JPH09196978A - Device for measuring electric resistance of fine perticle - Google Patents

Device for measuring electric resistance of fine perticle

Info

Publication number
JPH09196978A
JPH09196978A JP480896A JP480896A JPH09196978A JP H09196978 A JPH09196978 A JP H09196978A JP 480896 A JP480896 A JP 480896A JP 480896 A JP480896 A JP 480896A JP H09196978 A JPH09196978 A JP H09196978A
Authority
JP
Japan
Prior art keywords
fine particles
indenter
fine
electric resistance
perticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP480896A
Other languages
Japanese (ja)
Inventor
Yoichi Sato
洋一 佐藤
Junichi Matsuzaki
純一 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP480896A priority Critical patent/JPH09196978A/en
Publication of JPH09196978A publication Critical patent/JPH09196978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for measuring electric resistance of fine perticle which makes ease positioning of a pressing element and single time perticle easy and also can measure the electric property of the single fine perticle accurately and easily at a desired compression rate. SOLUTION: A fine perticle W is nipped between a sample table 2 as one electrode and a pressing element 2 as the other electrode, and a current is allowed to flow therebetween while a compression load is applied to the fine perticle W by the element 3, then the electric resistance value of the fine perticle, W at a desired compression rate is measured. This device is provided with an XY stage 1 which moves the fineperticle W as a sample on the plane of the table 2, a CCD camera 11 for picking up the image of the fine perticle, W on the table 2, a picture processing device 13 which searches an area where the fine perticle exists independently in the measuring range corresponding to the size of the element 3, according to the video signal of the CCD camera 11, and a control means (CPU8) which controls the XY stage 1 so that the fineperticle W searched by the device 13 may be placed just under the element 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性を有する微
粒子の電気的特性を測定する装置に関し、特に微粒子に
任意の圧縮荷重を与えた状態で微粒子の電気抵抗値を測
定する電気抵抗測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring electrical characteristics of electrically conductive fine particles, and more particularly, an electric resistance measuring device for measuring the electrical resistance value of fine particles in the state where an arbitrary compressive load is applied to the fine particles. It is about.

【0002】[0002]

【従来の技術】直径数μm〜数百μmのプラスチックボ
ールに無電解ニッケルメッキおよび金置換メッキを施し
た導電性微粒子は、電気抵抗値が低いという特性から、
LCDパネルの上下電極の接続やICベアチップの接合
材料として用いられ、そのほとんどの場合、微粒子は荷
重を受けて圧縮された状態で使用される。
2. Description of the Related Art Conductive fine particles obtained by subjecting a plastic ball having a diameter of several μm to several hundreds μm to electroless nickel plating and gold displacement plating have a low electric resistance value.
It is used as a material for connecting upper and lower electrodes of an LCD panel and as a bonding material for an IC bare chip, and in most cases, fine particles are used in a compressed state under load.

【0003】このため、これらパネル等の設計段階にお
いては、所望の電気抵抗値を得るための圧縮強度および
微粒子個数を決定するために、微粒子単体としての圧縮
下における電気抵抗特性の基本データが求められ、特開
平5−142274号公報には触針式の接触抵抗測定装
置が紹介されているが、これは微粒子の任意の圧縮条件
下における電気抵抗の測定ができないという欠点があっ
た。
Therefore, in the design stage of these panels and the like, basic data of electric resistance characteristics under compression of fine particles alone is obtained in order to determine the compressive strength and the number of fine particles for obtaining a desired electric resistance value. Japanese Patent Laid-Open No. 5-142274 introduces a stylus type contact resistance measuring device, but it has a drawback that the electric resistance of fine particles cannot be measured under arbitrary compression conditions.

