JPH09196807A - Nozzle for shock tunnel - Google Patents

Nozzle for shock tunnel

Info

Publication number
JPH09196807A
JPH09196807A JP8004697A JP469796A JPH09196807A JP H09196807 A JPH09196807 A JP H09196807A JP 8004697 A JP8004697 A JP 8004697A JP 469796 A JP469796 A JP 469796A JP H09196807 A JPH09196807 A JP H09196807A
Authority
JP
Japan
Prior art keywords
throat
nozzle
wind tunnel
peripheral surface
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8004697A
Other languages
Japanese (ja)
Inventor
Hirotaka Nakagawa
博高 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8004697A priority Critical patent/JPH09196807A/en
Publication of JPH09196807A publication Critical patent/JPH09196807A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nozzle for shock tunnel, which can not be damaged by air flow of a high enthalpy, by providing a cooling cover, which forms a jacket working as a flow passage for flowing a very-low temperature coolant between the periphery of a throat material and the cover itself. SOLUTION: A nozzle throat 16 is provided in the upstreammost of a nozzle part, in which an air flow of a high enthalpy is made to flowin. The nozzle throat 16 is provided with a through hole in the axial direction thereof, and a throat shape for generating a ultra supersonic flow is formed in the inner peripheral surface of the through hole. The nozzle throat 16 is formed out of a throat material 13 and a cooling cover 15 for forming a very-low temperature fluid passage 14 for making the very-low temperature coolant flow between the peripheral surface of the throat material 13 and the cover 15 itself so as to cool the throat material 13 with the very-low temperature coolant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空力加熱等の試験
を行うための極超音速流を発生させる高エンタルピー衝
撃風洞(以下、単に衝撃風洞という)において、極超音
速流を発生させる衝撃風洞のノズル部最上流に、極低温
流体で冷却されるノズルスロートを設けた衝撃風洞用ノ
ズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high enthalpy impact wind tunnel (hereinafter simply referred to as an impact wind tunnel) for generating a hypersonic flow for testing aerodynamic heating or the like, and an impact wind tunnel for generating a hypersonic flow. The nozzle for the impact wind tunnel in which a nozzle throat cooled by a cryogenic fluid is provided in the uppermost stream of the nozzle part.

【0002】[0002]

【従来の技術】後端部に圧縮空気を作用させ、圧縮管内
を高速で移動するピストンの前方の圧縮管内に、ヘリウ
ム等の作動ガスの高圧状態を作り出し、この作動ガスの
高圧状態を保持する隔膜等を、瞬時に破砕することによ
り発生する衝撃波管内の衝撃波により、作動ガスを加
圧、加熱し、高温、高圧のよどみ点状態を作り、このよ
どみ点状態を使って、試験を行うためのマッハ数5.0
〜10.0、300℃、10Pa程度の極超音速流を発
生させるようにした衝撃風洞が、従来から使用されてい
る。
2. Description of the Related Art A compressed air is applied to a rear end portion of the piston to create a high pressure state of a working gas such as helium in a compression pipe in front of a piston moving at a high speed in the compression pipe and maintain the high pressure state of the working gas. Shock wave generated by instantly crushing a diaphragm, etc.The shock wave in the tube pressurizes and heats the working gas to create a high temperature and high pressure stagnation point condition, and to perform a test using this stagnation point condition. Mach number 5.0
An impact wind tunnel adapted to generate a hypersonic flow of about 10.0, 300 ° C., and 10 Pa has been conventionally used.

