスマス
(Bi)置換型ガーネットの製造方法に関し,液相成長
法(LPE法)にて育成したGdBi系ガーネット及び
TbBi系ガーネット単結晶厚膜の製造方法の改良に関
する。
TECHNICAL FIELD The present invention relates to a method for producing a bismuth (Bi) substitution type garnet among optical garnet materials having a Faraday effect, and relates to a GdBi garnet grown by a liquid phase growth method (LPE method). And an improvement in a method for producing a TbBi-based garnet single crystal thick film.

【0002】[0002]

【従来の技術】従来,光通信において,ファラデー回転
を応用したデバイスが開発,実用化されている。また,
光通信の中でも半導体レーザを使用した光通信におい
て,光ファイバーケーブルやコネクタなどからの反射光
が半導体レーザ等に戻ると発信が不安定となる。この不
安定性を防止するために,光アイソレータが使用されて
いる。
2. Description of the Related Art Conventionally, in optical communication, devices applying Faraday rotation have been developed and put into practical use. Also,
Among optical communications, in optical communications using a semiconductor laser, when light reflected from an optical fiber cable, connector, etc. returns to the semiconductor laser or the like, transmission becomes unstable. Optical isolators are used to prevent this instability.

【0003】大きなファラデー回転を持つBi置換型希
土類鉄ガーネットは,LPE法,フラックス法等で育成
され,近赤外領域での光アイソレータに使用されてい
る。特にLPE法で育成されるガーネット厚膜は,生産
性に優れているので,低価格で光アイソレータ材料の供
給を可能としている。
Bi-substitution type rare earth iron garnet having a large Faraday rotation is grown by the LPE method, the flux method or the like and used for an optical isolator in the near infrared region. In particular, the garnet thick film grown by the LPE method has excellent productivity, and therefore it is possible to supply the optical isolator material at a low cost.

【0004】ところで,光アイソレータは,順方向の光
に対してはより高い透過率を示し,逆方向の光に対して
はより低い透過率を示すことが望ましい。したがって,
それに使用されるガーネット材料は,ファラデー回転係
数が約1000deg/cm2 以上と大きく,光透過率
の高い,即ち,光吸収損失が0.3dB以下であること
が要求される。このような光アイソレータ材料に用いら
れるBi置換型ガーネット液相成長法は次のようにして
行われている。
By the way, it is desirable that the optical isolator has a higher transmittance for light in the forward direction and a lower transmittance for light in the reverse direction. Therefore,
The garnet material used for it is required to have a large Faraday rotation coefficient of about 1000 deg / cm 2 or more and a high light transmittance, that is, a light absorption loss of 0.3 dB or less. The Bi substitution type garnet liquid phase growth method used for such an optical isolator material is performed as follows.

【0005】白金るつぼの中に,PbO,Bi2 3
2 3 をフラックス成分とし,ガーネット育成成分
(Gd2 3 ,Tb2 3 ,Fe2 3 ,Al2 3
Ga23 等)を約1000℃にて溶解して成長用溶液
を作製した後,降温して過飽和状態とする。その溶液中
に,ガーネット基板を浸漬し,長時間回転させながら,
Bi置換型ガーネット結晶厚膜を育成する。Bi置換型
ガーネットの中でも,GdBi系ガーネット,TbBi
系ガーネットは印加磁界が約1000Oe以下と小さ
く,小型の永久磁石を印加磁場用として利用できる特徴
がある。
In a platinum crucible, PbO, Bi 2 O 3 ,
B 2 O 3 was used as a flux component, and garnet growth components (Gd 2 O 3 , Tb 2 O 3 , Fe 2 O 3 , Al 2 O 3 ,
Ga 2 O 3 etc.) is melted at about 1000 ° C. to prepare a growth solution, and then the temperature is lowered to a supersaturated state. Immerse the garnet substrate in the solution and rotate it for a long time,
A Bi substitution type garnet crystal thick film is grown. Among the Bi substitution type garnets, GdBi type garnet, TbBi
The system garnet has a small applied magnetic field of about 1000 Oe or less, and is characterized in that a small permanent magnet can be used for the applied magnetic field.