【0004】そこで、微粒子の任意圧縮下における電気
抵抗値を測定する装置として、図4に示されているよう
な構造のものが提案されている。この電気抵抗測定装置
は、一方の電極(下部固定電極)をなす試料台50と他
方の電極(上部可動電極)をなす圧子51との間に単一
の微粒子105を挟み、圧子51によって微粒子105
に圧縮荷重を与えた状態で試料台50と圧子51との間
に電流を流し、微粒子105の電気抵抗値を測定するも
のであり、試料台50と圧子51との間に微粒子105
を圧するための任意の負荷を発生させる負荷発生部52
と、電流計53と電圧計54とを含み試料台50と圧子
51との間に電流を流してその時の電流値と電圧値を測
定する電気抵抗測定部55と、試料台50に対する圧子
51の変位量を測定する圧子変位測定部56と、試料台
50と圧子51との間の微粒子105に作用している圧
縮荷重を測定する荷重測定部57と、圧子変位測定部5
6により測定される圧子51の変位量と荷重測定部57
により測定される圧縮荷重とから微粒子105の圧縮率
を求め、電気抵抗測定部55により測定された電流値と
電圧値とから微粒子105の電気抵抗値を計算し、圧縮
率と電気抵抗値を時系列的に集計処理して圧縮率−電気
抵抗特性データを作成するCPU58とにより構成され
ている。さらに、CPU58には、圧縮率−電気抵抗特
性データを表示するCRT59と、圧縮率−電気抵抗特
性データをストアする外部記憶装置60とが接続されて
いる。
Therefore, a device having a structure as shown in FIG. 4 has been proposed as a device for measuring the electric resistance value of fine particles under arbitrary compression. In this electrical resistance measuring device, a single fine particle 105 is sandwiched between a sample table 50 forming one electrode (lower fixed electrode) and an indenter 51 forming the other electrode (upper movable electrode), and the fine particle 105 is formed by the indenter 51.
The electric resistance value of the fine particles 105 is measured by passing an electric current between the sample stage 50 and the indenter 51 in a state where a compressive load is applied to the fine particle 105 between the sample stage 50 and the indenter 51.
Load generating section 52 for generating an arbitrary load for pressing
And an electric resistance measuring unit 55 including an ammeter 53 and a voltmeter 54 to measure a current value and a voltage value by flowing a current between the sample table 50 and the indenter 51, and an indenter 51 for the sample table 50. Indenter displacement measuring unit 56 for measuring the amount of displacement, load measuring unit 57 for measuring the compressive load acting on the fine particles 105 between the sample table 50 and the indenter 51, and the indenter displacement measuring unit 5
The displacement amount of the indenter 51 measured by 6 and the load measuring unit 57
The compression ratio of the fine particles 105 is obtained from the compression load measured by the electric resistance measurement unit 55, and the electric resistance value of the fine particles 105 is calculated from the current value and the voltage value measured by the electric resistance measuring unit 55. It is configured by a CPU 58 that creates a compressibility-electric resistance characteristic data by performing a series of aggregation processing. Further, the CPU 58 is connected to a CRT 59 that displays compression rate-electrical resistance characteristic data and an external storage device 60 that stores the compression rate-electrical resistance characteristic data.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような電気抵抗測定装置では、微粒子105を試料台5
0上の所定の位置に正確に載置することが難しく、ま
た、圧子51と単一の微粒子105との位置を合わせる
ため、圧子51を移動させると共に、顕微鏡を用いてX
Yステージ上の試料台50を動かしていた。このため、
手間が掛かるいう問題点があった。
However, in the electric resistance measuring device as described above, the fine particles 105 are placed on the sample table 5.
It is difficult to place the indenter 51 and the single fine particle 105 at the predetermined position accurately, and in order to align the indenter 51 with the single fine particle 105, the indenter 51 is moved and X
The sample stage 50 on the Y stage was moving. For this reason,
There was a problem that it took time and effort.

【0006】本発明は、上述の問題点に鑑みてなされた
もので、その目的とするところは、圧子と単一の微粒子
との位置決めが容易にできる微粒子電気抵抗測定装置を
提供するところにある。また、本発明の前記ならびにそ
の他の目的と新規な特徴は、本明細書の記述および添付
図面から明らかになるであろう。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a fine particle electric resistance measuring device capable of easily positioning an indenter and a single fine particle. . The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1による発明は、一方の電極をなす試料台
と他方の電極をなす圧子との間に微粒子を挟み、前記圧
子によって前記微粒子に圧縮荷重を与えた状態で前記試
料台と前記圧子との間に電流を流し、任意の圧縮率にお
ける前記微粒子の電気抵抗値を測定する電気抵抗測定装
置において、試料となる微粒子を載せた試料台を平面内
で移動させる移動手段と、前記試料台に載せられた微粒
子を撮像する撮像手段と、前記撮像手段による映像信号
によって前記圧子のサイズに対応する計測範囲内に単独
で微粒子が存在する領域を探索する画像処理装置と、前
記画像処理装置により探索された微粒子が前記圧子の直
下に位置するように前記移動手段を制御する制御手段と
を有しているものである。
In order to achieve the above-mentioned object, the invention according to claim 1 sandwiches particles between a sample stage which constitutes one electrode and an indenter which constitutes the other electrode, and In an electric resistance measuring device for measuring an electric resistance value of the fine particles at an arbitrary compression ratio by applying an electric current between the sample stage and the indenter in a state where a compression load is applied to the fine particles, a fine particle to be a sample is placed. The moving means for moving the sample stage in a plane, the image pickup means for picking up an image of the fine particles placed on the sample stage, and the fine particles alone within the measurement range corresponding to the size of the indenter by the image signal from the image pickup means. An image processing device that searches for an existing region, and a control device that controls the moving device so that the particles searched for by the image processing device are located immediately below the indenter. A.

