JPH09200985A - Field of permanent magnet motor - Google Patents

Field of permanent magnet motor

Info

Publication number
JPH09200985A
JPH09200985A JP8090398A JP9039896A JPH09200985A JP H09200985 A JPH09200985 A JP H09200985A JP 8090398 A JP8090398 A JP 8090398A JP 9039896 A JP9039896 A JP 9039896A JP H09200985 A JPH09200985 A JP H09200985A
Authority
JP
Japan
Prior art keywords
permanent magnet
functional member
field
magnetic
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8090398A
Other languages
Japanese (ja)
Other versions
JP3722166B2 (en
Inventor
Yukio Tsutsui
筒井  幸雄
Kensho Iwabuchi
憲昭 岩渕
Tadahiro Miyamoto
恭祐 宮本
Shinji Yamashita
慎次 山下
Akihiko Maemura
前村  明彦
Iwao Sasaki
巖 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP09039896A priority Critical patent/JP3722166B2/en
Publication of JPH09200985A publication Critical patent/JPH09200985A/en
Application granted granted Critical
Publication of JP3722166B2 publication Critical patent/JP3722166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet motor capable of having a wide, constant output range and high efficiency without requiring special control or a power supply by reducing the irreversible demagnetization of field permanent magnet. SOLUTION: This field comprises an armature equipped with windings for creating a moving field and a plurality of permanent magnets 13 arranged with a predetermined pole pitch on a rotor core 11 laminated with cylindrical magnetic cores oppositely to the armature through an air gap. In this case, a functional member 12 which changes its magnetic permeability is provided near a permanent magnet 13. The functional member 12, for example, is an temperature-sensing magnetic material having a negative temperature coefficient with which the magnetic permeability decreases as the temperature rises. The magnetic permeability of the functional member 12 changes in response to the temperature change of the permanent magnet 13 and the amount of magnetic flux through a main magnetic path and leaked magnetic path is controlled, and the change in main magnetic flux due to change in the amount of residual magnetic flux caused by temperature coefficient of the permanent magnet 13 can be compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転形やリニアタ
イプのDCブラシレスモータ、同期モータやステッピン
グモータ等、界磁に永久磁石を用いる電動機に関し、特
に界磁の磁束量を変化させることにより電動機の出力特
性を制御し、高効率で定出力範囲を広く取ることのでき
る永久磁石形電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor such as a rotary or linear type DC brushless motor, a synchronous motor or a stepping motor, which uses a permanent magnet for the field, and more particularly, by changing the magnetic flux amount of the field. The present invention relates to a permanent magnet type electric motor capable of controlling the output characteristics of the above and achieving a wide constant output range with high efficiency.

【0002】[0002]

【従来の技術】従来、高効率且つ小形で高トルク・高推
力を得るために、回転形やリニアタイプの電動機とし
て、永久磁石を界磁に使用したDCブラシレスモータや
同期モータをインバータドライブするものが広く用いら
れている。この種のモータに用いる界磁として、移動磁
界を生じるための巻線を備えた電機子と空隙を介し対向
させた、円筒状の回転子コアに隣り合うもの同士が異極
になるように所定の極ピッチで配置した複数の永久磁石
を備えた永久磁石形電動機の界磁がある(例えば、特開
平1−157253号公報)。界磁に永久磁石を用いた
永久磁石電動機では、界磁磁束が一定のため回転数に比
例して誘起電圧が増加し、これとインバータ駆動回路の
出力電圧との関係で、定トルク領域の最高回転数(基底
回転数)が決定される。これを基底回転数以上で定出力
駆動する場合、インバータ駆動回路の出力電圧制限によ
り回転機に供給される電流が減少するためトルクが低下
し、真の最高回転数も低く抑えられてしまう。従って、
定出力比(基底回転数:最高回転数)は1:1.5程度
に留まっている。一方、電気自動車や電気鉄道等の電気
推進に適用する回転機システムでは、1:2以上の定出
力比(基底回転数:最高回転数)を持つ広範囲の可変速
駆動が求められる。この要求に応えるため、従来は、定
出力範囲ではd軸電機子電流により界磁に逆向きの磁界
を印加し界磁の磁束量を低減するという等価弱め界磁制
御が用いられ、1:3程度の定出力比を得るようにして
いる。
2. Description of the Related Art Conventionally, in order to obtain high efficiency, small size, high torque and high thrust, a DC brushless motor or a synchronous motor using a permanent magnet as a field is driven by an inverter as a rotary or linear type electric motor. Is widely used. As a field used in this type of motor, a magnet having a winding for generating a moving magnetic field is arranged to face each other with a gap, and adjacent ones of a cylindrical rotor core have different polarities. There is a field magnet of a permanent magnet type electric motor provided with a plurality of permanent magnets arranged at the pole pitch (for example, JP-A-1-157253). In a permanent magnet motor that uses a permanent magnet for the field, the induced magnetic field increases in proportion to the number of revolutions because the field magnetic flux is constant. The rotation speed (base rotation speed) is determined. When this is driven at a constant output at a speed equal to or higher than the base rotation speed, the current supplied to the rotating machine is reduced due to the output voltage limitation of the inverter drive circuit, so that the torque is reduced and the true maximum rotation speed is also kept low. Therefore,
The constant output ratio (base rotation speed: maximum rotation speed) remains at about 1: 1.5. On the other hand, in a rotating machine system applied to electric propulsion such as an electric vehicle or an electric railway, a wide range of variable speed drive having a constant output ratio of 1: 2 or more (base rotation speed: maximum rotation speed) is required. In order to meet this demand, conventionally, in the constant output range, equivalent field weakening control of applying a magnetic field in the opposite direction to the field by the d-axis armature current to reduce the amount of magnetic flux of the field has been used. It is designed to obtain a constant output ratio.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では、弱め界磁制御を行うために相当量のd軸電流
を界磁に同期して流す必要があるため、効率が低下した
り制御が複雑になる。また、大きな減磁界が印加される
ため、永久磁石が不可逆減磁してしまうといった問題が
あった。さらに、定出力範囲では弱め界磁制御を行うた
め、基底速度において界磁電流の制御方式を切り換える
必要があり、制御回路が複雑になっていた。ここで、一
般的に界磁に用いられている永久磁石は代表的な磁気特
性である残留磁束密度が温度特性を有している。特に、
フェライト磁石や希土類磁石は負の温度係数を有してお
り、磁石の温度上昇と共に残留磁束密度が減少する性質
を持っている。界磁の磁束量は、使用する永久磁石の残
留磁束密度に比例するため、この残留磁束密度の温度特
性が直接トルク特性や推力特性に影響を与える。電動機
は電機子巻線のジュール損やコアの鉄損、風損等の発熱
が発生し、熱伝導により永久磁石の温度も上昇する。或
いは、電動機の使用条件によっては外部からの熱侵入に
より、同様の温度上昇が生じる。しかし従来の電動機で
は、この界磁磁束量の温度特性の補償を行っていないの
で、温度上昇に伴い界磁の磁束量が減少し、その結果回
転電機ではトルク定数が、リニアモータでは推力定数が
減少するという問題があった。また、基底速度以上の高
速領域では、定出力特性を得るために、弱め界磁制御を
する必要がある。そこで本発明は、界磁永久磁石の不可
逆減磁の恐れが少ない、永久磁石の温度変化や回転数変
化に対応して電動機の出力特性を制御し、特別な制御を
必要とせずに、広い定出力範囲を得るに適した高効率の
永久磁石形電動機を提供することを目的とする。
However, in the conventional method, since a considerable amount of d-axis current needs to flow in synchronization with the field in order to perform the field weakening control, the efficiency is lowered and the control becomes complicated. Become. Further, since a large demagnetizing field is applied, there is a problem that the permanent magnet is irreversibly demagnetized. Further, since the field weakening control is performed in the constant output range, it is necessary to switch the control method of the field current at the base speed, which complicates the control circuit. Here, a permanent magnet generally used for a field has a residual magnetic flux density, which is a typical magnetic characteristic, having a temperature characteristic. Especially,
Ferrite magnets and rare earth magnets have a negative temperature coefficient, and have the property that the residual magnetic flux density decreases as the magnet temperature rises. Since the magnetic flux amount of the field is proportional to the residual magnetic flux density of the permanent magnet used, the temperature characteristic of the residual magnetic flux density directly affects the torque characteristic and the thrust characteristic. In the electric motor, heat is generated such as Joule loss of the armature winding, iron loss of the core, and wind loss, and the temperature of the permanent magnet also rises due to heat conduction. Alternatively, depending on the usage conditions of the electric motor, the same temperature rise occurs due to heat intrusion from the outside. However, since the conventional motor does not compensate for the temperature characteristic of the amount of magnetic field flux, the amount of magnetic flux of the magnetic field decreases as the temperature rises.As a result, the torque constant of the rotating electric machine and the thrust constant of the linear motor are reduced. There was a problem of decrease. Further, in the high speed region above the base speed, field weakening control is required to obtain constant output characteristics. Therefore, the present invention controls the output characteristic of the electric motor in response to the temperature change and the rotational speed change of the permanent magnet, which is less likely to cause the irreversible demagnetization of the field permanent magnet, and does not require any special control to achieve a wide constant value. An object of the present invention is to provide a highly efficient permanent magnet type electric motor suitable for obtaining an output range.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、移動磁界を生じるための巻線を備えた電
機子と空隙を介し対向させた、磁性体コアを積層したコ
アに所定の極ピッチで配置した複数の永久磁石を備えた
永久磁石形電動機の界磁において、前記永久磁石間もし
くは前記永久磁石近傍に、透磁率が変化する機能性部材
を設け、永久磁石形電動機の界磁にする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a magnetic core, which is opposed to an armature provided with a winding for generating a moving magnetic field with a gap, and is provided with a predetermined core. In the field of a permanent magnet type electric motor provided with a plurality of permanent magnets arranged at a pole pitch of, a functional member whose magnetic permeability changes is provided between the permanent magnets or in the vicinity of the permanent magnets. Turn into porcelain.