【0006】[0006]

【発明が解決しようとする課題】光アイソレータに使用
されるBi置換型ガーネットは,低い挿入損失であるこ
とが必須となり,一般には,0.3dB以下が必要とさ
れる。更に,高性能な光アイソレータには,挿入損失が
0.1dB以下のガーネット材料が要求される方向にあ
る。
The Bi substitution type garnet used for the optical isolator must have a low insertion loss, and generally 0.3 dB or less is required. Furthermore, a garnet material with an insertion loss of 0.1 dB or less is required for a high performance optical isolator.

【0007】また,LPE法によってBi置換型ガーネ
ットを工業的に安価に安定して製造できるようになり,
光学用アイソレータ材料として使用されるに至ってい
る。
Further, the LPE method makes it possible to stably produce Bi substitutional garnet at low cost industrially,
It has come to be used as an optical isolator material.

【0008】ところで,前述したLPE法は溶液中の過
飽和成分により,Bi置換型ガーネットを析出育成する
ものであり,過飽和成分の濃度管理が極めて重要とな
り,溶液の温度や流動状態によって育成ガーネットの組
成が変化し,材料特性も変化することになる。このLP
E法の現状は,溶液の温度制御や基板の回転数制御等を
実施することにより,結晶育成状態を管理している。
By the way, the above-mentioned LPE method deposits and grows Bi-substituted garnet by supersaturated components in the solution, and it is extremely important to control the concentration of the supersaturated components, and the composition of the grown garnet depends on the temperature and the flow state of the solution. Changes, and the material properties also change. This LP
In the present state of the E method, the crystal growth state is managed by controlling the temperature of the solution, controlling the rotation speed of the substrate, and the like.

【0009】しかしながら,析出するガーネット組成を
十分に制御できる状態には至っていない。したがって,
特性のバラツキを生じ,光の透過率が小さくなったり,
バラツキが生じ,挿入損失を増大させることになる。
However, the composition of the precipitated garnet has not been sufficiently controlled. Therefore,
There are variations in the characteristics, the light transmittance decreases,
Variations will occur and increase the insertion loss.

【0010】そこで,本発明の技術的課題は,LPE法
によってBi2 3 成分を多量に含有する溶液からBi
2 3 を主成分とするBi置換型ガーネットを析出させ
る方法において,材料特性に大きく影響する組成のバラ
ツキを抑制し挿入損失を低減するBi置換型ガーネット
の製造方法を提供することにある。
Therefore, the technical problem of the present invention is to use a solution containing a large amount of Bi 2 O 3 component by the LPE method to obtain Bi.
It is an object of the present invention to provide a method for producing a Bi-substituted garnet, which suppresses variation in composition that greatly affects material properties and reduces insertion loss in the method of depositing Bi-substituted garnet containing 2 O 3 as a main component.

【0011】[0011]

【課題を解決するための手段】本発明によれば,ガーネ
ット基板上に,液相成長法によりGdBi系ガーネット
単結晶またはTbBi系ガーネット単結晶からなるBi
置換型ガーネットを育成して光学用ガーネット材料を製
造する方法において,前記Bi置換型ガーネットを育成
後,熱処理によりBi2 3 組成値を0.05〜1.2
5wt%減少させることを特徴とするBi置換型ガーネ
ットの製造方法が得られる。
According to the present invention, on a garnet substrate, a Bi crystal composed of a GdBi-based garnet single crystal or a TbBi-based garnet single crystal is formed by a liquid phase growth method.
In a method of growing a substitutional garnet to manufacture an optical garnet material, after growing the Bi substitutional garnet, a Bi 2 O 3 composition value is 0.05 to 1.2 by heat treatment.
A method for producing a Bi-substituted garnet is obtained which is characterized by reducing the amount by 5 wt%.