【0008】また上述の目的を達成するために、請求項
2による発明は、一方の電極をなす試料台と他方の電極
をなす圧子との間に微粒子を挟み、前記圧子によって前
記微粒子に圧縮荷重を与えた状態で前記試料台と前記圧
子との間に電流を流し、任意の圧縮率における前記微粒
子の電気抵抗値を測定する電気抵抗測定装置において、
試料となる微粒子を載せた試料台を平面内で移動させる
移動手段と、前記試料台に載せられた微粒子を撮像する
撮像手段と、前記撮像手段による映像信号によって微粒
子のサイズを認識して所望するサイズに適合した微粒子
を探索する画像処理装置と、前記画像処理装置により探
索された微粒子が前記圧子の直下に位置するように前記
移動手段を制御する制御手段とを有しているものであ
る。
In order to achieve the above-mentioned object, the invention according to claim 2 sandwiches a fine particle between a sample stage forming one electrode and an indenter forming the other electrode, and compresses a load on the fine particle by the indenter. In an electric resistance measuring device for applying an electric current between the sample stage and the indenter in a state of giving an electric resistance value of the fine particles at an arbitrary compressibility,
Moving means for moving a sample stage on which fine particles to be a sample are placed in a plane, image pickup means for picking up an image of the fine particles placed on the sample stage, and recognizing the size of the fine particles by a video signal from the image pickup means and making a desired size It has an image processing device that searches for particles that match the size, and control means that controls the moving means so that the particles searched by the image processing device are located directly below the indenter.

【0009】[0009]

【作 用】請求項1による発明では、撮像手段によって
試料台に載せられた微粒子が撮像され、その撮像手段に
よる映像信号によって画像処理装置が圧子のサイズに対
応する計測範囲内に単独で微粒子が存在する領域を探索
し、画像処理装置により探索された微粒子が圧子の直下
に位置するように制御手段が移動手段を制御する。これ
により圧子のサイズを考慮して複数個の微粒子を同時に
測定しないように位置決めが行われ、単一の微粒子にの
み荷重が与えられて単一微粒子の電気抵抗値を自動的に
測定することができる。
According to the first aspect of the invention, the fine particles placed on the sample table are imaged by the image pickup means, and the image processing device uses the image signals of the fine particle particles to independently detect the fine particles within the measurement range corresponding to the size of the indenter. The control unit controls the moving unit so as to search for an existing region and the fine particles searched for by the image processing apparatus to be located immediately below the indenter. This allows the indenter size to be considered so that multiple particles are not measured at the same time, and the load is applied only to a single particle to automatically measure the electrical resistance value of the single particle. it can.

【0010】請求項2による発明では、撮像手段によっ
て試料台に載せられた微粒子が撮像され、その撮像手段
による映像信号によって画像処理装置が微粒子のサイズ
を認識して所望するサイズに適合した微粒子を探索し、
換言すれば所定サイズの微粒子を微粒子を選び出し、こ
のようにして選び出された微粒子が圧子の直下に位置す
るように制御手段が移動手段を制御する。これにより所
望するサイズの微粒子の電気抵抗値を自動的に測定する
ことができる。
According to the second aspect of the invention, the fine particles placed on the sample stage are imaged by the image pickup means, and the image processing apparatus recognizes the size of the fine particles by the image signal from the image pickup means and selects the fine particles which are suitable for the desired size. Explore,
In other words, fine particles of a predetermined size are selected, and the control means controls the moving means so that the fine particles thus selected are located immediately below the indenter. As a result, the electric resistance value of fine particles having a desired size can be automatically measured.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図1は本発明による電気抵抗測定装置
の実施の形態1を示している。この電気抵抗測定装置
は、XYステージ1上に設けられた電極付きの試料台2
と、試料台2の上方に配置された電極付きの圧子3と、
圧子3を駆動する負荷発生部4と、電気抵抗測定部5
と、変位測定部6と、荷重値測定部7と、CPU8と、
CRT9と、顕微鏡10およびCCDカメラ11と、リ
ング型照明装置12と、CCDカメラ11による映像信
号を処理する画像処理装置13とを有し、試料台2の上
面に適度な密度となるように微粒子Wを散布される。
試料台2は、導電性を有する金属から成っており、XY
ステージ1とは絶縁物を介して電気的に絶縁され、XY
ステージ1によって水平面内に任意位置に移動され、圧
子3に対する測定対象の微粒子Wの位置決めを行う。
(Embodiment 1) FIG. 1 shows Embodiment 1 of an electric resistance measuring apparatus according to the present invention. This electrical resistance measuring device is provided with a sample stage 2 with electrodes provided on an XY stage 1.
And an indenter 3 with an electrode arranged above the sample table 2,
A load generator 4 that drives the indenter 3 and an electric resistance measurement unit 5
A displacement measuring unit 6, a load value measuring unit 7, a CPU 8,
A CRT 9, a microscope 10 and a CCD camera 11, a ring type illumination device 12, and an image processing device 13 for processing a video signal from the CCD camera 11 are provided, and fine particles are formed on the upper surface of the sample table 2 so as to have an appropriate density. W is sprinkled.
The sample table 2 is made of a conductive metal, and has an XY
It is electrically insulated from the stage 1 through an insulator, and XY
The fine particles W to be measured are positioned with respect to the indenter 3 by being moved to an arbitrary position in the horizontal plane by the stage 1.