【0003】このような衝撃風洞は、図2の模式図で示
すように、圧縮空気槽1、圧縮管2、高圧隔膜部3、衝
撃波管4、低圧隔膜部5、および測定部6からなり、宇
宙往還機開発等に必要とする極超音速の気流を生成する
ため、圧縮空気槽1に貯留された圧縮空気を後端部に作
用させ、圧縮管2内を高速で走行するピストン8によ
り、ピストン8の前方の圧縮管2内に封入された作動ガ
スを圧縮した後、高圧隔膜部3に張設された隔膜を瞬時
に破砕することにより、衝撃波管4に衝撃波を発生さ
せ、この衝撃波の衝撃波管4内での進行、および衝撃波
管4前端での反射により、作動ガスを加圧、加熱し、衝
撃波管4の前端部の低圧隔膜部5に、3000°K,1
000Pa程度の高温、高圧のよどみ点状態の気体を発
生させる。
As shown in the schematic view of FIG. 2, such an impact wind tunnel comprises a compressed air tank 1, a compression tube 2, a high pressure diaphragm section 3, a shock wave tube 4, a low pressure diaphragm section 5, and a measuring section 6. In order to generate a hypersonic air flow required for space shuttle development, etc., the compressed air stored in the compressed air tank 1 is caused to act on the rear end, and the piston 8 traveling at high speed in the compression pipe 2 After compressing the working gas enclosed in the compression tube 2 in front of the piston 8, the diaphragm stretched over the high-pressure diaphragm 3 is instantly crushed to generate a shock wave in the shock tube 4, and the shock wave The working gas is pressurized and heated by the progress in the shock wave tube 4 and the reflection at the front end of the shock wave tube 4, and the low pressure diaphragm portion 5 at the front end portion of the shock wave tube 4 receives 3000 ° K, 1.
A gas in a stagnation point state of high temperature and high pressure of about 000 Pa is generated.

【0004】このよどみ点状態の気体が発生した時点
で、低圧隔膜部5に張設された隔膜を破砕することによ
り、ノズル部7に流出したよどみ点状態の気体は、断熱
膨張して加速され、測定部6に設置された空力模型9の
周辺には、マッハ数5.0〜10.0、300℃、10
Pa程度の試験を行うための極超音速流を発生させるこ
とができる。また、このような衝撃風洞は、300m/
s程度の高速で走行するピストン8の走行時の、風洞本
体10、支持装置、及びその基礎への過大な負荷を避け
るべく、風洞本体10を固定せず、下端部にローラ11
を設け、軸方向に、衝撃風洞全体を移動可能にしたスラ
イド支持方式にすることが行われている。
When the gas in the stagnation point state is generated, by crushing the diaphragm stretched over the low pressure diaphragm section 5, the gas in the stagnation point state flowing out to the nozzle section 7 is adiabatically expanded and accelerated. , Around the aerodynamic model 9 installed in the measurement unit 6, Mach number of 5.0 to 10.0, 300 ℃, 10
It is possible to generate a hypersonic flow for performing a test of about Pa. In addition, such an impact wind tunnel is 300 m /
In order to avoid an excessive load on the wind tunnel body 10, the supporting device, and the foundation thereof when the piston 8 traveling at a high speed of about s, the wind tunnel body 10 is not fixed and the roller 11 is attached to the lower end portion.
Is provided, and a slide support system is adopted in which the entire impact wind tunnel is movable in the axial direction.

【0005】また、衝撃波管4内に発生させた衝撃波に
より、作動ガスを加圧、加熱し、高温、高圧のよどみ点
状態が作られる低圧隔膜部5と、よどみ点状態の気体を
加速して極超音速流を発生させるノズル部7との間、す
なわち、ノズル部7の最上流部には、図3に示すよう
に、測定部6に発生させるマッハ数に対応するスロート
形状が、軸方向に貫通させた軸対称の貫通孔の内周面に
形成された、円筒状のノズルスロート12が設けられて
いる。このようなノズルスロート12としては、例え
ば、米国カリフォルニア工科大学所有の風洞(T5)に
使用されている図4に示すようなものが、従来から使用
されている。
The shock wave generated in the shock tube 4 pressurizes and heats the working gas to accelerate the stagnation gas and the low-pressure diaphragm 5 which creates a stagnation condition of high temperature and high pressure. As shown in FIG. 3, a throat shape corresponding to the Mach number generated in the measurement unit 6 is formed in the axial direction between the nozzle unit 7 that generates a hypersonic flow, that is, in the most upstream part of the nozzle unit 7. A cylindrical nozzle throat 12 is provided on the inner peripheral surface of an axially symmetric through hole that is penetrated through. As such a nozzle throat 12, for example, the one shown in FIG. 4 used in a wind tunnel (T5) owned by California Institute of Technology in the United States has been conventionally used.