【0012】ここで,本発明において,Bi置換型ガー
ネット材料に含有している局部的なBi2 3 過剰成分
を熱処理することにより除去し,熱的に平衡状態に組成
を近づけ,均質化を進行させ,同時に結晶格子の規則性
を向上させることにより,ガーネット材の挿入損失の低
減を実現するものである。本発明において,この熱処理
によるBi2 3 組成値の減少量0.05〜1.25w
t%の範囲と限定したのは,0.05wt%以上で,挿
入損失の低減が顕著となり,1.25wt%以上では,
挿入損失の増大が顕著となるからである。
Here, in the present invention, the local Bi 2 O 3 excess component contained in the Bi-substituted garnet material is removed by heat treatment to bring the composition into a state of thermal equilibrium to homogenize it. By advancing it and improving the regularity of the crystal lattice at the same time, the insertion loss of the garnet material is reduced. In the present invention, the decrease in Bi 2 O 3 composition value due to this heat treatment is 0.05 to 1.25w.
The range of t% is limited to 0.05 wt% or more, the insertion loss is significantly reduced, and 1.25 wt% or more,
This is because the insertion loss is significantly increased.

【0013】また,本発明によれば,前記Bi置換型ガ
ーネットの製造方法において,前記熱処理温度が,10
30〜1190℃の範囲にあることを特徴とするBi置
換型ガーネットの製造方法が得られる。
Further, according to the present invention, in the method for manufacturing the Bi substitution type garnet, the heat treatment temperature is 10
A method for producing a Bi-substituted garnet characterized by being in the range of 30 to 1190 ° C is obtained.

【0014】ここで,本発明において,熱処理は,Bi
2 3 の減少量と組成の均質化,結晶格子の規則性向上
させる。本発明において,この熱処理温度を1030〜
1190℃の範囲と限定したのは,1030℃以上で,
挿入損失の低減が顕著になると判断できるからであり,
また,1190℃以上で,挿入損失の増大が顕著になる
と判断できるからである。
In the present invention, the heat treatment is Bi
It reduces the amount of 2 O 3 , homogenizes the composition, and improves the regularity of the crystal lattice. In the present invention, this heat treatment temperature is 1030 to
The range of 1190 ℃ is limited to 1030 ℃ or more,
This is because it can be judged that the reduction in insertion loss will be significant.
Also, it can be judged that the increase in insertion loss becomes remarkable at 1190 ° C. or higher.

【0015】また,本発明によれば,前記した内のいず
れかのBi置換型ガーネットの製造方法において,前記
熱処理における保持時間が0.5〜40時間の範囲内に
あることを特徴とするBi置換型ガーネットの製造方法
が得られる。
Further, according to the present invention, in any one of the above-mentioned methods for producing a Bi-substituted garnet, the holding time in the heat treatment is in the range of 0.5 to 40 hours. A method for manufacturing a substitutional garnet is obtained.

【0016】ここで,本発明において,熱処理における
保持時間は,Bi2 3 の減少量にも寄与するが,主に
組成の均質化,結晶格子規則性向上させる。本発明にお
いて,熱処理温度の保持時間0.5〜40時間の範囲内
であると限定した理由は,0.5時間以上で,挿入損失
の低減が顕著になるからであり,40時間以上は,長時
間となり,工業的に不利益となるからである。
Here, in the present invention, the holding time in the heat treatment contributes to the reduction amount of Bi 2 O 3 , but mainly improves the homogenization of the composition and the crystal lattice regularity. In the present invention, the reason why the holding time of the heat treatment temperature is limited to be within the range of 0.5 to 40 hours is that the reduction of the insertion loss becomes remarkable when the time is 0.5 hours or more. This is because it takes a long time and is industrially disadvantageous.

【0017】また,本発明によれば,前記した内のいず
れかのBi置換型ガーネットの製造方法において,前記
熱処理における雰囲気の酸素濃度が2〜100%の範囲
にあることを特徴とするBi置換型ガーネットの製造方
法が得られる。
According to the present invention, in any one of the above-mentioned methods for producing a Bi-substituted garnet, the oxygen concentration of the atmosphere in the heat treatment is in the range of 2 to 100%. A method of manufacturing a mold garnet is obtained.