【0012】圧子3は銅やアルミニウムなど高導電率を
有する硬質金属により構成されている。負荷発生部4
は、固定永久磁石と可動フォースコイルによって電流に
比例した電磁力を発生し、試料台2と圧子8との間に微
粒子Wを圧するための任意の負荷を定量的に与える。
The indenter 3 is made of a hard metal having a high conductivity such as copper or aluminum. Load generator 4
Generates an electromagnetic force proportional to the current by the fixed permanent magnet and the movable force coil, and quantitatively gives an arbitrary load between the sample stage 2 and the indenter 8 to press the fine particles W.

【0013】電気抵抗測定部5は、試料台2と圧子8の
両電極間に定電流を流し、その間の電圧を内部抵抗が十
分に高い電圧計によって測定する。変位測定部6は、
光、超音波、電磁方式の通常の位置センサ、あるいは、
圧子3と負荷発生部4との中間付近に設置された差動ト
ランスなどより構成され、試料台2と圧子3との相対距
離、即ち圧子3の変位量を測定する。
The electric resistance measuring section 5 applies a constant current between both electrodes of the sample table 2 and the indenter 8, and measures the voltage between them with a voltmeter having a sufficiently high internal resistance. The displacement measuring unit 6
Ordinary position sensor of light, ultrasonic, electromagnetic type, or
It is composed of a differential transformer or the like installed near the middle of the indenter 3 and the load generator 4, and measures the relative distance between the sample table 2 and the indenter 3, that is, the displacement amount of the indenter 3.

【0014】荷重測定部7は、微粒子Wに加えられた荷
重を測定するものであり、負荷発生部4が電磁式のもの
である場合には、負荷発生部4のフォースコイルに流れ
る電流を計測し、予め準備された電流−負荷特性グラフ
より荷重を求めるもので構成することができる。CPU
8は、電気抵抗測定部5によって測定された電圧値より
微粒子Wの電気抵抗値を計算し、変位測定部6により測
定された試料台2と圧子3との相対距離と、荷重測定部
7により測定された荷重より微粒子Wの圧縮率を求め、
圧縮率と電気抵抗値を時系列的に集計処理して圧縮率−
電気抵抗特性データを作成する。
The load measuring unit 7 measures the load applied to the fine particles W. When the load generating unit 4 is an electromagnetic type, it measures the current flowing through the force coil of the load generating unit 4. However, the load can be obtained from the current-load characteristic graph prepared in advance. CPU
8 calculates the electric resistance value of the fine particles W from the voltage value measured by the electric resistance measuring unit 5, and the relative distance between the sample stage 2 and the indenter 3 measured by the displacement measuring unit 6 and the load measuring unit 7. The compressibility of the fine particles W is obtained from the measured load,
Compressibility and electrical resistance values are chronologically aggregated to calculate compression rate −
Create electrical resistance characteristic data.

【0015】CRT9は、CPU8が集計処理した圧縮
率−電気抵抗特性データ、即ち測定結果をグラフ表示す
る。リング型照明装置12は試料台2上に散布された微
粒子Wを無影照明し、CCDカメラ11が顕微鏡10に
よる拡大倍率をもって微粒子Wを拡大撮像する。画像処
理装置13は、CCDカメラ11による映像信号によっ
て圧子3のサイズに対応する計測範囲内に単独で微粒子
Wが存在する領域を探索し、その領域を特定する座標値
データをCPU8へ出力する。
The CRT 9 displays a graph of the compression ratio-electrical resistance characteristic data, that is, the measurement result, which is totalized by the CPU 8. The ring type illumination device 12 illuminates the fine particles W scattered on the sample table 2 in a shadowless manner, and the CCD camera 11 magnifies and picks up the fine particles W at a magnification of the microscope 10. The image processing device 13 searches for an area in which the fine particles W exist independently within the measurement range corresponding to the size of the indenter 3 by the image signal from the CCD camera 11, and outputs coordinate value data for specifying the area to the CPU 8.