【0006】すなわち、このようなノズルスロート12
は、前述したように、高温・高圧のよどみ点状態に近い
気体が内周面を通過するため、超高温気流に耐える、例
えばM0 ,W等の高融点材料を使用した一体化されたも
のが使用されている。また、衝撃風洞は、気流持続時間
が大変短く、試験時間が約2ミリ秒程度と短いため、ノ
ズルスロート12は高温・高速の高エンタルピーの気流
に曝されるにも拘わらず、従来強制冷却等を行うように
はされていない。
That is, such a nozzle throat 12
As described above, the gas close to the stagnation point of high temperature and high pressure passes through the inner peripheral surface, and therefore is resistant to the ultra-high temperature air flow, and is integrated using a high melting point material such as M 0 or W. Is used. Moreover, since the impact wind tunnel has a very short air flow duration and a short test time of about 2 milliseconds, the nozzle throat 12 is exposed to a high-temperature, high-speed, high-enthalpy air flow, but conventionally forced cooling or the like is required. Is not supposed to do.

【0007】このため、ノズルスロート12の表面部の
深さ0.2〜0.3mmのみが融点近くまで加熱され、
損傷することがあり、風洞性能はノズルスロートの融点
で制限されている。すなわち、ノズルスロート12の形
状は、前述したように、衝撃風洞で発生させる極超音速
流のマッハ数を一義的に決定するものであり、ノズルス
ロートの形状を形成する表面部の高温化による損傷は衝
撃風洞の性能を劣化させるものとなり、衝撃風洞の性能
は、ノズルスロート12材料自体が有する材料特性(温
度伝導率、融点)のみに制約されるといっても良いもの
である。また、ノズルスロート12が融点以下の制限内
で使用されている場合においても、ノズルスロート12
の交換頻度が高くなり、この交換に時間を要し、風洞運
転効率が劣化するという不具合もある。
Therefore, only the surface depth of the nozzle throat 12 of 0.2 to 0.3 mm is heated to near the melting point,
Can be damaged and wind tunnel performance is limited by the melting point of the nozzle throat. That is, as described above, the shape of the nozzle throat 12 uniquely determines the Mach number of the hypersonic flow generated in the impact wind tunnel, and the surface portion forming the shape of the nozzle throat is damaged by high temperature. Will deteriorate the performance of the shock wind tunnel, and the performance of the shock wind tunnel may be limited only by the material properties (temperature conductivity, melting point) of the nozzle throat 12 material itself. Even when the nozzle throat 12 is used within the limit of the melting point or less, the nozzle throat 12
However, there is also a problem that the replacement frequency becomes high, the replacement takes time, and the wind tunnel operating efficiency deteriorates.

【0008】このため、高温の気体に曝らされても損傷
が生じることがなく、また交換頻度を少くできるノズル
スロート12とするための各種材料、すなわち高温の気
体に曝され高温化する部分の熱を他の部分へ速やかに移
すため、Cu並の温度伝導率を有し、しかも容易に融解
しないW並の融点を持ち、短時間、高エンタルピーの気
流に曝らされても損傷しない材料、例えばW系合金、C
u系合金、Mo系合金が試験されているが、どれも十分
な性能が発揮されず、現状では、衝撃風洞の性能および
運転効率は、ノズルスロート12の耐熱性が決めるもの
となっている。
For this reason, various materials for forming the nozzle throat 12 are not damaged even when exposed to high-temperature gas, and the frequency of replacement can be reduced, that is, the parts that are exposed to high-temperature gas and heat up. A material that has a thermal conductivity similar to that of Cu because it quickly transfers heat to other parts, has a melting point similar to W that does not melt easily, and is not damaged even when exposed to a high enthalpy air flow for a short time, For example, W alloy, C
Although u-based alloys and Mo-based alloys have been tested, none of them have exhibited sufficient performance, and at present, the heat resistance of the nozzle throat 12 determines the performance and operation efficiency of the impact wind tunnel.