【0018】ここで,本発明において,熱処理雰囲気は
主に酸素の空格子に関係し,主に結晶格子の規則性向上
させるのに効果がある。本発明において,熱処理雰囲気
の酸素濃度2〜100%の範囲内と限定したのは,2%
以上で挿入損失の低減が顕著となるからである。
Here, in the present invention, the heat treatment atmosphere mainly relates to the oxygen vacancies, and is effective in mainly improving the regularity of the crystal lattice. In the present invention, the oxygen concentration of the heat treatment atmosphere is limited to the range of 2 to 100% is 2%.
This is because the insertion loss is significantly reduced as described above.

【0019】したがって,本発明においては,光アイソ
レータ等に使用されるBi置換型ガーネットの挿入損失
の低減が,容易に実現できる。
Therefore, in the present invention, the reduction of the insertion loss of the Bi substitution type garnet used for the optical isolator or the like can be easily realized.

【0020】[0020]

【発明の実施の形態】以下,本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(第1の実施の形態)高純度(99.9%
以上)の酸化ガドリニウム(Gd2 3 ),酸化第2鉄
(Fe2 3 ),酸化アルミニウム(Al2 3 ),酸
化ガリウム(Ga2 3 ),酸化ビスマス(Bi
2 3 ),酸化鉛(PbO)及び酸化ホウ素(B
2 3 )の粉末を原料として使用し,フラックスとして
PbO−Bi2 3 −B2 3 系を使用して,LPE法
により(GdBi)3 (FeGaAl)5 12系ガーネ
ットを育成した。この時使用した基板はNd3 Ga5
12単結晶であり,格子定数は12,509Å,基板の方
位は<111>である。また結晶育成は約750℃の融
液中で,上記基板を回転して行ない,厚さ約500μm
のGd2.1 Bi0.9Fe4.6 Ga0.2 Al0.2 12なる
組成を有するGdBi系ガーネット厚膜単結晶を得た。
(First Embodiment) High purity (99.9%)
Gadolinium oxide (Gd 2 O 3 ), ferric oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), bismuth oxide (Bi)
2 O 3 ), lead oxide (PbO) and boron oxide (B
2 O 3 ) powder was used as the raw material and PbO-Bi 2 O 3 -B 2 O 3 system was used as the flux to grow (GdBi) 3 (FeGaAl) 5 O 12 system garnet by the LPE method. The substrate used at this time is Nd 3 Ga 5 O
It is a 12 single crystal, has a lattice constant of 12,509Å, and has a substrate orientation of <111>. Crystal growth was carried out by rotating the above substrate in a melt at about 750 ° C., and the thickness was about 500 μm.
A GdBi-based garnet thick film single crystal having a composition of Gd 2.1 Bi 0.9 Fe 4.6 Ga 0.2 Al 0.2 O 12 was obtained.

【0022】次に,この試料の基板を除去した後,大気
中,1050〜1150℃で0〜100時間保持した。
次に,これらGdBi系ガーネット試料の両面を研磨
し,厚さ約350μmの試料板とした。
Next, after removing the substrate of this sample, it was held in the atmosphere at 1050-1150 ° C. for 0-100 hours.
Next, both surfaces of these GdBi-based garnet samples were polished to form a sample plate having a thickness of about 350 μm.

【0023】次に,これら試料板の両面について5点ず
つEPMA分析を行ない計10点の平均値をBi2 3
組成値とした。
Next, 5 points of EPMA analysis were performed on each of the two surfaces of these sample plates, and the average value of 10 points in total was Bi 2 O 3
The composition value was used.

【0024】次に,これら試料板にSiO2 膜による無
反射被覆処理を行なった後,約1KOeの磁界を印加
し,波長1.3μmにおける挿入損失を測定した。
Next, these sample plates were subjected to antireflection coating with a SiO 2 film, and then a magnetic field of about 1 KOe was applied to measure the insertion loss at a wavelength of 1.3 μm.