【0005】[0005]

【発明の実施の形態】移動磁界を生じるための巻線を備
えた電機子と、空隙を介し対向させた、磁性体板を積層
したコアに隣り合うもの同士が異極になるように所定の
極ピッチで配置した複数の永久磁石を備えた永久磁石形
電動機の界磁において、前記永久磁石間、前記永久磁石
の電機子対向側、もしくは前記永久磁石と前記積層コア
間に、感温磁性材料、磁歪材料もしくは磁性半導体材料
よりなる機能性部材を設け永久磁石形電動機の界磁を形
成する。前記コアが円板を軸方向に積層した回転子コア
であり、前記回転子コア表面に前記永久磁石を所定の角
ピッチで固定し、前記永久磁石間に負の温度係数を有す
る感温磁性材料よりなる前記機能性部材を間挿し、前記
永久磁石と前記機能性部材の外表面を薄肉円管状の正の
応力係数を有する磁歪材料よりなる前記機能性部材で包
絡したり、前記永久磁石間に磁性半導体材料を間挿した
りする。また、前記コアが、外径側に等極ピッチ角で放
射状の極中心線に直交差させて設けた永久磁石挿入穴
と、前記永久磁石挿入穴間に設けた漏れ磁束防止用穴を
備えた回転子コアであり、前記永久磁石挿入穴内に前記
永久磁石を収納し、前記漏れ磁束防止用穴内に負の温度
係数を有する感温磁性材料や磁性半導体材料を収納した
り、前記永久磁石の厚さを前記永久磁石挿入穴の高さよ
り薄くし、前記永久磁石挿入穴の外径側に前記永久磁石
を配置し、前記永久磁石挿入穴と前記永久磁石の間に生
じる内径側の間隙に磁歪材料や磁性半導体材料よりなる
前記機能性部材を挿入したり、前記永久磁石挿入穴を周
方向に連通させて、前記回転子コアを内外に分割し、前
記漏れ磁束防止用穴に相当する部分で、正の応力係数を
有する磁歪材料よりなる鼓形をした前記機能性部材によ
り前記内外コアと前記永久磁石を固定したり、前記永久
磁石を2分割し、この永久磁石間に、正の応力係数を有
する磁歪材料よりなる鼓形をした前記機能性部材を間挿
したり、前記回転子コア全体を、負の応力係数を有する
磁歪材料よりなる前記機能性部材としたりする。さら
に、前記コアを平板状のコアとし、前記永久磁石と前記
機能性部材を矩形とし、前記平板状のコア上に前記永久
磁石と前記機能性部材を所定ピッチで直線上に配置しリ
ニア形にする。
BEST MODE FOR CARRYING OUT THE INVENTION An armature provided with a winding for generating a moving magnetic field and a core laminated with magnetic plates facing each other with a gap therebetween are provided with a predetermined pole so as to have different polarities. In a field of a permanent magnet type electric motor including a plurality of permanent magnets arranged at a pole pitch, a temperature-sensitive magnetic material is provided between the permanent magnets, on the armature facing side of the permanent magnets, or between the permanent magnets and the laminated core. The magnetic field of the permanent magnet type electric motor is formed by providing a functional member made of a magnetostrictive material or a magnetic semiconductor material. The core is a rotor core in which discs are laminated in the axial direction, the permanent magnets are fixed to the rotor core surface at a predetermined angular pitch, and the temperature-sensitive magnetic material having a negative temperature coefficient between the permanent magnets. By interposing the functional member consisting of, the outer surface of the permanent magnet and the functional member is enveloped with the functional member made of a magnetostrictive material having a positive stress coefficient of a thin circular tubular shape, or between the permanent magnets. A magnetic semiconductor material is inserted. Further, the core is provided with a permanent magnet insertion hole provided on the outer diameter side at an equal pole pitch angle so as to be orthogonal to a radial pole center line, and a leakage magnetic flux prevention hole provided between the permanent magnet insertion holes. A rotor core, the permanent magnet is housed in the permanent magnet insertion hole, a temperature-sensitive magnetic material or magnetic semiconductor material having a negative temperature coefficient is housed in the leakage flux preventing hole, and the thickness of the permanent magnet is Thickness is made thinner than the height of the permanent magnet insertion hole, the permanent magnet is arranged on the outer diameter side of the permanent magnet insertion hole, and a magnetostrictive material is formed in a gap on the inner diameter side generated between the permanent magnet insertion hole and the permanent magnet. Or by inserting the functional member made of a magnetic semiconductor material, or by communicating the permanent magnet insertion hole in the circumferential direction, the rotor core is divided into the inside and outside, at a portion corresponding to the leakage magnetic flux prevention hole, Hourglass made of magnetostrictive material with positive stress coefficient The inner and outer cores and the permanent magnet are fixed by the functional member described above, or the permanent magnet is divided into two, and the hourglass-shaped functional member made of a magnetostrictive material having a positive stress coefficient is provided between the permanent magnets. Or the entire rotor core is the functional member made of a magnetostrictive material having a negative stress coefficient. Further, the core is a flat-plate core, the permanent magnet and the functional member are rectangular, and the permanent magnet and the functional member are linearly arranged on the flat-plate core at a predetermined pitch to form a linear shape. To do.