【0009】[0009]

【発明が解決しようとする課題】本発明は、より高温・
高速の気流、すなわち、より高エンタルピーの気流にも
損傷することなく耐え、衝撃風洞を長期間にわたり高性
能に維持できるノズルスロートを、最上流部に具える衝
撃風洞用ノズルの提供を課題とする。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
It is an object to provide a nozzle for an impact wind tunnel that has a nozzle throat that can withstand a high-speed air flow, that is, an air flow with a higher enthalpy without being damaged, and that can maintain the impact wind tunnel with high performance for a long period of time in the most upstream part. .

【0010】[0010]

【課題を解決するための手段】このため、本発明の衝撃
風洞用ノズルは、次の手段とした。 (1)材料自体は従来から使用されているMo系、W
系、Cu系の材料を用いて、軸方向に貫通させた軸対称
の貫通孔の内周面に、試験を行うマッハ数の極超音速を
発生させるためのスロート形状を形成したスロート材を
設けた。 (2)スロート材の外周囲の間に、LN2 ,LH2 ,L
He等の極低温冷媒を流す通路となる、ジャケットを形
成した冷却カバを設けた。 (3)スロート材および冷却カバとからなるノズルスロ
ートを、高温状態の気体が通過するノズル部の最上流に
設けた。
Therefore, the nozzle for impact wind tunnel of the present invention has the following means. (1) The material itself is Mo type, W
, Cu-based material is used to provide a throat material with a throat shape for generating hypersonic velocity of Mach number to be tested on the inner peripheral surface of an axially symmetric through-hole that penetrates in the axial direction. It was (2) LN 2 , LH 2 , L between the outer periphery of the throat material
A jacket-formed cooling cover was provided as a passage through which a cryogenic refrigerant such as He flows. (3) The nozzle throat including the throat material and the cooling cover is provided at the uppermost stream of the nozzle portion through which the gas in the high temperature passes.

【0011】本発明の衝撃風洞用ノズルは、極超音速流
を発生させるノズル部の最上流側のノズルスロートを、
上述(1),(2)の手段にしたことにより、高エンタ
ルピーの気流が内周面を流れるノズルスロートは、極低
温冷媒によって冷却されることにより、スロート材内周
面部が融点に達するに必要な熱量を、数式1で算出され
るように増加させることができ、より高エンタルピーの
気流を流すことができ、風洞性能を向上させることがで
きる。
The impact wind tunnel nozzle according to the present invention has a nozzle throat on the most upstream side of the nozzle section for generating a hypersonic flow,
By adopting the above-mentioned means (1) and (2), the nozzle throat in which a high-enthalpy airflow flows through the inner peripheral surface is required to reach the melting point of the inner peripheral surface portion of the throat material by being cooled by the cryogenic refrigerant. The amount of heat can be increased as calculated by Equation 1, a higher enthalpy airflow can be passed, and the wind tunnel performance can be improved.

【0012】[0012]

【数1】 [Equation 1]

【0013】すなわち、純Moをノズルスロート材とし
て使用した場合、従来融点にまで加熱するに必要であっ
た熱量が、 To=298°K(室温) Tm=2894°K q0 =ρ・Cp・V・(2894−298) =2596・ρ・Cp・V であったものが、スロート材を、例えば液体窒素LN2
で冷却するようにした本発明の場合、 To=77°K Tm=2894°K qI =ρ・Cp・V・(2894−77) =2817・ρ・Cp・V となり、融点まで加熱するために必要な熱量は、 qI /qo ≒1.1 となり、加熱量を1.1倍に上げることができる。
That is, when pure Mo is used as the nozzle throat material, the amount of heat conventionally required to heat to the melting point is: To = 298 ° K (room temperature) Tm = 2894 ° K q 0 = ρ · Cp · V · (2894-298) = 2596 · ρ · Cp · V was used for the throat material, for example, liquid nitrogen LN 2
In the case of the present invention which is adapted to cool, To = 77 ° K Tm = 2894 ° K q I = ρ · Cp · V · (2894-77) = 2817 · ρ · Cp · V becomes, for heating up to the melting point The amount of heat required for the heating is q I / q o ≈1.1, and the amount of heating can be increased 1.1 times.