【0016】またCPU8は、画像処理装置13より座
標値データを入力することにより、上述のようにして探
索された微粒子Wが圧子3の直下に位置するようにXY
ステージ1へ移動指令を出力する制御手段として動作す
る。つぎに上述の構成による微粒子電気抵抗測定装置の
動作を説明する。ます、試料台2の上面に適度な密度と
なるように多くの微粒子Wを散布し、XYステージ1に
よって試料台2を図1に示されているような照明撮像位
置に位置させ、リング型照明装置12を点灯して試料台
2上の微粒子Wを無影照明する。
Further, the CPU 8 inputs the coordinate value data from the image processing device 13 so that the fine particles W searched as described above are positioned XY so as to be located immediately below the indenter 3.
It operates as a control unit that outputs a movement command to the stage 1. Next, the operation of the particulate electric resistance measuring device having the above-mentioned configuration will be described. First, a large number of fine particles W are dispersed on the upper surface of the sample table 2 so as to have an appropriate density, and the sample table 2 is positioned by the XY stage 1 at the illumination image pickup position as shown in FIG. The device 12 is turned on and the fine particles W on the sample table 2 are illuminated by shadowless illumination.

【0017】この状態で、CCDカメラ11を動作さ
せ、顕微鏡10とCCDカメラ11によって試料台2上
の微粒子Wを拡大撮像する。CCDカメラ11による映
像信号は画像処理装置13に入力され、画像処理装置1
3は、撮像画面内での個々の微粒子Wの位置を認識し、
あらかじめ定められている圧子3のサイズを考慮して圧
子3のサイズに対応する計測範囲内に単独で微粒子Wが
存在する領域、即ち計測エリアを探索する。ここで用い
た微粒子Wおよび圧子5のサイズは、それぞれ直径が
5.0μm、50μm程度である。
In this state, the CCD camera 11 is operated and the microscope 10 and the CCD camera 11 magnify and image the fine particles W on the sample table 2. The video signal from the CCD camera 11 is input to the image processing device 13, and the image processing device 1
3 recognizes the position of each individual particle W in the imaging screen,
In consideration of the size of the indenter 3 which is determined in advance, a region where the fine particles W are present independently within the measurement range corresponding to the size of the indenter 3, that is, a measurement area is searched. The sizes of the fine particles W and the indenter 5 used here are about 5.0 μm and 50 μm in diameter, respectively.

【0018】図2は微粒子Wの撮像例を示しており、符
号Ea、Ebは各々圧子3のサイズに対応する計測範囲
を示している。このとき符号Eaにより示されている計
測範囲には、複数個の微粒子Wが存在するため、符号E
bにより示されている計測範囲のように単一の微粒子W
しか存在しない計測範囲を計測エリアとして選択し、そ
の中心座標値を求めてCPU8に通知する。なお、撮像
した画面内で適当な計測エリアを選択することができな
い場合には、XYステージ1を駆動して試料台2上の別
の領域を撮像して同様な処理が行われる。
FIG. 2 shows an example of image pickup of the fine particles W, and reference symbols Ea and Eb respectively show measurement ranges corresponding to the size of the indenter 3. At this time, since a plurality of fine particles W are present in the measurement range indicated by the reference symbol Ea, the reference symbol E
a single particle W as in the measurement range indicated by b
A measurement range that only exists is selected as a measurement area, the center coordinate value thereof is calculated, and the CPU 8 is notified. If an appropriate measurement area cannot be selected in the imaged screen, the XY stage 1 is driven to image another area on the sample table 2 and the same processing is performed.

【0019】次にCPU8に通知された中心座標値が圧
子3の中心位置、すなわち圧子3と計測エリアとが完全
に整合し、単一の微粒子Wのみを荷重できるようにXY
ステージ1によって試料台2を移動させる。そしてCP
U8の指示に基づいて負荷発生部4により圧子3を下方
へ駆動し、それと同時に荷重値測定部7、変位測定部
6、電気抵抗測定部5が各々測定を開始し、その測定結
果をCPU8に取り込み、定電流が流れ始めた瞬間を圧
子3が測定対象の単一の微粒子Wに接触したとし、その
位置からの変位量と荷重値とから圧縮率を換算し、圧縮
率と電気抵抗値との関係を次々CRT9に表示する。
Next, the center coordinate value notified to the CPU 8 is XY so that the center position of the indenter 3, that is, the indenter 3 and the measurement area are completely aligned and only a single fine particle W can be loaded.
The sample stage 2 is moved by the stage 1. And CP
Based on the instruction of U8, the load generator 4 drives the indenter 3 downward, and at the same time, the load value measurement unit 7, the displacement measurement unit 6, and the electric resistance measurement unit 5 each start measurement, and the measurement result is sent to the CPU 8. It is assumed that the indenter 3 comes into contact with a single fine particle W to be measured at the moment when a constant current starts to flow, and the compression rate is converted from the displacement amount and the load value from that position to obtain the compression rate and the electrical resistance value. The relationship of is displayed on the CRT 9 one after another.