【0025】図1はガーネット厚膜結晶のBi2 3
成減少値と挿入損失の関係を示す図である。ここで,ガ
ーネット厚膜結晶のBi2 3 組成減少値とは,非熱処
理試料に対し,熱処理により変動したBi2 3 組成値
を表している。図1からわかるように,Bi2 3 の組
成減少量が0.05wt%以上では挿入損失が顕著に低
下し,一方1.25wt%以上では挿入損失が顕著に増
大している。したがって,GdBi系ガーネット厚膜に
おいては,そのBi2 3 組成減少値が0.05〜1.
25wt%となる様に熱処理することにより,挿入損失
は著しく改善されることが分かる。
FIG. 1 is a graph showing the relationship between the Bi 2 O 3 composition reduction value and the insertion loss of a garnet thick film crystal. Herein, the Bi 2 O 3 composition reduction value garnet thick film crystals, relative to non-heat samples represent Bi 2 O 3 composition value varied by heat treatment. As can be seen from FIG. 1, when the composition reduction amount of Bi 2 O 3 is 0.05 wt% or more, the insertion loss is remarkably reduced, while when it is 1.25 wt% or more, the insertion loss is remarkably increased. Therefore, in the GdBi-based garnet thick film, the Bi 2 O 3 composition reduction value is 0.05 to 1.
It can be seen that the insertion loss is remarkably improved by performing the heat treatment so as to be 25 wt%.

【0026】(第2の実施の形態)第1の実施の形態と
同様にして,GdBi系ガーネット厚膜単結晶を育成,
基板除去後,1000〜1200℃で10時間熱処理,
研磨して試料を得た後,EPMA分析によりGdBi系
ガーネットのBi2 3 組成を測定し,熱処理によるB
2 3 組成減少値を求めた。
(Second Embodiment) In the same manner as in the first embodiment, a GdBi-based garnet thick film single crystal is grown.
After removing the substrate, heat treatment at 1000 ~ 1200 ℃ for 10 hours,
After polishing and obtaining a sample, the Bi 2 O 3 composition of the GdBi garnet was measured by EPMA analysis, and B by heat treatment was measured.
The i 2 O 3 composition reduction value was determined.

【0027】図2は熱処理温度とGdBi系ガーネット
のBi2 3 組成減少値を示す図である。熱処理温度が
1030℃以上でBi2 3 組成減少値が0.05wt
%以上となり,1190℃以下で1.25wt%以下と
なる。したがって,実施例1の結果と合わせて判断する
と,挿入損失が顕著に減少する熱処理温度は1030〜
1190℃となり,この温度範囲が有用となる。
FIG. 2 is a graph showing the heat treatment temperature and the Bi 2 O 3 composition reduction value of the GdBi garnet. When the heat treatment temperature is 1030 ° C or higher, the Bi 2 O 3 composition reduction value is 0.05 wt.
% Or more and 1.25 wt% or less at 1190 ° C. or less. Therefore, judging from the results of Example 1, the heat treatment temperature at which the insertion loss is significantly reduced is 1030 to
It becomes 1190 ° C, and this temperature range becomes useful.

【0028】(第3の実施の形態)第1の実施の形態と
同様にして,GdBi系ガーネット厚膜単結晶を育成,
基板除去後,1100℃で0〜40時間熱処理,研磨し
た後,無反射被覆処理をした後,波長1.3μmにおけ
る各試料の挿入損失を測定した。
(Third Embodiment) In the same manner as the first embodiment, a GdBi-based garnet thick film single crystal is grown.
After removing the substrate, the sample was heat-treated at 1100 ° C. for 0 to 40 hours, polished, and subjected to antireflection coating, and then the insertion loss of each sample at a wavelength of 1.3 μm was measured.

【0029】図3は1100℃における熱処理の保持温
度と挿入損失の関係を示す図である。保持時間が0.5
時間以上で,挿入損失の著しい減少が認められる。工業
上は,1100℃で40時間保持とすると,1回の熱処
理に約2日を要することになり,それ以上の長時間保持
は特策とはいえない。したがって,保持時間は0.5〜
40時間が工業上有用な範囲とした。
FIG. 3 is a diagram showing the relationship between the holding temperature of heat treatment at 1100 ° C. and the insertion loss. Retention time 0.5
A significant decrease in insertion loss is observed over time. Industrially, if the temperature is maintained at 1100 ° C. for 40 hours, one heat treatment requires about 2 days, and holding for a longer time cannot be said to be a special measure. Therefore, the holding time is 0.5 ~
40 hours was set to a range that is industrially useful.