【0014】このことは、逆にスロート材の温度を液体
窒素LN2 等の極低温の冷媒により下げてから高エンタ
ルピー気流を流すことにより、スロート材内周面部が融
点まで上昇する温度差を、室温のスロート材の温度にし
た場合より約200Kだけ大きくすることができる。
This means that the temperature difference of the inner peripheral surface of the throat material rises to the melting point by lowering the temperature of the throat material with a cryogenic refrigerant such as liquid nitrogen LN 2 and then flowing a high enthalpy airflow. It can be increased by about 200 K more than when the temperature of the throat material is room temperature.

【0015】[0015]

【発明の実施の形態】以下、本発明の衝撃風洞用ノズル
の実施の一形態を図面にもとづき説明する。図1は本発
明の衝撃風洞用ノズルの実施の第1形態を示す縦断面図
である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a shock wind tunnel nozzle according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of an impact wind tunnel nozzle according to the present invention.

【0016】高エンタルピーの気流Fが流入するノズル
部7の最上流には、図に示すようなノズルスロート16
が設けられる。ノズルスロート16は、軸心方向に貫通
孔があけられ、貫通孔の内周面に極超音速流を発生させ
るためのスロート形状が形成され、従来ノズルスロート
と同様なモリブデン(Mo)系材料、又はタングステン
(W)系材料、又はカッパ(Cu)系材料を用いて形成
されたスロート材13と、スロート材13を極低温の冷
媒、例えば液体窒素(LN2 )、液体水素(LH2 )、
または液体ヘリウム(LHe)により冷却するため、極
低温冷媒を流すためスロート材13の外周面との間に極
低温流体通路14を形成する冷却カバ15とからなる。
In the uppermost stream of the nozzle portion 7 into which the high enthalpy airflow F flows, the nozzle throat 16 as shown in the figure is provided.
Is provided. The nozzle throat 16 has a through hole formed in the axial direction, and a throat shape for generating a hypersonic flow is formed on the inner peripheral surface of the through hole. The nozzle throat 16 has a molybdenum (Mo) -based material similar to the conventional nozzle throat, Alternatively, the throat material 13 formed of a tungsten (W) -based material or a kappa (Cu) -based material, and the throat material 13 is a cryogenic refrigerant such as liquid nitrogen (LN 2 ), liquid hydrogen (LH 2 ),
Alternatively, since it is cooled by liquid helium (LHe), it comprises a cooling cover 15 which forms a cryogenic fluid passage 14 between the cryogenic fluid and the outer peripheral surface of the throat material 13 for flowing the cryogenic refrigerant.

【0017】本実施の形態の衝撃風洞用ノズルは、上述
の構成のノズルスロート16を、図3に示すノズル部7
の最上流に設けることにより、高エンタルピーの気流F
が内周面を流れるスロート材13は、極低温流体通路1
4を流れる極低温冷媒によって冷却されることにより、
スロート材13内周面部が融点に達するに必要な熱量を
数式1で算出されるように増加させることができる。
The impact wind tunnel nozzle according to the present embodiment includes the nozzle throat 16 having the above-described structure and the nozzle portion 7 shown in FIG.
Highest enthalpy air flow F
The throat material 13 flowing on the inner peripheral surface of the
By being cooled by the cryogenic refrigerant flowing through 4,
The amount of heat required to reach the melting point of the inner peripheral surface portion of the throat member 13 can be increased as calculated by Equation 1.

【0018】これにより、高エンタルピーの気流をノズ
ルスロート16を損うことなく流すことができ、風洞性
能を向上させることができるとともに、ノズルスロート
16の交換による運転効率の低下を防止することができ
る。
As a result, a high enthalpy airflow can be passed without damaging the nozzle throat 16, the wind tunnel performance can be improved, and a decrease in operating efficiency due to replacement of the nozzle throat 16 can be prevented. .