【0020】上述の動作により、圧子3のサイズを考慮
して複数個の微粒子Wを同時に測定しないように位置決
めが行われ、単一の微粒子Wにのみ荷重が与えられて単
一微粒子の電気抵抗値が自動的に測定される。なお、こ
こでは1度の測定について触れたが、計測エリアを複数
設定し、上述の同様の測定を繰り返すことで、統計的な
処理を加えることもできる。
By the above operation, the size of the indenter 3 is taken into consideration and the positioning is performed so as not to measure a plurality of fine particles W at the same time. The value is measured automatically. It should be noted that although one measurement is mentioned here, statistical processing can be added by setting a plurality of measurement areas and repeating the same measurement as described above.

【0021】(実施の形態2)実施の形態2における電
気抵抗測定装置は上述の実施の形態1における場合と同
様に構成されたものであり、画像処理装置13による画
像処理の内容のみが異なっている。この実施の形態2で
は、画像処理装置13は、CCDカメラ11による映像
信号によって微粒子Wのサイズを認識して所望するサイ
ズに適合した微粒子Wを探索し、その微粒子Wが存在す
る座標値データをCPU8へ出力する。
(Embodiment 2) The electric resistance measuring apparatus according to Embodiment 2 is constructed in the same manner as in the case of Embodiment 1 described above, and only the content of image processing by the image processing apparatus 13 is different. There is. In the second embodiment, the image processing device 13 recognizes the size of the fine particles W by the video signal from the CCD camera 11 and searches for the fine particles W that match the desired size, and obtains the coordinate value data in which the fine particles W exist. Output to CPU8.

【0022】つぎに実施の形態2による微粒子電気抵抗
測定装置の動作を説明する。ます、試料台2の上面に適
度な密度となるように多くの微粒子Wを散布し、XYス
テージ1によって試料台2を図1に示されているような
照明撮像位置に位置させ、リング型照明装置12を点灯
して試料台2上の微粒子Wを無影照明する。この状態
で、CCDカメラ11を動作させ、顕微鏡10とCCD
カメラ11によって試料台2上の微粒子Wを拡大撮像す
る。微粒子Wは同一のサイズ(粒径)を有するように製
造されるが、実際には図3に示されているように、微妙
にばらついていることが分かっている。
Next, the operation of the particulate electric resistance measuring apparatus according to the second embodiment will be described. First, a large number of fine particles W are dispersed on the upper surface of the sample table 2 so as to have an appropriate density, and the sample table 2 is positioned by the XY stage 1 at the illumination image pickup position as shown in FIG. The device 12 is turned on and the fine particles W on the sample table 2 are illuminated by shadowless illumination. In this state, the CCD camera 11 is operated and the microscope 10 and CCD
The camera 11 captures an enlarged image of the fine particles W on the sample table 2. Although the fine particles W are manufactured so as to have the same size (particle diameter), it has been found that they actually delicately vary as shown in FIG.

【0023】CCDカメラ11による映像信号は画像処
理装置13に入力され、画像処理装置13は、撮像画面
内での個々の微粒子Wの位置を認識し、あらかじめ定め
られている目的とするサイズの微粒子を探索する。ここ
で用いた微粒子のサイズは、10.0μmであり、また
撮像する範囲は、100μmである。使用するCCDカ
メラ11は、512画素の分解能を有しており、このた
め0.4μm程度の微粒子Wのばらつきは容易に識別が
可能である。なお、撮像した画面内に所望の微粒子Wが
存在しない場合には、XYステージ1を駆動し、別の画
面に対して同様な処理が行なわれる。
The video signal from the CCD camera 11 is input to the image processing device 13, and the image processing device 13 recognizes the position of each individual fine particle W in the image pickup screen, and the fine particle of a predetermined target size is obtained. To explore. The size of the fine particles used here is 10.0 μm, and the imaging range is 100 μm. The CCD camera 11 used has a resolution of 512 pixels, and therefore, the variation of the fine particles W of about 0.4 μm can be easily identified. When the desired fine particles W are not present in the imaged screen, the XY stage 1 is driven and the same process is performed on another screen.