【0030】(第4の実施の形態)第1の実施の形態と
同様にして,GdBi系ガーネット厚膜単結晶を育成,
基板除去後,窒素中雰囲気,酸素混入雰囲気,酸素中雰
囲気にて,1100℃で10時間熱処理した後,研磨,
無反射被覆処理をした後,1.3μmにおける各試料の
挿入損失を測定した。
(Fourth Embodiment) A GdBi-based garnet thick film single crystal is grown in the same manner as in the first embodiment.
After removing the substrate, heat treatment at 1100 ° C. for 10 hours in a nitrogen atmosphere, an oxygen mixed atmosphere, or an oxygen atmosphere, followed by polishing,
After the antireflection coating treatment, the insertion loss of each sample at 1.3 μm was measured.

【0031】図4は1100℃における熱処理雰囲気の
酸素濃度と挿入損失の関係を示す図である。酸素濃度を
2%以上とすることで,挿入損失が著しく低減する。し
たがって,熱処理雰囲気の酸素濃度は2〜100%が有
用となる。
FIG. 4 is a graph showing the relationship between the oxygen concentration in the heat treatment atmosphere at 1100 ° C. and the insertion loss. By setting the oxygen concentration to 2% or more, the insertion loss is significantly reduced. Therefore, it is useful that the oxygen concentration of the heat treatment atmosphere is 2 to 100%.

【0032】(第5の実施の形態)高純度(99.9%
以上)の酸化テルビニウム(Tb2 3 ),酸化ガドリ
ニウム(Gd2 3 ),酸化第2鉄(Fe2 3 ),酸
化アルミニウム(Al2 3 ),酸化ビスマス(Bi2
3 ),酸化鉛(PbO)及び酸化ホウ素(B2 3
の粉末を原料として使用し,(GdCa)3 (GaMg
Zr)5 15基板(格子定数12,490Å,基板方位
<111>)上に,第1の実施の形態と同様にして,T
2.1 Bi0.9 Fe5 12なる組成のTbBi系ガーネ
ット厚膜(約500μm厚)と,Tb2.0 Gd0.1 Bi
0.9 Fe4.6 Ga0.2 Al0.2 12なる組成のTbBi
ガーネット厚膜(約450μm厚)を,第1の実施の形
態と同様にして,LPE法にて作製した。
(Fifth Embodiment) High purity (99.9%)
Terbium oxide (Tb 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), ferric oxide (Fe 2 O 3 ), aluminum oxide (Al 2 O 3 ), bismuth oxide (Bi 2)
O 3 ), lead oxide (PbO) and boron oxide (B 2 O 3 ).
Powder of (GdCa) 3 (GaMg)
On a Zr) 5 O 15 substrate (lattice constant 12,490Å, substrate orientation <111>), as in the first embodiment, T
b 2.1 Bi 0.9 Fe 5 O 12 TbBi-based garnet thick film (about 500 μm thick) and Tb 2.0 Gd 0.1 Bi
TbBi having a composition of 0.9 Fe 4.6 Ga 0.2 Al 0.2 O 12
A garnet thick film (about 450 μm thick) was produced by the LPE method in the same manner as in the first embodiment.

【0033】次に,第1の実施の形態と同様にして基板
除去後,空気中1100℃で5時間熱処理した後,研
磨,無反射被覆処理した後,波長1.3μmにおける各
試料の挿入損失を測定した。その結果を下記表1に示
す。
Next, as in the first embodiment, after removing the substrate, heat-treating in air at 1100 ° C. for 5 hours, polishing, and antireflection coating, and then the insertion loss of each sample at a wavelength of 1.3 μm. Was measured. The results are shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】尚,熱処理によるBi2 3 組成減少値は
0.15〜0.2wt%の範囲であった。熱処理によ
り,挿入損失が著しく低減し,熱処理はTbBiガーネ
ットにおいても,GaBi系ガーネットと同様に有用で
あることがわかる。
The Bi 2 O 3 composition reduction value due to the heat treatment was in the range of 0.15 to 0.2 wt%. It can be seen that the heat treatment significantly reduces the insertion loss, and that the heat treatment is as effective for the TbBi garnet as for the GaBi garnet.