【0019】[0019]

【発明の効果】以上説明したように、本発明の衝撃風洞
用ノズルによれば、特許請求の範囲に示す構成により、 (1)ノズルスロートを、低温流体(LH2 、LHe、
LN2 )で冷却した状態で風洞試験を行い、ノズルの融
点までの温度上昇分を増加させることができ、この分だ
け気流エンタルピーを高エンタルピーとすることがで
き、風洞運転領域を、より高マッハ数域まで上げること
ができて、風洞性能を上げることが可能となる。 (2)ノズルスロート寿命が向上し、現状で10ショッ
トでノズルスロートを交換しているものが、20ショッ
トの交換で良くなり、ノズルスロートの交換のために必
要としていた、風洞の停止時間を短縮でき、風洞運転効
率を高めることができる。
As described above, according to the nozzle for impact wind tunnel of the present invention, the nozzle throat has a low temperature fluid (LH 2 , LHe,
The air tunnel enthalpy can be increased by this amount by increasing the temperature rise up to the melting point of the nozzle by conducting a wind tunnel test in a state of being cooled by LN 2 ). It is possible to raise it to several ranges and improve the wind tunnel performance. (2) The life of the nozzle throat has been improved, and it is now possible to replace the nozzle throat with 10 shots, but it is improved with 20 shots, and the stop time of the wind tunnel required for replacing the nozzle throat is shortened. It is possible to improve the wind tunnel operating efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝撃風洞用ノズルの実施の第1形態を
示す縦断面図、
FIG. 1 is a vertical sectional view showing a first embodiment of an impact wind tunnel nozzle according to the present invention;

【図2】図1に示す衝撃風洞用ノズルを適用する衝撃風
洞の全体を示す縦断面図、
FIG. 2 is a vertical cross-sectional view showing an entire impact wind tunnel to which the nozzle for impact wind tunnel shown in FIG. 1 is applied,

【図3】従来の衝撃風洞用ノズルの1列を示す縦断面
図、
FIG. 3 is a vertical cross-sectional view showing one row of a conventional impact wind tunnel nozzle,

【図4】図3に示す衝撃風洞用ノズルのスロートノズル
を示す縦断面図である。
FIG. 4 is a vertical sectional view showing a throat nozzle of the impact wind tunnel nozzle shown in FIG. 3.

【符号の説明】[Explanation of symbols]

1 圧縮空気槽 2 圧縮管 3 高圧隔膜部 4 衝撃波管 5 低圧隔膜部 6 測定部 7 ノズル部 8 ピストン 9 風洞模型 10 風洞本体 11 ローラ 12 (従来の)ノズルスロート 13 スロート材 14 極低温液体通路 15 冷却カバ 16 ノズルスロート 1 Compressed Air Tank 2 Compression Tube 3 High Pressure Diaphragm Section 4 Shock Wave Tube 5 Low Pressure Diaphragm Section 6 Measuring Section 7 Nozzle Section 8 Piston 9 Wind Tunnel Model 10 Wind Tunnel Main Body 11 Roller 12 (Conventional) Nozzle Throat 13 Throat Material 14 Cryogenic Liquid Passage 15 Cooling cover 16 nozzle throat

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温、高圧状態のよどみ点状態の気体か
ら、極超音速流を発生させる衝撃風洞用ノズルにおい
て、軸方向に貫通させた軸対称の貫通孔の内周面に極超
音速流を発生させるためのスロート形状を形成したスロ
ート材と、前記スロート材の外周面との間に、極低温流
体を通過させるジャケットを形成した冷却カバとからな
るノズルスロートを、ノズル部の最上流に設けたことを
特徴とする衝撃風洞用ノズル。
1. A hypersonic flow in an inner peripheral surface of an axially symmetric through hole in a nozzle for an impact wind tunnel that generates hypersonic flow from a stagnation point gas at high temperature and high pressure. A throat member formed with a throat shape for generating a throat shape, and a nozzle throat consisting of a cooling cover having a jacket for passing a cryogenic fluid between the outer peripheral surface of the throat member, and Nozzle for impact wind tunnel characterized by being provided.
JP8004697A 1996-01-16 1996-01-16 Nozzle for shock tunnel Withdrawn JPH09196807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8004697A JPH09196807A (en) 1996-01-16 1996-01-16 Nozzle for shock tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8004697A JPH09196807A (en) 1996-01-16 1996-01-16 Nozzle for shock tunnel

Publications (1)

Publication Number Publication Date
JPH09196807A true JPH09196807A (en) 1997-07-31

Family

ID=11591091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8004697A Withdrawn JPH09196807A (en) 1996-01-16 1996-01-16 Nozzle for shock tunnel

Country Status (1)