【0006】以下、この発明の実施例を説明する。図1
は、本発明の第1の実施例を示す断面図で、回転子の表
面に永久磁石を設けた回転形電動機の界磁に適用したも
のである。界磁部1は、円板状に打ち抜いたケイ素鋼板
を界磁部1の軸方向に積層した円筒状の回転子コア11
の外周面に、界磁部1の半径方向に着磁し隣り合うもの
同士が異極となるように所定の極ピッチで軸中心から放
射状に設けた極中心線Pに左右対称に固着された6個の
フェライト磁石や希土類磁石の永久磁石13と、おのお
のの永久磁石13間に、界磁部1の外径が永久磁石13
の外径と同一になるように配置された、透磁率が負の温
度係数を有する感温磁性材料よりなる6個の機能性部材
12と、回転子コア11の中心を軸方向に貫くシャフト
14から構成されている。界磁部1は、固定子コアに巻
線を巻回した電機子(図示せず)と空隙を介し対向し、
電機子で作られる回転磁界に同期して回転する。なお、
感温磁性材料は、磁気変態点(キューリ点)が常温より
少し高い温度にある感温磁性材料を用いる。また、機能
性部材12の断面積は、永久磁石13の残留磁束密度特
性やその温度特性、或いは機能性部材12の配置個所に
応じて変える。さらに、機能性部材12は回転子コア1
1と同様に、薄板状のものを軸方向に積層してもよい。
図2(a)は、機能性部材12に用いる代表的な感温磁
性材料の温度−磁束密度の関係を示すグラフである。こ
の例は、サ−マロイと名付けられたNi−Cu−Feの
感温磁性材料に、ある所定の磁界を印加した時の温度−
磁束密度特性グラフである。このグラフに示される通
り、この材料は、ある磁界を印加されている状態におい
て、温度上昇に伴い磁束密度が減少する負の温度係数を
有する。図2(b)はサーモライト(商品名)と名付け
られた、フェライト感温磁性材料の温度−飽和磁束密度
特性のグラフで、磁気変態点付近での透磁率変化が特に
顕著な材料である。この材料もサーマロイと同様に負の
温度係数を有する。なお、リニアモータに適用する場合
は、永久磁石13と機能性部材12を矩形にし、所定ピ
ッチで直線上に配置すればよい。
Embodiments of the present invention will be described below. FIG.
FIG. 3 is a cross-sectional view showing a first embodiment of the present invention, which is applied to the field of a rotary electric motor in which a permanent magnet is provided on the surface of a rotor. The field part 1 is a cylindrical rotor core 11 in which silicon steel plates punched in a disk shape are laminated in the axial direction of the field part 1.
On the outer peripheral surface of the magnetic field portion 1 are symmetrically fixed to a pole center line P radially provided from the axial center at a predetermined pole pitch so that adjacent ones are magnetized in the radial direction and adjacent ones have different polarities. Between the six permanent magnets 13 such as ferrite magnets and rare earth magnets, and between each permanent magnet 13, the outer diameter of the field part 1 is the permanent magnet 13.
Of six functional members 12 made of a temperature-sensitive magnetic material having a negative temperature coefficient of permeability, and a shaft 14 penetrating the center of the rotor core 11 in the axial direction. It consists of The field unit 1 faces an armature (not shown) having a winding wound around a stator core with a gap,
It rotates in synchronization with the rotating magnetic field created by the armature. In addition,
As the temperature-sensitive magnetic material, a temperature-sensitive magnetic material having a magnetic transformation point (Curie point) slightly higher than room temperature is used. Further, the cross-sectional area of the functional member 12 is changed according to the residual magnetic flux density characteristic of the permanent magnet 13, its temperature characteristic, or the location of the functional member 12. Further, the functional member 12 is the rotor core 1
As in the case of 1, thin plates may be laminated in the axial direction.
FIG. 2A is a graph showing a temperature-magnetic flux density relationship of a typical temperature-sensitive magnetic material used for the functional member 12. In this example, the temperature when a predetermined magnetic field is applied to a temperature-sensitive magnetic material of Ni-Cu-Fe named Thermalloy-
It is a magnetic flux density characteristic graph. As shown in this graph, this material has a negative temperature coefficient in which the magnetic flux density decreases with increasing temperature in the state where a certain magnetic field is applied. FIG. 2B is a graph of temperature-saturation magnetic flux density characteristics of a ferrite temperature-sensitive magnetic material named Thermolite (trade name), in which the change in permeability near the magnetic transition point is particularly remarkable. This material also has a negative temperature coefficient similar to Thermalloy. When applied to a linear motor, the permanent magnet 13 and the functional member 12 may be formed in a rectangular shape and arranged on a straight line at a predetermined pitch.

【0007】以下に、作用を説明する。界磁部1が室温
の場合は、機能性部材12が個々の永久磁石13間、即
ち永久磁石13における漏れ磁路に配置されているた
め、機能性部材12が室温において有する高い透磁率に
応じて永久磁石13の磁束(図示せず)の一部がこの機
能性部材12を通り、磁束の漏れを生じる。従って、機
能性部材12が無い場合に比べて永久磁石13の外周側
磁極面から出る界磁として働く主磁束はある程度低く抑
えられる。一方、電機子巻線のジュール損、コアの鉄
損、風損等の発熱や電動機の使用雰囲気により永久磁石
13の温度が上昇した場合は、永久磁石13の残留磁束
密度は負の温度係数を持っているので、この係数と上昇
温度の積に比例して永久磁石13表面から出る磁束が減
少する。ところが、永久磁石13の漏れ磁路に位置する
機能性部材12も永久磁石13と同様に温度が上昇す
る。すると機能性部材12の透磁率が低下するので永久
磁石13の漏れ磁束は減少し、その分主磁束が増加す
る。従って、温度上昇に伴う主磁束の減少と、漏れ磁束
の減少による主磁束の増加が等しくなるように感温磁性
材料の温度特性と大きさを決定しておけば、界磁部1の
界磁主磁束は一定に保たれる。
The operation will be described below. When the field portion 1 is at room temperature, the functional member 12 is arranged between the individual permanent magnets 13, that is, in the leakage magnetic path in the permanent magnet 13, so that the functional member 12 has a high magnetic permeability at room temperature. As a result, a part of the magnetic flux (not shown) of the permanent magnet 13 passes through the functional member 12 and causes leakage of the magnetic flux. Therefore, as compared with the case where the functional member 12 is not provided, the main magnetic flux acting as the field that emerges from the outer peripheral magnetic pole surface of the permanent magnet 13 can be suppressed to some extent low. On the other hand, when the temperature of the permanent magnet 13 rises due to heat generation such as Joule loss of the armature winding, iron loss of the core, wind loss, etc. and the atmosphere in which the motor is used, the residual magnetic flux density of the permanent magnet 13 has a negative temperature coefficient. Since it has, the magnetic flux emitted from the surface of the permanent magnet 13 decreases in proportion to the product of this coefficient and the temperature rise. However, the temperature of the functional member 12 located in the leakage magnetic path of the permanent magnet 13 also rises, like the permanent magnet 13. Then, since the magnetic permeability of the functional member 12 is reduced, the leakage magnetic flux of the permanent magnet 13 is reduced, and the main magnetic flux is increased accordingly. Therefore, if the temperature characteristics and the size of the temperature-sensitive magnetic material are determined so that the decrease of the main magnetic flux due to the temperature rise and the increase of the main magnetic flux due to the decrease of the leakage magnetic flux are equal, The main magnetic flux is kept constant.