【0036】また,本発明は上記実施の形態の組成,波
長にとどまるものではなく,LPE法で作製されたGd
Bi系ガーネット,TbBi系ガーネットに適用するこ
とができる。測定波長がガーネットの吸収スペクトルに
対応していない。
Further, the present invention is not limited to the composition and wavelength of the above-mentioned embodiment, but Gd produced by the LPE method.
It can be applied to Bi type garnet and TbBi type garnet. The measured wavelength does not correspond to the absorption spectrum of garnet.

【0037】上記実施の形態に示したガーネットのその
他の特性は,波長1.3μmにおけるファラデー回転係
数は約1300deg/cm以上であり,飽和磁化は,
GdBi系ガーネットが約200G,TbBi系ガーネ
ットが約600〜800Gであり,ファラデー回転素子
例えば光アイソレータ用としては実用できる特性を示し
ている。
Other characteristics of the garnet shown in the above embodiment are that the Faraday rotation coefficient at a wavelength of 1.3 μm is about 1300 deg / cm and the saturation magnetization is
The GdBi-based garnet is about 200 G, and the TbBi-based garnet is about 600 to 800 G, which shows characteristics that can be practically used for a Faraday rotation element such as an optical isolator.

【0038】[0038]

【発明の効果】以上,説明したように,本発明によれ
ば,LPE法によってBi2 3 成分を多量に含有する
溶液からBi2 3 を主成分とするBi置換型ガーネッ
トを析出させる方法において,材料特性に大きく影響す
る組成のバラツキを抑制し挿入損失を低減するBi置換
型ガーネット材料の製造方法を提供することにある。
As described above, according to the present invention, a method for precipitating a Bi-substituted garnet containing Bi 2 O 3 as a main component from a solution containing a large amount of Bi 2 O 3 component by the LPE method. In view of the above, it is another object of the present invention to provide a method for producing a Bi-substitution type garnet material, which suppresses variation in composition that greatly affects material properties and reduces insertion loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態において,GdBi系ガーネ
ット材の熱処理におけるBi23 組成減少値と波長
1.3μmにおける挿入損失の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a reduction value of Bi 2 O 3 composition in a heat treatment of a GdBi-based garnet material and an insertion loss at a wavelength of 1.3 μm in the first embodiment.

【図2】第2の実施の形態において,GdBi系ガーネ
ット材の熱処理におけるBi23 組成減少値と熱処理
温度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a heat treatment temperature and a Bi 2 O 3 composition reduction value in heat treatment of a GdBi-based garnet material in the second embodiment.

【図3】第3の実施の形態において,GdBi系ガーネ
ット材の熱処理における保持時間と挿入損失の関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a holding time and an insertion loss in heat treatment of a GdBi-based garnet material in the third embodiment.