【0024】次に選択した微粒子Wの座標値が圧子3の
中心に位置するようにXYステージ1によって試料台2
を移動させる。そしてCPU8の指示に基づいて負荷発
生部4により圧子3を下方へ駆動し、それと同時に荷重
値測定部7、変位測定部6、電気抵抗測定部5が各々測
定を開始し、その測定結果をCPU8に取り込み、定電
流が流れ始めた瞬間を圧子3が測定対象の単一の微粒子
Wに接触したとし、その位置からの変位量と荷重値とか
ら圧縮率を換算し、圧縮率と電気抵抗値との関係を次々
CRT9に表示する。上述の動作により、所望するサイ
ズの微粒子の電気抵抗値が自動的に測定される。
Next, the sample table 2 is moved by the XY stage 1 so that the coordinate value of the selected fine particle W is located at the center of the indenter 3.
To move. Then, the load generator 4 drives the indenter 3 downward based on an instruction from the CPU 8, and at the same time, the load value measurement unit 7, the displacement measurement unit 6, and the electric resistance measurement unit 5 respectively start measurement, and the measurement result is stored in the CPU 8 When the indenter 3 comes into contact with the single fine particle W to be measured at the moment when the constant current begins to flow, the compressibility is converted from the displacement amount and the load value from that position, and the compressibility and the electrical resistance value are calculated. The relationship with is displayed on the CRT 9 one after another. By the operation described above, the electric resistance value of the fine particles having a desired size is automatically measured.

【0025】[0025]

【発明の効果】以上の説明から理解される如く、請求項
1による微粒子の電気抵抗測定装置においては、画像処
理装置によって自動的に計測エリアを設定し、選択され
た単一の微粒子にのみに対して荷重を加えてその電気抵
抗値を測定するから、任意の圧縮率での単一微粒子の電
気抵抗値を容易に、しかも確実に測定することができ
る。
As can be understood from the above description, in the device for measuring electrical resistance of fine particles according to claim 1, the measurement area is automatically set by the image processing device and only the selected single fine particle is set. Since the load is applied to measure the electric resistance value, the electric resistance value of the single fine particles at an arbitrary compressibility can be measured easily and surely.

【0026】また請求項2による微粒子の電気抵抗測定
装置においては、画像処理装置によって目的のサイズを
持つ最適な微粒子を選択し、選択された微粒子に対して
荷重を加えてその電気抵抗値を測定するから、目的のサ
イズを持つ微粒子の電気抵抗値を容易に、しかも確実に
測定することができる。
In the apparatus for measuring electric resistance of fine particles according to claim 2, an optimum fine particle having a desired size is selected by the image processing apparatus, and a load is applied to the selected fine particle to measure the electric resistance value. Therefore, it is possible to easily and surely measure the electric resistance value of fine particles having a target size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微粒子電気抵抗測定装置の一つの
実施の形態を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a particulate electric resistance measuring device according to the present invention.

【図2】微粒子の拡大撮像画面例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of an enlarged image pickup screen of fine particles.

【図3】微粒子のサイズ分布例を示すグラフである。FIG. 3 is a graph showing an example of size distribution of fine particles.

【図4】従来の微粒子電気抵抗測定装置を示す構成図で
ある。
FIG. 4 is a configuration diagram showing a conventional particulate electric resistance measuring device.

【符号の説明】[Explanation of symbols]

1…XYステージ 2…試料台 3…圧子 4…負荷発生部 5…電気抵抗測定部 6…変位測定部 7…荷重値測定部 8…CPU 9…CRT 10…顕微鏡 11…CCDカメラ 12…リング型照明装置 13…画像処理装置 1 ... XY stage 2 ... Sample stage 3 ... Indenter 4 ... Load generation part 5 ... Electrical resistance measurement part 6 ... Displacement measurement part 7 ... Load value measurement part 8 ... CPU 9 ... CRT 10 ... Microscope 11 ... CCD camera 12 ... Ring type Lighting device 13 ... Image processing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方の電極をなす試料台と他方の電極を
なす圧子との間に微粒子を挟み、前記圧子によって前記
微粒子に圧縮荷重を与えた状態で前記試料台と前記圧子
との間に電流を流し、任意の圧縮率における前記微粒子
の電気抵抗値を測定する電気抵抗測定装置において、 試料となる微粒子を載せた試料台を平面内で移動させる
移動手段と、 前記試料台に載せられた微粒子を撮像する撮像手段と、 前記撮像手段による映像信号によって前記圧子のサイズ
に対応する計測範囲内に単独で微粒子が存在する領域を
探索する画像処理装置と、 前記画像処理装置により探索された微粒子が前記圧子の
直下に位置するように前記移動手段を制御する制御手段
と、 を有していることを特徴とする微粒子電気抵抗測定装
置。
1. A microparticle is sandwiched between a sample stage that forms one electrode and an indenter that forms the other electrode, and a compressive load is applied to the microparticle by the indenter, and between the sample stage and the indenter. In an electric resistance measuring device for measuring an electric resistance value of the fine particles at an arbitrary compression rate by passing an electric current, a moving means for moving a sample stage on which fine particles to be a sample are placed in a plane, and an electric resistance measuring device placed on the sample stage. An image pickup device for picking up an image of the fine particles, an image processing device for independently searching an area where the fine particles are present within a measurement range corresponding to the size of the indenter by a video signal from the image pickup device, and the fine particles searched for by the image processing device And a control means for controlling the moving means so as to be positioned immediately below the indenter, and a fine particle electrical resistance measuring device.
【請求項2】 一方の電極をなす試料台と他方の電極を
なす圧子との間に微粒子を挟み、前記圧子によって前記
微粒子に圧縮荷重を与えた状態で前記試料台と前記圧子
との間に電流を流し、任意の圧縮率における前記微粒子
の電気抵抗値を測定する電気抵抗測定装置において、 試料となる微粒子を載せた試料台を平面内で移動させる
移動手段と、 前記試料台に載せられた微粒子を撮像する撮像手段と、 前記撮像手段による映像信号によって微粒子のサイズを
認識して所望するサイズに適合した微粒子を探索する画
像処理装置と、 前記画像処理装置により探索された微粒子が前記圧子の
直下に位置するように前記移動手段を制御する制御手段
と、 を有していることを特徴とする微粒子電気抵抗測定装
置。
2. Fine particles are sandwiched between a sample stage that forms one electrode and an indenter that forms the other electrode, and a compressive load is applied to the fine particles by the indenter between the sample stage and the indenter. In an electric resistance measuring device for measuring an electric resistance value of the fine particles at an arbitrary compression rate by passing an electric current, a moving means for moving a sample stage on which fine particles to be a sample are placed in a plane, and an electric resistance measuring device placed on the sample stage. An image pickup device for picking up an image of the fine particles, an image processing device for recognizing the size of the fine particles by a video signal from the image pickup device and searching for fine particles that match a desired size, and the fine particles searched by the image processing device are the indenters. A fine particle electrical resistance measuring device comprising: a control unit that controls the moving unit so as to be located immediately below.
JP480896A 1996-01-16 1996-01-16 Device for measuring electric resistance of fine perticle Pending JPH09196978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP480896A JPH09196978A (en) 1996-01-16 1996-01-16 Device for measuring electric resistance of fine perticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP480896A JPH09196978A (en) 1996-01-16 1996-01-16 Device for measuring electric resistance of fine perticle