【0008】図3は、本発明の第2の実施例を示す断面
図で、第1の実施例と同じタイプの回転子に応用したも
のである。ただし、この例は、回転形のみに適用でき
る。界磁部1の永久磁石13と機能性部材12の外表面
を、透磁率が正の応力係数を持つアモルファス磁歪材料
よりなる薄肉円管状の機能性部材15でタイトに包絡し
てある。界磁部1の回転で発生した遠心力により、機能
性部材15に円周方向の張力が作用する構造としてあ
る。なお、機能性部材15は電機子(図示せず)で発生
する高調波磁束の影響で機能性部材15の表面に発生す
る渦電流損が問題となる場合は、外側に絶縁被覆を施し
たフィラメントを巻き付けた構造としても良い。本発明
で用いるアモルファス磁歪材料は、外部磁界に応じて伸
縮するという性質(磁歪)を有しており一般にアクチュ
エータとして用いられるが、逆に外部から力を加えるこ
とで材料自体の磁気特性が変化するという性質も持つ。
図4は機能性部材15に用いる代表的な磁歪材料であ
る、比較的大きな磁歪特性を有する材料であるアモルフ
ァスリボンの応力−透磁率の関係を示すグラフである。
図4(a)は正の応力係数を持つ材料(アライド社製M
ETGLAS2605S−2、幅25mm×厚さ約20
μm)のデータ、図4(b)は負の応力係数を持つ材料
(同社製METGLAS2714A、同寸法)のデータ
である。両図から、張力の印加により、正の応力係数を
持つ材料では張力方向の透磁率が増大し、負の応力係数
を持つ材料では減少することがわかる。ここでは具体的
データを示さないが、磁歪材料に圧縮力が加えられた場
合は、張力の場合と逆の特性変化を示す。このような応
力に対する磁歪材料の透磁率の変化は、アモルファスリ
ボン以外の磁歪材料だけでなく高透磁率材料として扱わ
れるが比較的大きな磁歪特性を有する材料でも同様に現
れる。透磁率の変化は、印加される応力が引っ張りか圧
縮か、材料の応力係数が正か負かで増加するか減少する
かが決まっている。
FIG. 3 is a sectional view showing a second embodiment of the present invention, which is applied to a rotor of the same type as that of the first embodiment. However, this example can be applied only to the rotary type. The outer surfaces of the permanent magnet 13 and the functional member 12 of the field part 1 are tightly enveloped with a thin circular tubular functional member 15 made of an amorphous magnetostrictive material having a positive magnetic permeability and a positive stress coefficient. Due to the centrifugal force generated by the rotation of the field magnet unit 1, a circumferential tension acts on the functional member 15. When the eddy current loss generated on the surface of the functional member 15 is a problem due to the influence of the harmonic magnetic flux generated by the armature (not shown), the functional member 15 has a filament coated with an insulating coating on the outside. The structure may be wrapped around. The amorphous magnetostrictive material used in the present invention has a property that it expands and contracts in response to an external magnetic field (magnetostriction) and is generally used as an actuator. On the contrary, the magnetic characteristics of the material itself change when an external force is applied. It also has the property of
FIG. 4 is a graph showing a stress-permeability relationship of an amorphous ribbon, which is a typical magnetostrictive material used for the functional member 15, which is a material having a relatively large magnetostrictive characteristic.
FIG. 4A shows a material having a positive stress coefficient (M manufactured by Allied Co., Ltd.).
ETGLAS2605S-2, width 25mm x thickness about 20
μm) data, and FIG. 4B is data of a material having a negative stress coefficient (METGLAS2714A manufactured by the same company, the same size). From both figures, it can be seen that the application of tension increases the magnetic permeability in the tensile direction in the material having a positive stress coefficient and decreases it in the material having a negative stress coefficient. Although no specific data is shown here, when a compressive force is applied to the magnetostrictive material, a characteristic change opposite to that in the case of tension is shown. The change in the magnetic permeability of the magnetostrictive material with respect to such a stress appears not only in the magnetostrictive material other than the amorphous ribbon but also in the material having a relatively large magnetostrictive property, although it is treated as a high magnetic permeability material. The change in magnetic permeability is determined by whether the applied stress is tensile or compressive, and whether the stress coefficient of the material is positive or negative, increases or decreases.

【0009】以下に作用を説明する。図5は、本発明の
第2の実施例の動作原理を示す断面図で、図3の1磁極
ピッチ分を抜き出し、永久磁石13で作られた磁束の流
れを模式的に表している。界磁部1が停止或いは低速で
回転している時は、遠心力が小さく、アモルファス磁歪
材料よりなる機能性部材15に加えられる引っ張り応力
も小さいため、機能性部材15の半径方向の透磁率は低
いままである。従って、永久磁石13a→回転子コア1
1→永久磁石13bと巡る磁束φが機能性部材15で短
絡される量は少なく、磁束φの大部分は、図5(a)に
示すように、界磁部1の表面から半径方向に出ていく。
一方、界磁部1が高速で回転している時は、図5(b)
に示すように、機能性部材15に作用する引っ張り応力
も大きくなるため、機能性部材15の透磁率が高くな
り、永久磁石13a→回転子コア11→永久磁石13b
→機能性部材15のように巡回する磁束φの量が増え、
界磁部1表面から出る磁束φの量が減少する。このよう
に、回転数が高くなることにより界磁部1から出る磁束
の量が減少し、界磁が弱まったことと等価となる。
The operation will be described below. FIG. 5 is a cross-sectional view showing the operating principle of the second embodiment of the present invention, and schematically shows the flow of magnetic flux produced by the permanent magnet 13 by extracting one magnetic pole pitch in FIG. When the field unit 1 is stopped or rotating at a low speed, the centrifugal force is small, and the tensile stress applied to the functional member 15 made of an amorphous magnetostrictive material is also small. Therefore, the magnetic permeability of the functional member 15 in the radial direction is small. It remains low. Therefore, the permanent magnet 13a → the rotor core 1
1 → The amount of magnetic flux φ around the permanent magnet 13b is short-circuited by the functional member 15, and most of the magnetic flux φ is emitted from the surface of the field magnet portion 1 in the radial direction as shown in FIG. To go.
On the other hand, when the field part 1 is rotating at a high speed, FIG.
As shown in FIG. 5, the tensile stress acting on the functional member 15 also increases, so that the magnetic permeability of the functional member 15 increases and the permanent magnet 13a → rotor core 11 → permanent magnet 13b.
→ The amount of magnetic flux φ circulating like the functional member 15 increases,
The amount of the magnetic flux φ emitted from the surface of the field unit 1 is reduced. In this way, as the number of rotations increases, the amount of magnetic flux emitted from the field magnet portion 1 decreases, which is equivalent to the weakening of the field magnet.

【0010】図6は、本発明の第3の実施例を示す断面
図で、コア内に永久磁石を埋め込む形の回転電機の界磁
への適用例である。界磁部1は、円板状のケイ素鋼板の
外径側に等角ピッチで軸心から放射方向に設けた極中心
線Pに直交させた左右対称の矩形の永久磁石挿入穴21
と、永久磁石挿入穴21間に、機械的に充分な強度と永
久磁石13の少ない漏れ磁束を与える幅の側つなぎ部1
1dと外つなぎ部11cを切り残した略三角形の漏れ磁
束防止穴22と、中心にシャフト14を嵌合する穴を打
ち抜いた回転子コア11を軸方向に積層し、永久磁石挿
入穴21内に挿入された半径方向に着磁され、隣り合う
もの同士が異極となるよう配置された6つの永久磁石1
3と、漏れ磁束防止穴22の中に挿入した透磁率が負の
温度係数を有する感温磁性材料よりなる機能性部材12
とで構成してある。機能性部材12の働きは第1およ第
2の実施例と同様であるが、永久磁石13が内装されて
いるため、遠心力に対し剛性が高く高速回転に適する。
なお、回転子コア11全体を負の磁歪定数を有するアモ
ルファス磁歪材料にしてもよい。この場合、界磁部1の
高速回転により回転子コア11全体に張力が作用し、回
転子コア11全体の透磁率が下がることにより界磁を弱
める。さらに、永久磁石挿入穴21と永久磁石13は矩
形に限らず、例えば、扇形でもよい。
FIG. 6 is a sectional view showing a third embodiment of the present invention, which is an example of application to a field of a rotary electric machine in which a permanent magnet is embedded in a core. The field magnet portion 1 is a symmetrical permanent magnet insertion hole 21 of a rectangular shape which is orthogonal to a pole center line P which is provided on the outer diameter side of a disk-shaped silicon steel plate at an equiangular pitch in the radial direction from the axis.
Between the permanent magnet insertion holes 21, a side connecting portion 1 having a width that provides mechanically sufficient strength and a small leakage flux of the permanent magnet 13.
1d and the outer connecting portion 11c are left uncut, and a substantially triangular leakage flux prevention hole 22 and a rotor core 11 punched with a hole for fitting the shaft 14 in the center are laminated in the axial direction, and the permanent magnet insertion hole 21 is provided. The six permanent magnets 1 that are magnetized in the radial direction and are arranged so that adjacent magnets have different polarities
3 and a functional member 12 made of a temperature-sensitive magnetic material having a negative temperature coefficient of magnetic permeability inserted into the leakage flux prevention hole 22.
It consists of The function member 12 functions similarly to the first and second embodiments, but since the permanent magnet 13 is incorporated therein, it has high rigidity against centrifugal force and is suitable for high speed rotation.
The entire rotor core 11 may be made of an amorphous magnetostrictive material having a negative magnetostriction constant. In this case, tension is applied to the entire rotor core 11 due to the high-speed rotation of the field magnet portion 1, and the magnetic permeability of the entire rotor core 11 is lowered to weaken the field magnet. Furthermore, the permanent magnet insertion hole 21 and the permanent magnet 13 are not limited to the rectangular shape, and may be fan-shaped, for example.