【図4】第4の実施の形態において,GdBi系ガーネ
ット材の熱処理における雰囲気の酸素濃度と挿入損失の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the oxygen concentration in the atmosphere and the insertion loss during heat treatment of a GdBi-based garnet material in the fourth embodiment.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガーネット基板上に,液相成長法により
GdBi系ガーネット単結晶またはTbBi系ガーネッ
ト単結晶からなるBi置換型ガーネットを育成して光学
用ガーネット材料を製造する方法において,前記Bi置
換型ガーネットを育成後,熱処理によりBi2 3 組成
値を0.05〜1.25wt%減少させることを特徴と
するBi置換型ガーネットの製造方法。
1. A method for producing an optical garnet material by growing a Bi substitution type garnet composed of a GdBi type garnet single crystal or a TbBi type garnet single crystal on a garnet substrate by a liquid phase growth method, wherein the Bi substitution type garnet material is manufactured. A method for producing a Bi-substituted garnet, which comprises reducing the Bi 2 O 3 composition value by 0.05 to 1.25 wt% by heat treatment after growing the garnet.
【請求項2】 請求項1記載のBi置換型ガーネットの
製造方法において,前記熱処理温度が,1030〜11
90℃の範囲にあることを特徴とするBi置換型ガーネ
ットの製造方法。
2. The method for producing a Bi-substituted garnet according to claim 1, wherein the heat treatment temperature is 1030 to 11
A method for producing a Bi-substituted garnet, which is in the range of 90 ° C.
【請求項3】 請求項1又は2記載のBi置換型ガーネ
ットの製造方法において,前記熱処理における保持時間
が0.5〜40時間の範囲内にあることを特徴とするB
i置換型ガーネットの製造方法。
3. The method for producing a Bi-substituted garnet according to claim 1 or 2, wherein a holding time in the heat treatment is within a range of 0.5 to 40 hours.
Method for manufacturing i-substitution garnet.
【請求項4】 請求項1乃至3のうちのいずれかに記載
のBi置換型ガーネットの製造方法において,前記熱処
理における雰囲気の酸素濃度が2〜100%の範囲にあ
ることを特徴とするBi置換型ガーネットの製造方法。
4. The method for producing a Bi-substituted garnet according to claim 1, wherein the oxygen concentration of the atmosphere in the heat treatment is in the range of 2 to 100%. Type garnet manufacturing method.
JP791496A 1996-01-19 1996-01-19 Production of bismuth-substituted type garnet Withdrawn JPH09202697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP791496A JPH09202697A (en) 1996-01-19 1996-01-19 Production of bismuth-substituted type garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP791496A JPH09202697A (en) 1996-01-19 1996-01-19 Production of bismuth-substituted type garnet

Publications (1)

Publication Number Publication Date
JPH09202697A true JPH09202697A (en) 1997-08-05

Family

ID=11678816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP791496A Withdrawn JPH09202697A (en) 1996-01-19 1996-01-19 Production of bismuth-substituted type garnet

Country Status (1)

Country Link
JP (1) JPH09202697A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133189B2 (en) * 2002-02-22 2006-11-07 Tdk Corporation Magnetic garnet material, faraday rotator, optical device, bismuth-substituted rare earth-iron-garnet single-crystal film and method for producing the same and crucible for producing the same
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
US8142676B2 (en) 2006-02-20 2012-03-27 Tdk Corporation Magnetic garnet single crystal and optical element using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133189B2 (en) * 2002-02-22 2006-11-07 Tdk Corporation Magnetic garnet material, faraday rotator, optical device, bismuth-substituted rare earth-iron-garnet single-crystal film and method for producing the same and crucible for producing the same
US7333261B2 (en) 2002-02-22 2008-02-19 Tdk Corporation Magnetic garnet material, faraday rotator, optical device, bismuth-substituted rare earth-iron-garnet single-crystal film and method for producing the same crucible for producing the same
US7517406B2 (en) 2002-02-22 2009-04-14 Tdk Corporation Magnetic garnet material, faraday rotator, optical device, bismuth-substituted rare earth-iron-garnet single-crystal film and method for producing the same and crucible for producing the same
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US8815011B2 (en) 2004-11-19 2014-08-26 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
US8142676B2 (en) 2006-02-20 2012-03-27 Tdk Corporation Magnetic garnet single crystal and optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same

Similar Documents

Publication Publication Date Title
JPH0354198A (en) Oxide garnet single crystal
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JPH09202697A (en) Production of bismuth-substituted type garnet
WO2003000963A1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
JPS60134404A (en) Magnetooptical material
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP2000086396A (en) Bismuth-substituted type garnet thick-film material and its production
JP3490143B2 (en) Oxide garnet single crystal
JPH10101492A (en) Bismuth-substituted garnet material and its production
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JPH10101493A (en) Bismuth-substituted garnet material and its production
JPH0354454B2 (en)
JPH11260621A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH1192290A (en) Bismuth substituted type garnet thick film material and its production
JP2514398B2 (en) Method for growing single crystal for magneto-optical element
JPH11263700A (en) Bismuth substitution type garnet thick film material and its production
JPH1192292A (en) Bismuth substituted type garnet single crystal thick film material and its production
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JPH11116396A (en) Bismuth-substituted type garnet material and its production
JPH11260622A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH11236297A (en) Bismuth-substituted garnet thick film material and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050708