Publications (1)

Publication Number Publication Date
JPH09196978A true JPH09196978A (en) 1997-07-31

Family

ID=11594068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP480896A Pending JPH09196978A (en) 1996-01-16 1996-01-16 Device for measuring electric resistance of fine perticle

Country Status (1)

Country Link
JP (1) JPH09196978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004613A (en) * 2001-06-15 2003-01-08 Akashi Corp Mechanism for forming indentation and hardness test machine
CN108023374A (en) * 2016-10-28 2018-05-11 斯达克实验室公司 Charging system with compressible contact site

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004613A (en) * 2001-06-15 2003-01-08 Akashi Corp Mechanism for forming indentation and hardness test machine
CN108023374A (en) * 2016-10-28 2018-05-11 斯达克实验室公司 Charging system with compressible contact site
CN108023374B (en) * 2016-10-28 2023-09-26 斯达克实验室公司 Charging system with compressible contacts

Similar Documents

Publication Publication Date Title
JP3558434B2 (en) Electrical wiring inspection method and apparatus
JP2000504831A (en) Microscope and inspection method
KR20020001752A (en) Tester and testing method, and testing unit
CN109799369A (en) Atomic force microscope external equipment multi-parameter in-situ measurement system and measurement method
JPH09196978A (en) Device for measuring electric resistance of fine perticle
Vrana et al. Induction and conduction thermography: Optimizing the electromagnetic excitation towards application
CN206618831U (en) A kind of new alternating temperature Hall effect tester
CN114966257A (en) Detection method and system for electrostatic test discharge path
US20130119999A1 (en) Specimen Testing Device and Method for Creating Absorbed Current Image
JPH09203765A (en) Substrate inspecting device which includes visual inspection
CN207764365U (en) Inductor off position detection device
JP6999327B2 (en) Board inspection equipment
JP2003215011A (en) Characteristics evaluating and testing machine
JPH0854448A (en) Inspecting apparatus for electronic circuit board by scanning with laser light
JP3028632B2 (en) Micro sample compression tester
JPH03226645A (en) Compression tester for particulate material
JPH0943127A (en) Compression tester for granular material
KR100287715B1 (en) Single Layer Inspection Device and Inspection Method of Printed Circuit Board Using X-Ray
TWI334031B (en) Testing system and testing method for display apparatus
KR100300586B1 (en) Single Layer Inspection Device and Inspection Method of Printed Circuit Board Using X-Ray
JP3176409B2 (en) Electrical property evaluation device
JP2002043721A (en) Method and device for inspecting printed wiring board
JPH09189728A (en) Device for measuring electric resistance of corpuscle
JPH08189939A (en) Probing characteristic testing device
JP2932741B2 (en) Semiconductor inspection equipment