【0011】図7は、本発明の第4の実施例を示す断面
図で、第1の実施例の永久磁石13と回転子コア11間
に絶縁層3を介し、磁性半導体材料よりなる機能性部材
19を間挿してある。この機能性部材19の電極にリー
ド線を介し、電圧を印加し、常磁性状態から強磁性状態
に転移することにより、永久磁石13の作る磁束を制御
する。ここで、磁性半導体材料は、例えば、特開平7−
95754号公報に開示されているように、電極に電圧
を印加することにより、マグネティックポーラロンの存
在および非存在により常磁性状態から強磁性状態に転移
するものである。
FIG. 7 is a cross-sectional view showing a fourth embodiment of the present invention, which is made of a magnetic semiconductor material with an insulating layer 3 interposed between the permanent magnet 13 and the rotor core 11 of the first embodiment. The member 19 is inserted. A voltage is applied to the electrode of the functional member 19 via a lead wire, and the paramagnetic state is changed to the ferromagnetic state, whereby the magnetic flux generated by the permanent magnet 13 is controlled. Here, the magnetic semiconductor material is, for example, as described in JP-A-7-
As disclosed in Japanese Patent No. 95754, when a voltage is applied to the electrodes, the paramagnetic state is changed to the ferromagnetic state by the presence and absence of the magnetic polaron.

【0012】図8は、本発明の第5の実施例を示す断面
図で、第3の実施例の永久磁石13の厚さを永久磁石挿
入穴21の高さより薄くし、永久磁石挿入穴21と永久
磁石13の半径方向外側に間隙が生じるようにしてあ
る。この間隙に、磁性半導体材料よりなる機能性部材1
9を間挿してある。なお、漏れ磁束防止用穴22内に感
温磁性材料よりなる機能性部材12を挿入してもよい。
FIG. 8 is a cross-sectional view showing a fifth embodiment of the present invention. The thickness of the permanent magnet 13 of the third embodiment is made thinner than the height of the permanent magnet insertion hole 21, and the permanent magnet insertion hole 21 is formed. A gap is formed outside the permanent magnet 13 in the radial direction. A functional member 1 made of a magnetic semiconductor material is provided in this gap.
9 is inserted. The functional member 12 made of a temperature-sensitive magnetic material may be inserted into the leakage flux preventing hole 22.

【0013】図9は、本発明の第6の実施例を示す断面
図で、第3の実施例の漏れ磁束防止穴22の中に挿入し
た透磁率が負の温度係数を有する感温磁性材料よりなる
機能性部材12に換えて、漏れ磁束防止穴22の中に、
相似形の磁性半導体材料よりなる機能性部材19を挿入
してある。第4から6の実施例においては、磁性半導体
材料の電極に外部から電界を印加することにより透磁率
を制御できるので、負荷状況に応じ任意の回転数で弱め
界磁をできる。
FIG. 9 is a cross-sectional view showing a sixth embodiment of the present invention. The temperature-sensitive magnetic material having a negative temperature coefficient of permeability inserted into the leakage flux prevention hole 22 of the third embodiment. In place of the functional member 12 made of
A functional member 19 made of a similar magnetic semiconductor material is inserted. In the fourth to sixth embodiments, the magnetic permeability can be controlled by externally applying an electric field to the electrode of the magnetic semiconductor material, so that the field weakening can be performed at an arbitrary rotation speed according to the load condition.

【0014】図10は、本発明の第7の実施例を示す側
面図で、第1ないし第6の実施例をリニアモータに適用
したものである。強磁性体よりなる平板状のコア11A
の上面に、矩形の永久磁石13と機能性部材12または
19を交互に所定のピッチで直列に配置してある。
FIG. 10 is a side view showing a seventh embodiment of the present invention, in which the first to sixth embodiments are applied to a linear motor. A tabular core 11A made of a ferromagnetic material
The rectangular permanent magnets 13 and the functional members 12 or 19 are alternately arranged in series at a predetermined pitch on the upper surface of the.

【0015】図11は、本発明の第8の実施例を示す側
面図で、第3の実施例の永久磁石13の厚さを永久磁石
挿入穴21の高さより薄くし、永久磁石挿入穴21と永
久磁石13の半径方向外側に間隙が生じるようにしてあ
る。この間隙に、正の応力係数を有するアモルファス磁
歪材料よりなる薄板状の機能性部材18を間挿してあ
る。界磁部1の回転で発生した遠心力により、機能性部
材18に半径方向の圧縮力が作用する構造となってい
る。この実施例の場合、界磁部1の高速回転により機能
性部材18の透磁率が減少し、永久磁石13のパーミア
ンスが低下するために、主界磁が弱まる。なお、漏れ磁
束防止穴22に第3の実施例と同様に、感温磁性材料よ
りなる機能性部材12を挿入してもよい。
FIG. 11 is a side view showing an eighth embodiment of the present invention, in which the thickness of the permanent magnet 13 of the third embodiment is made thinner than the height of the permanent magnet insertion hole 21, and the permanent magnet insertion hole 21 is formed. A gap is formed outside the permanent magnet 13 in the radial direction. A thin plate-shaped functional member 18 made of an amorphous magnetostrictive material having a positive stress coefficient is inserted in the gap. Due to the centrifugal force generated by the rotation of the field magnet unit 1, a compressive force in the radial direction acts on the functional member 18. In the case of this embodiment, the magnetic permeability of the functional member 18 is reduced by the high speed rotation of the field magnet portion 1 and the permeance of the permanent magnet 13 is lowered, so that the main field is weakened. Note that the functional member 12 made of a temperature-sensitive magnetic material may be inserted into the leakage flux prevention hole 22 as in the third embodiment.