Country Link
JP (1) JPH09196807A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406763A (en) * 2014-10-17 2015-03-11 北京航天益森风洞工程技术有限公司 Spray pipe throat channel segment water cooling structure
CN104596723A (en) * 2015-01-28 2015-05-06 中誉远发国际建设集团有限公司 Production method of diffuser used in aerodynamic experiments
CN105890863A (en) * 2016-04-08 2016-08-24 中国空气动力研究与发展中心高速空气动力研究所 Hypersonic speed wind-tunnel nozzle outlet segment water cooling device
CN109695784A (en) * 2018-12-17 2019-04-30 北京动力机械研究所 A kind of nozzle throat section of cooling trough insert
CN111220340A (en) * 2020-01-09 2020-06-02 中国空气动力研究与发展中心超高速空气动力研究所 Shell cooling structure of wind tunnel heating section and manufacturing method thereof
CN112229598A (en) * 2020-10-15 2021-01-15 中国空气动力研究与发展中心高速空气动力研究所 Water-cooling support rod and machining method thereof
CN113916492A (en) * 2021-12-15 2022-01-11 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406763A (en) * 2014-10-17 2015-03-11 北京航天益森风洞工程技术有限公司 Spray pipe throat channel segment water cooling structure
CN104596723A (en) * 2015-01-28 2015-05-06 中誉远发国际建设集团有限公司 Production method of diffuser used in aerodynamic experiments
CN105890863A (en) * 2016-04-08 2016-08-24 中国空气动力研究与发展中心高速空气动力研究所 Hypersonic speed wind-tunnel nozzle outlet segment water cooling device
CN109695784A (en) * 2018-12-17 2019-04-30 北京动力机械研究所 A kind of nozzle throat section of cooling trough insert
CN111220340A (en) * 2020-01-09 2020-06-02 中国空气动力研究与发展中心超高速空气动力研究所 Shell cooling structure of wind tunnel heating section and manufacturing method thereof
CN112229598A (en) * 2020-10-15 2021-01-15 中国空气动力研究与发展中心高速空气动力研究所 Water-cooling support rod and machining method thereof
CN113916492A (en) * 2021-12-15 2022-01-11 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof
CN113916492B (en) * 2021-12-15 2022-02-25 中国空气动力研究与发展中心超高速空气动力研究所 Diaphragm-free shock tunnel throat device and test method thereof

Similar Documents

Publication Publication Date Title
Nakagawa et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger
JPH09196807A (en) Nozzle for shock tunnel
JP5575225B2 (en) Ejector, driving fluid foaming method, and refrigeration cycle apparatus
Bourdon et al. Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows
JP2002340733A (en) Free jet hypersonic wind tunnel testing apparatus
US20060225435A1 (en) Cryocooler with grooved flow straightener
Chen et al. Ejector performance analysis under overall operating conditions considering adjustable nozzle structure
CN108104952A (en) The high temperature support case that a kind of self-loopa efficiently cools down
CN207095818U (en) A kind of conventional hypersonic wind tunnel device
CN105927289A (en) Device for naturally cooling stator cascade of gas turbine and manufacturing method thereof
JP3189928B2 (en) Heavy piston driven shock wind tunnel and control method thereof
Clement et al. Characteristics of sonic jets with tabs
CN114739622A (en) Frosting experimental device and application
US20120180519A1 (en) Heat exchange sytem and method of producing the same
Baccarella et al. Experimental study of heat release induced choking in a supersonic circular combustor
JPH1137577A (en) Nozzle device
CN114813020A (en) Frosting experimental device and application
JP2008208760A (en) Defrosting method and defrosting device of pre-cooling gas turbine system
Dong et al. Study of optimum nozzle exit position (NXP) in a steam ejector refrigeration system
US10274554B2 (en) Nuclear magnetic resonance analysis probe, device and method
Shiraishi et al. Visualization study of velocity profiles and displacements of working gas inside a pulse tube refrigerator
Hilker et al. The Effects of Diffuser Throat Design for a Supersonic Indraft Wind Tunnel
Nakano et al. Development of high efficiency 4 K two-stage pulse tube cryocoolers with split valve unit
JP2024073723A (en) Cooling Structure
Kaushik et al. Wind tunnels

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401