【0016】図12は、本発明の第9の実施例を示す断
面図で、第3の実施例とほぼ同じタイプの回転子への応
用例である。第3の実施例の永久磁石挿入穴21を周方
向に連通させて、回転子コア11を外側の回転子コア1
1aと内側の回転子コア11bに分離し、外側の回転子
コア11aと内側の回転子コア11bの角部にアリ溝を
設ける。外側の回転子コア11aの内側に内側の回転子
コア11bを配置し、これらの間に生じた空間に、6個
の永久磁石13を挿入し、おのおのの永久磁石13、外
側の回転子コア11aと内側の回転子コア11bをアリ
溝を介し、正の応力係数を持つアモルファス磁歪材料よ
りなる断面が鼓形の機能性部材16で連結して固定し、
界磁部1を構成してある。外側の回転子コア11aの機
能性部材16の半径方向外側に位置する外つなぎ部11
dの高さは、機械的に充分な強度を有し、且つ隣り合う
永久磁石13同士の漏れ磁束が少なくなるようにしてあ
る。界磁部1の回転で発生した遠心力により、機能性部
材16に半径方向の張力が作用する構造となっている。
機能性部材16が正の応力係数を有するため、張力が作
用すると透磁率が増大する。以下に、図13をもとに動
作を説明する。図13は、本発明の第9の実施例の動作
原理を示す断面図で、図12の1磁極ピッチ分を抜き出
し、永久磁石で作られた磁束の流れを模式的に表してい
る。界磁部1が停止或いは低速で回転している時は、遠
心力が小さく、機能性部材16に加えられる張力も小さ
いため、機能性部材16の張力方向の透磁率は低いまま
である。従って、磁束φは機能性部材16を避けるよう
に流れ、図13(a)に示すように、その大部分は界磁
部1の表面から半径方向に出ていく。一方、界磁部1が
高速で回転している時は、機能性部材16にかかる引っ
張り応力も大きくなるため、機能性部材16の透磁率が
高くなり、永久磁石13の端部で漏れる磁束の量、及び
隣り合う永久磁石14同士の漏れ磁束が増え、図13
(b)に示すように、界磁部1表面から出る磁束φの量
が減少する。このように、回転数が高くなることにより
界磁部1から出る磁束の量が減少し、界磁が弱まったこ
とと等価となる。界磁部1の回転速度が落ちると、張力
の減少に伴って機能性部材16の透磁率が低下し、界磁
部1から出る磁束φの量が再び多くなる。
FIG. 12 is a sectional view showing a ninth embodiment of the present invention, which is an application example to a rotor of almost the same type as that of the third embodiment. The permanent magnet insertion holes 21 of the third embodiment are made to communicate with each other in the circumferential direction so that the rotor core 11 is located outside the rotor core 1.
1a and the inner rotor core 11b are separated, and dovetail grooves are provided at the corners of the outer rotor core 11a and the inner rotor core 11b. The inner rotor core 11b is arranged inside the outer rotor core 11a, and the six permanent magnets 13 are inserted into the space formed between them, so that each of the permanent magnets 13 and the outer rotor core 11a And the inner rotor core 11b are connected and fixed via a dovetail groove with a functional member 16 having a drum-shaped cross section made of an amorphous magnetostrictive material having a positive stress coefficient,
The field unit 1 is configured. The outer connecting portion 11 located on the outer side in the radial direction of the functional member 16 of the outer rotor core 11a.
The height of d is such that it has mechanically sufficient strength and the leakage flux between adjacent permanent magnets 13 is reduced. Due to the centrifugal force generated by the rotation of the field magnet unit 1, tension is applied to the functional member 16 in the radial direction.
Since the functional member 16 has a positive stress coefficient, the magnetic permeability increases when tension acts. The operation will be described below with reference to FIG. FIG. 13 is a cross-sectional view showing the operating principle of the ninth embodiment of the present invention, and schematically shows the flow of magnetic flux produced by a permanent magnet by extracting one magnetic pole pitch shown in FIG. When the field unit 1 is stopped or rotating at a low speed, the centrifugal force is small and the tension applied to the functional member 16 is small, so that the magnetic permeability in the tension direction of the functional member 16 remains low. Therefore, the magnetic flux φ flows so as to avoid the functional member 16, and most of it exits in the radial direction from the surface of the field magnet portion 1 as shown in FIG. On the other hand, when the field portion 1 is rotating at a high speed, the tensile stress applied to the functional member 16 is also increased, so that the magnetic permeability of the functional member 16 is increased and the magnetic flux leaking at the end of the permanent magnet 13 is increased. 13 and the amount of leakage magnetic flux between the adjacent permanent magnets 14 increases.
As shown in (b), the amount of the magnetic flux φ emitted from the surface of the field unit 1 decreases. In this way, as the number of revolutions increases, the amount of magnetic flux emitted from the field magnet portion 1 decreases, which is equivalent to weakening the field magnet. When the rotational speed of the field part 1 decreases, the magnetic permeability of the functional member 16 decreases as the tension decreases, and the amount of the magnetic flux φ emitted from the field part 1 increases again.

【0017】図14は、本発明の第10の実施例を示す
断面図で、第3の実施例と同様なタイプの回転子への応
用例である。第3の実施例と異なるところは、永久磁石
挿入穴21の中央部の上下にアリ溝を設け、永久磁石1
3を2つの永久磁石13a、13bに分割し、永久磁石
13a、13b間に、上下端にアリ部を有する正の応力
係数を有する鼓形のアモルファス磁歪材料よりなる機能
性部材17を挿入している点である。作用は、第9の実
施例と同様に、界磁部1の回転で発生した遠心力によ
り、機能性部材17に半径方向の張力が作用する構造と
なっている。この実施例の場合、肉の厚い外側コア11
aの中央部にアリ溝を設けるので、第9の実施例よりも
遠心力に対する界磁部1の機械強度が向上する。なお、
第9および第10の実施例の鼓形の機能性部材16と1
7は、棒状のものを回転子コア11及び永久磁石13の
隙間に挿入しても良いが、回転子コア11と同様に薄板
形状のものを積層した構造としても良い。第8ないし第
10の実施例は回転形のみに適用できる。
FIG. 14 is a sectional view showing a tenth embodiment of the present invention, which is an application example to a rotor of the same type as that of the third embodiment. The difference from the third embodiment is that dovetail grooves are provided above and below the central portion of the permanent magnet insertion hole 21, and the permanent magnet 1
3 is divided into two permanent magnets 13a and 13b, and a functional member 17 made of an amorphous magnetostrictive material having a positive stress coefficient having a dovetail portion at the upper and lower ends is inserted between the permanent magnets 13a and 13b. That is the point. Similar to the ninth embodiment, the action is such that radial force acts on the functional member 17 by the centrifugal force generated by the rotation of the field unit 1. In this embodiment, the thick outer core 11
Since the dovetail groove is provided in the central portion of a, the mechanical strength of the field magnet portion 1 against centrifugal force is improved as compared with the ninth embodiment. In addition,
The hourglass-shaped functional members 16 and 1 of the ninth and tenth embodiments.
The rod 7 may be inserted into the gap between the rotor core 11 and the permanent magnet 13 but may have a structure in which thin plate-like members are laminated like the rotor core 11. The eighth to tenth embodiments can be applied only to the rotary type.

【0018】[0018]

【発明の効果】上記の構成により、下記の効果がある。 (1)界磁部の温度や応力等の環境変化を利用してトル
ク定数や推力定数を制御し、環境変化に伴う出力特性の
変化を制御するので、特別な制御や電力供給を必要とせ
ずに弱め界磁を行うことができ、広い定出力範囲を得る
に適した高効率の永久磁石形電動機を実現することがで
きる。 (2)界磁永久磁石に外部磁界を印加する必要がないの
で、永久磁石の不可逆減磁の恐れが少ない。 (3)第4から6の実施例においては、負荷状況に応じ
た任意の回転数で弱め界磁ができるので、制御の自由度
が増す。
The above-mentioned structure has the following effects. (1) Since the torque constant and the thrust constant are controlled by utilizing the environmental change such as the temperature and stress of the field part, and the change of the output characteristic due to the environmental change is controlled, no special control or power supply is required. It is possible to realize a high-efficiency permanent magnet type electric motor which is suitable for obtaining a wide constant output range. (2) Since it is not necessary to apply an external magnetic field to the field permanent magnet, there is little risk of irreversible demagnetization of the permanent magnet. (3) In the fourth to sixth embodiments, the field weakening can be performed at any rotation speed according to the load condition, so that the degree of freedom in control is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】(a)感温磁性材料の温度−磁束密度の関係を
示すグラフ (b)感温磁性材料の温度−飽和磁束密度の関係を示す
グラフ
2A is a graph showing a temperature-magnetic flux density relationship of a temperature-sensitive magnetic material, and FIG. 2B is a graph showing a temperature-saturation magnetic flux density relationship of a temperature-sensitive magnetic material.

【図3】本発明の第2の実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】(a)正の応力係数を有する磁歪材料の引っ張
り応力−透磁率の関係を示すグラフ (b)負の応力係数を有する磁歪材料の引っ張り応力−
透磁率の関係を示すグラフ
FIG. 4A is a graph showing a relationship between tensile stress of a magnetostrictive material having a positive stress coefficient and magnetic permeability; and FIG. 4B is a tensile stress of a magnetostrictive material having a negative stress coefficient.
Graph showing the relationship of magnetic permeability

【図5】(a)、(b)本発明の第2の実施例の動作原
理を示す部分断面図
5 (a) and 5 (b) are partial sectional views showing the operating principle of the second embodiment of the present invention.

【図6】本発明の第3の実施例を示す断面図FIG. 6 is a sectional view showing a third embodiment of the present invention.

【図7】本発明の第4の実施例を示す断面図FIG. 7 is a sectional view showing a fourth embodiment of the present invention.

【図8】本発明の第5の実施例を示す断面図FIG. 8 is a sectional view showing a fifth embodiment of the present invention.

【図9】本発明の第6の実施例を示す断面図FIG. 9 is a sectional view showing a sixth embodiment of the present invention.

【図10】本発明の第7の実施例を示す断面図FIG. 10 is a sectional view showing a seventh embodiment of the present invention.

【図11】本発明の第8の実施例を示す側面図FIG. 11 is a side view showing an eighth embodiment of the present invention.

【図12】本発明の第9の実施例を示す断面図FIG. 12 is a sectional view showing a ninth embodiment of the present invention.

【図13】(a)、(b)本発明の第9の実施例の動作
原理を示す部分断面図
13A and 13B are partial cross-sectional views showing the operating principle of the ninth embodiment of the present invention.

【図14】本発明の第10の実施例を示す断面図FIG. 14 is a sectional view showing a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 回転子 11 回転子コア 11a 外側の回転子コア 11b 内側の回転子コア 11c 側つなぎ部 11d 外つなぎ部 11A コア 12、15、16、17、18、19 機能性部材 13、13a、13b 永久磁石 14 シャフト 21 永久磁石挿入穴 22 漏れ磁束防止穴 3 絶縁層 1 rotor 11 rotor core 11a outer rotor core 11b inner rotor core 11c side connecting portion 11d outer connecting portion 11A core 12, 15, 16, 17, 18, 19 functional member 13, 13a, 13b permanent magnet 14 Shaft 21 Permanent magnet insertion hole 22 Leakage magnetic flux prevention hole 3 Insulating layer

フロントページの続き (72)発明者 山下 慎次 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 前村 明彦 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 佐々木 巖 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内Front page continued (72) Inventor Shinji Yamashita 2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu, Fukuoka Yasukawa Electric Co., Ltd. (72) Inventor Akihiko Maemura 2-1, Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Yasukawa Denki (72) Inventor Iwao Sasaki No. 2 Kurosaki Shiroishi, Hachimannishi-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Denki Co., Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】移動磁界を生じるための巻線を備えた電機
子と、空隙を介し対向させた、磁性体板を積層したコア
に隣り合うもの同士が異極になるように所定の極ピッチ
で配置した複数の永久磁石を備えた永久磁石形電動機の
界磁において、 前記コアが、透磁率が変化する機能性部材を備えたこと
を特徴とする永久磁石形電動機の界磁。
1. A predetermined pole pitch such that an armature provided with a winding for generating a moving magnetic field and a core adjacent to a core laminated with magnetic plates and facing each other through a gap have different polarities. A field of a permanent magnet type electric motor comprising a plurality of permanent magnets arranged in 1., wherein the core has a functional member whose permeability changes.
【請求項2】前記コアを、円板を積層した回転子コアと
し、この回転子コアの表面に前記永久磁石を所定の角ピ
ッチで固定し、おののの前記永久磁石間に前記機能性部
材を間挿した請求項1に記載の永久磁石形電動機の界
磁。
2. The rotor is a rotor core in which discs are laminated, the permanent magnets are fixed to the surface of the rotor core at a predetermined angular pitch, and the functionality is provided between the permanent magnets of each rotor. The field of the permanent magnet type electric motor according to claim 1, wherein members are inserted.
【請求項3】前記機能性部材が負の温度係数を有する感
温磁性材料であり、前記永久磁石と前記機能性部材の外
表面を薄肉円管状の正の応力係数を有する磁歪材料より
なる前記機能性部材で包絡した請求項2に記載の永久磁
石形電動機の界磁。
3. The functional member is a temperature-sensitive magnetic material having a negative temperature coefficient, and the outer surface of the permanent magnet and the functional member is made of a thin-walled tubular magnetostrictive material having a positive stress coefficient. The field of the permanent magnet type electric motor according to claim 2, which is enveloped by a functional member.
【請求項4】前記機能性部材が磁性半導体材料であり、
前記機能性部材を前記永久磁石と前記回転子コア間に間
挿した請求項2に記載の永久磁石形電動機の界磁。
4. The functional member is a magnetic semiconductor material,
The field of a permanent magnet type electric motor according to claim 2, wherein the functional member is interposed between the permanent magnet and the rotor core.
【請求項5】前記コアを、外径側に等極ピッチ角で放射
状の極中心線に直交差させて設けた永久磁石挿入穴と、
前記永久磁石挿入穴間に設けた漏れ磁束防止用穴を備え
た円板を積層した回転子コアとし、前記永久磁石挿入穴
内に前記永久磁石を収納した請求項1に記載の永久磁石
形電動機の界磁。
5. A permanent magnet insertion hole in which the core is provided on the outer diameter side at an equal pole pitch angle so as to be orthogonal to a radial pole center line,
The permanent magnet type electric motor according to claim 1, wherein a rotor core is formed by laminating discs having holes for preventing leakage flux provided between the permanent magnet insertion holes, and the permanent magnets are housed in the permanent magnet insertion holes. Field.
【請求項6】前記漏れ磁束防止用穴内に、前記機能性部
材を収納した請求項5に記載の永久磁石形電動機の界
磁。
6. The field magnet for a permanent magnet type electric motor according to claim 5, wherein the functional member is housed in the leakage flux preventing hole.
【請求項7】前記機能性部材が負の温度係数を有する感
温磁性材料である請求項6に記載の永久磁石形電動機の
界磁。
7. The field of a permanent magnet type electric motor according to claim 6, wherein the functional member is a temperature-sensitive magnetic material having a negative temperature coefficient.
【請求項8】前記機能性部材が磁性半導体材料である請
求項6に記載の永久磁石形電動機の界磁。
8. The magnetic field of a permanent magnet type electric motor according to claim 6, wherein the functional member is a magnetic semiconductor material.
【請求項9】前記永久磁石の厚さを前記永久磁石挿入穴
の高さより薄くし、前記永久磁石挿入穴の外径側に前記
永久磁石を配置し、前記永久磁石挿入穴と前記永久磁石
の間に生じる間隙に前記機能性部材を挿入した請求項5
に記載の永久磁石形電動機の界磁。
9. The thickness of the permanent magnet is made thinner than the height of the permanent magnet insertion hole, the permanent magnet is arranged on the outer diameter side of the permanent magnet insertion hole, and the permanent magnet insertion hole and the permanent magnet are separated from each other. 6. The functional member is inserted in a gap generated between them.
The field of the permanent magnet type electric motor described in.
【請求項10】前記機能性部材が、磁性半導体材料であ
る請求項9に記載の永久磁石形電動機の界磁。
10. The field magnet for a permanent magnet type electric motor according to claim 9, wherein the functional member is a magnetic semiconductor material.
【請求項11】前記機能性部材が、負の応力係数を有す
る磁歪材料である請求項9に記載の永久磁石形電動機の
界磁。
11. The field of a permanent magnet type electric motor according to claim 9, wherein the functional member is a magnetostrictive material having a negative stress coefficient.
【請求項12】前記永久磁石挿入穴を連通させて、前記
回転子コアを内外に分割し、前記漏れ磁束防止用穴に相
当する部分で、正の応力係数を有する磁歪材料よりなる
鼓形をした前記機能性部材により前記内外コアと前記永
久磁石を固定した請求項5に記載の永久磁石形電動機の
界磁。
12. A drum-shaped drum made of a magnetostrictive material having a positive stress coefficient at a portion corresponding to the leakage magnetic flux preventing hole by connecting the permanent magnet insertion hole to each other to divide the rotor core into the inside and the outside. The field of a permanent magnet type electric motor according to claim 5, wherein the inner and outer cores and the permanent magnet are fixed by the functional member.
【請求項13】前記永久磁石を2分割し、この永久磁石
間に、正の応力係数を有する磁歪材料よりなる鼓形をし
た前記機能性部材を間挿した請求項5に記載の永久磁石
形電動機の界磁。
13. The permanent magnet type according to claim 5, wherein the permanent magnet is divided into two, and the hourglass-shaped functional member made of a magnetostrictive material having a positive stress coefficient is interposed between the permanent magnets. Electric motor field.
【請求項14】前記回転子コア全体を、負の応力係数を
有する磁歪材料よりなる前記機能性部材とした請求項5
に記載の永久磁石形電動機の界磁。
14. The entire rotor core is the functional member made of a magnetostrictive material having a negative stress coefficient.
The field of the permanent magnet type electric motor described in.
【請求項15】前記コアを平板状のコアとし、前記永久
磁石と前記機能性部材を矩形とし、前記平板状のコア上
に前記永久磁石と前記機能性部材を所定ピッチで直線上
に配置しリニア形にした請求項1に記載の永久磁石形電
動機の界磁。
15. The core is a flat plate-shaped core, the permanent magnet and the functional member are rectangular, and the permanent magnet and the functional member are arranged on a straight line at a predetermined pitch on the flat plate-shaped core. The field of the permanent magnet type electric motor according to claim 1, which is a linear type.
【請求項16】前記機能性部材が、負の温度係数を有す
る感温磁性材料である請求項15に記載の永久磁石形電
動機の界磁。
16. The magnetic field of a permanent magnet type electric motor according to claim 15, wherein the functional member is a temperature-sensitive magnetic material having a negative temperature coefficient.
【請求項17】前記機能性部材が、磁性半導体材料であ
る請求項15に記載の永久磁石形電動機の界磁。
17. The magnetic field of a permanent magnet type electric motor according to claim 15, wherein the functional member is a magnetic semiconductor material.
JP09039896A 1995-11-17 1996-03-19 Field of permanent magnet motor Expired - Fee Related JP3722166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09039896A JP3722166B2 (en) 1995-11-17 1996-03-19 Field of permanent magnet motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-323783 1995-11-17
JP32378395 1995-11-17
JP09039896A JP3722166B2 (en) 1995-11-17 1996-03-19 Field of permanent magnet motor

Publications (2)

Publication Number Publication Date
JPH09200985A true JPH09200985A (en) 1997-07-31
JP3722166B2 JP3722166B2 (en) 2005-11-30

Family

ID=26431880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09039896A Expired - Fee Related JP3722166B2 (en) 1995-11-17 1996-03-19 Field of permanent magnet motor

Country Status (1)

Country Link
JP (1) JP3722166B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158417A (en) * 1999-03-01 2000-12-12 Visteon Global Technologies, Inc. Throttle body accomodation of either an idle air control valve or a motorized throttle control
WO2002078154A1 (en) * 2001-03-24 2002-10-03 Lg Electronics Inc. Mover assembly of reciprocating motor and fabrication method thereof
WO2003077405A1 (en) * 2002-03-11 2003-09-18 Nihon Riken Co., Ltd. Electric motor having rotor capable of confining magnetic flux
JP2006333544A (en) * 2005-05-23 2006-12-07 Daikin Ind Ltd Rotor, motor, compressor, blower, and air conditioner
JP2007174805A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Magnetic adjuster rotary machine
JP2010154755A (en) * 2005-03-09 2010-07-08 Nissan Motor Co Ltd Motor
WO2012102536A2 (en) * 2011-01-25 2012-08-02 주식회사 아앤시티 Gyroscope
JP2012213266A (en) * 2011-03-31 2012-11-01 Daikin Ind Ltd Rotary electric machine
JP2012228077A (en) * 2011-04-20 2012-11-15 Fuji Electric Co Ltd Permanent magnet type rotary electrical machine
JP2013126318A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Embedded magnet type rotor and embedded magnet type permanent magnet rotary electric machine using the same
JP2015091139A (en) * 2013-11-04 2015-05-11 株式会社ジェイテクト Rotor for dynamo-electric machine and manufacturing method therefor
JP2017028806A (en) * 2015-07-17 2017-02-02 日産自動車株式会社 Magnet temperature estimation system, motor, and magnet temperature estimation method
JP2019140818A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 motor
JP2019140820A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 motor
JP2021097490A (en) * 2019-12-17 2021-06-24 本田技研工業株式会社 Rotor and rotary electric machine
WO2023171488A1 (en) * 2022-03-09 2023-09-14 ニデック株式会社 Rotor and rotating electric machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158417A (en) * 1999-03-01 2000-12-12 Visteon Global Technologies, Inc. Throttle body accomodation of either an idle air control valve or a motorized throttle control
WO2002078154A1 (en) * 2001-03-24 2002-10-03 Lg Electronics Inc. Mover assembly of reciprocating motor and fabrication method thereof
US6920682B2 (en) 2001-03-24 2005-07-26 Lg Electronics Inc. Mover assembly of reciprocating motor
US8049374B2 (en) 2001-03-24 2011-11-01 Lg Electronics Inc. Mover assembly of reciprocating motor
WO2003077405A1 (en) * 2002-03-11 2003-09-18 Nihon Riken Co., Ltd. Electric motor having rotor capable of confining magnetic flux
JP2010154755A (en) * 2005-03-09 2010-07-08 Nissan Motor Co Ltd Motor
JP2006333544A (en) * 2005-05-23 2006-12-07 Daikin Ind Ltd Rotor, motor, compressor, blower, and air conditioner
JP2007174805A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Magnetic adjuster rotary machine
US7876012B2 (en) 2005-12-22 2011-01-25 Hitachi, Ltd. Dynamo electric machine with an alloy member
WO2012102536A3 (en) * 2011-01-25 2012-09-20 주식회사 아앤시티 Gyroscope
WO2012102536A2 (en) * 2011-01-25 2012-08-02 주식회사 아앤시티 Gyroscope
KR101245196B1 (en) * 2011-01-25 2013-03-19 주식회사 아앤시티 Gyroscope
US9612116B2 (en) 2011-01-25 2017-04-04 Inct Co., Ltd. Gyroscope with encased annular rotary core
JP2012213266A (en) * 2011-03-31 2012-11-01 Daikin Ind Ltd Rotary electric machine
JP2012228077A (en) * 2011-04-20 2012-11-15 Fuji Electric Co Ltd Permanent magnet type rotary electrical machine
JP2013126318A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Embedded magnet type rotor and embedded magnet type permanent magnet rotary electric machine using the same
JP2015091139A (en) * 2013-11-04 2015-05-11 株式会社ジェイテクト Rotor for dynamo-electric machine and manufacturing method therefor
JP2017028806A (en) * 2015-07-17 2017-02-02 日産自動車株式会社 Magnet temperature estimation system, motor, and magnet temperature estimation method
JP2019140818A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 motor
JP2019140820A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 motor
JP2021097490A (en) * 2019-12-17 2021-06-24 本田技研工業株式会社 Rotor and rotary electric machine
WO2023171488A1 (en) * 2022-03-09 2023-09-14 ニデック株式会社 Rotor and rotating electric machine

Also Published As

Publication number Publication date
JP3722166B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3722166B2 (en) Field of permanent magnet motor
JP3308828B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
CA1178636A (en) Brushless disc-type dc motor or generator
EP1414132B1 (en) Electric motor, method of fabricating the same, and hermetic compressor comprising the same
KR100387554B1 (en) Reluctance type rotating machine with permanent magnets
US6340857B2 (en) Motor having a rotor with interior split-permanent-magnet
KR200210795Y1 (en) Motor for Reclamated Eternatiy Magnet
CA1213636A (en) Limited angle torque motor with magnetic centering and stops
WO2008023413A1 (en) Permanent magnetic type electric motor
US5059884A (en) Variable reluctance motor providing holding torque
JP2008289300A (en) Permanent-magnet rotary electric machine
JPH10322948A (en) Permanent magnet buried type of rotor
JP2003088071A (en) Reluctance type electric rotating machine
US4584495A (en) Performance step motor
WO1983000956A1 (en) Synchronous motor
US5428257A (en) Single-phase reluctance motor adapted to start in a desired direction of rotation
CN117081282B (en) Parallel magnetic circuit hybrid excitation type disc type transverse flux motor
JP5750987B2 (en) Permanent magnet rotating electric machine
JPH10108437A (en) Switched reluctance motor
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
JP2006506034A (en) High frequency motor or generator
JPH09103055A (en) Switched reluctance motor
JPH11308792A (en) Permanent magnet type reluctance rotating machine
JP3038796B2 (en) Brushless motor
JPH11252835A (en) Rotor of permanent magnet dynamoelectric machine and high-revolution type permanent magnet dynamoelectric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees