JPH09196630A - Optical constant measuring apparatus and microscope - Google Patents

Optical constant measuring apparatus and microscope

Info

Publication number
JPH09196630A
JPH09196630A JP2316396A JP2316396A JPH09196630A JP H09196630 A JPH09196630 A JP H09196630A JP 2316396 A JP2316396 A JP 2316396A JP 2316396 A JP2316396 A JP 2316396A JP H09196630 A JPH09196630 A JP H09196630A
Authority
JP
Japan
Prior art keywords
light
sample
intensity distribution
optical system
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2316396A
Other languages
Japanese (ja)
Other versions
JP3794745B2 (en
Inventor
Akinori Kawamura
明徳 河村
Mutsumi Hayashi
睦 林
Makoto Sato
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP02316396A priority Critical patent/JP3794745B2/en
Publication of JPH09196630A publication Critical patent/JPH09196630A/en
Application granted granted Critical
Publication of JP3794745B2 publication Critical patent/JP3794745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable measurement of various optical constants of a thin film formed on a substrate or the surface thereof by arranging an irradiation optical system, a photodetecting optical system and a measuring head comprising a light intensity distribution sensor and an optical constant calculator in a compact designing. SOLUTION: Laser light from a laser light source 10 (e.g. semiconductor laser light source) is reflected on a half mirror 11 and condensed with a convex lens 12 (condenser lens) to irradiate a sample 4. The reflected light 7 from the sample 4 is guided to a light intensity distribution sensor 9 by a photodetecting optical system 8. The light intensity distribution sensor 9 detects an intensity distribution within a light beam of the reflected light 7 guided through the photodetecting optical system 8. The light intensity distribution (reflection factor distribution) detected is collated with a theoretical reflection factor distribution to calculate an optical constant of the sample as object. This calculation is performed by an optical constant calculator 3 which, for example, comprises a microcomputer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学定数測定装
置、および少なくともその測定ヘッドを備えた顕微鏡に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical constant measuring device and a microscope equipped with at least a measuring head thereof.

【0002】[0002]

【従来の技術】特開平3−17505号公報に、光ビー
ムを用いて基板の表面上に設けられた薄膜の厚さを測定
する膜厚測定技術が開示されている(以下、BPR法
(BeamProfile Reflectometry)と呼ぶこともある)。
このBPR法は、上記薄膜に様々な角度θから光を照射
し、該薄膜からの反射光(薄膜表面、裏面からの反射光
および薄膜中を散乱した後表面から出射した光)の光ビ
ーム内光強度分布(反射率分布)を上記入射角θに関す
る分布として検出し、検出された分布を、予め求められ
ている各膜厚における分布と照合し、どの膜厚における
分布と一致するかをみることによって、測定対象である
上記薄膜の膜厚を算出するようにしたものである。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 3-17505 discloses a film thickness measuring technique for measuring the thickness of a thin film provided on the surface of a substrate using a light beam (hereinafter, BPR method (BeamProfile). Reflectometry) may also be called).
In this BPR method, the thin film is irradiated with light from various angles θ, and a light beam of reflected light from the thin film (reflected light from the front and back surfaces of the thin film and light emitted from the front surface after scattering in the thin film) The light intensity distribution (reflectance distribution) is detected as the distribution related to the incident angle θ, and the detected distribution is compared with the distribution for each film thickness obtained in advance to see which film thickness matches the distribution. Thus, the film thickness of the thin film to be measured is calculated.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、上記
特開平3−17505号公報で提案されている膜厚測定
技術を利用して、該公報ではシステム的な装置として提
案されていた膜厚測定装置に比べ、よりコンパクトな構
成でかつより多彩な光学定数を測定可能な光学定数測定
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to utilize the film thickness measuring technique proposed in the above-mentioned Japanese Patent Laid-Open No. 3-17505, and to propose a film as a system-like device in the same. An object of the present invention is to provide an optical constant measuring device having a more compact structure and capable of measuring a wider variety of optical constants than a thickness measuring device.

【0004】また、本発明の別の課題は、上記膜厚測定
技術を利用した小型測定ヘッドを組み込んだ顕微鏡を提
供することにある。
Another object of the present invention is to provide a microscope incorporating a small measuring head utilizing the film thickness measuring technique.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の光学定数測定装置は、試料表面に収束光ま
たは発散光を照射する照射光学系、前記収束光または発
散光の前記試料からの反射光を導く受光光学系および該
受光光学系により導かれた反射光の光ビーム内光強度分
布を検出する光強度分布センサを備えた測定ヘッドと、
検出された該光ビーム内光強度分布に基づいて前記試料
の光学定数または前記試料表面に形成された薄膜の光学
定数を算出する光学定数算出装置とを備えたことを特徴
とするものからなる。
In order to solve the above-mentioned problems, an optical constant measuring device of the present invention comprises an irradiation optical system for irradiating a sample surface with convergent light or divergent light, and the sample of the convergent light or divergent light. A light receiving optical system for guiding the reflected light from and a measuring head equipped with a light intensity distribution sensor for detecting the light intensity distribution in the light beam of the reflected light guided by the light receiving optical system,
An optical constant calculating device for calculating the optical constant of the sample or the optical constant of the thin film formed on the sample surface based on the detected light intensity distribution in the light beam.

【0006】また、本発明に係る顕微鏡は、試料台と、
該試料台に装着された試料表面に収束光または発散光を
照射する照射光学系、前記収束光または発散光の前記試
料からの反射光を導く受光光学系および該受光光学系に
より導かれた反射光の光ビーム内光強度分布を検出する
光強度分布センサを備えた測定ヘッドと、該測定ヘッド
を装着する顕微鏡本体とを備えたことを特徴とするもの
からなる。
The microscope according to the present invention comprises a sample table,
An irradiation optical system for irradiating a sample surface mounted on the sample table with convergent light or divergent light, a light receiving optical system for guiding the reflected light from the sample of the convergent light or divergent light, and reflection guided by the light receiving optical system. It is characterized by comprising a measuring head having a light intensity distribution sensor for detecting a light intensity distribution in a light beam of light, and a microscope main body to which the measuring head is attached.

【0007】この顕微鏡において、上記測定ヘッドは、
顕微鏡本体に着脱可能なものであることが好ましい。ま
た上記顕微鏡は、光強度分布センサにより検出された光
ビーム内光強度分布に基づいて前記試料の光学定数また
は前記試料表面に形成された薄膜の光学定数を算出する
光学定数算出装置を備えていることが好ましい。
In this microscope, the measuring head is
It is preferably detachable from the microscope body. Further, the microscope includes an optical constant calculation device that calculates the optical constant of the sample or the optical constant of the thin film formed on the sample surface based on the light intensity distribution in the light beam detected by the light intensity distribution sensor. It is preferable.

【0008】さらに、上記照射光学系は、レーザ光発生
装置を備えたものであることが好ましい。また、上記顕
微鏡は、接眼鏡を備えたものとすることもできる。
Further, it is preferable that the irradiation optical system includes a laser beam generator. Further, the microscope may be equipped with an eyepiece.

【0009】[0009]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は、本発明
の一実施態様に係る光学定数測定装置の概略構成を示し
ている。図において、1は光学定数測定装置全体を示し
ており、該光学定数測定装置1は、測定ヘッド2と光学
定数算出装置3とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an optical constant measuring device according to an embodiment of the present invention. In the figure, reference numeral 1 denotes the entire optical constant measuring device, and the optical constant measuring device 1 comprises a measuring head 2 and an optical constant calculating device 3.

【0010】測定ヘッド2は、試料4の表面に光5を照
射する照射光学系6、光5の試料4からの反射光7を導
く受光光学系8および該受光光学系8により導かれた反
射光7の光ビーム内光強度分布を検出する光強度分布セ
ンサ9を備えている。
The measuring head 2 includes an irradiation optical system 6 for irradiating the surface of the sample 4 with the light 5, a light receiving optical system 8 for guiding the reflected light 7 of the light 5 from the sample 4, and a reflection guided by the light receiving optical system 8. A light intensity distribution sensor 9 for detecting the light intensity distribution in the light beam of the light 7 is provided.

【0011】図1においては、測定対象としての試料4
として、基板4a上に薄膜4bを形成したものを示して
いるが、基板4aのみからなる試料であってもよい。本
発明における光学定数とは、測定対象が基板の場合は、
屈折率または消衰係数を指し、薄膜の場合は屈折率、消
衰係数または膜厚を指す。
In FIG. 1, a sample 4 to be measured is shown.
As a sample, the thin film 4b is formed on the substrate 4a, but a sample including only the substrate 4a may be used. The optical constant in the present invention, when the measurement target is a substrate,
Refers to the refractive index or extinction coefficient, and in the case of a thin film, refers to the refractive index, extinction coefficient or film thickness.

【0012】試料4の表面に向けて、照射光学系6の光
5が照射される。本実施態様では、レーザ光源10(た
とえば半導体レーザ光源)からのレーザ光がハーフミラ
ー11で反射された後、凸レンズ(集光レンズ)12で
集光されて試料4に照射されている。
The light 5 of the irradiation optical system 6 is irradiated toward the surface of the sample 4. In this embodiment, the laser light from the laser light source 10 (for example, a semiconductor laser light source) is reflected by the half mirror 11 and then condensed by a convex lens (condensing lens) 12 to be applied to the sample 4.

【0013】図1においては、照射される光5は、丁度
試料4の表面に焦点が合わされた収束光として描かれて
いるが、図2に示すように、焦点に至る前に試料4の表
面に照射される収束光5aの形態であってもよい。ま
た、図3に示すように、一旦焦点を経た後、実質的に発
散光5bの形態として試料4の表面に照射するようにし
てもよい。要は、平行光でなく、試料4の表面に対して
様々な角度θ(図1に図示)で入射する光であればよ
い。
In FIG. 1, the radiated light 5 is depicted as a convergent light just focused on the surface of the sample 4, but as shown in FIG. It may be in the form of the convergent light 5a that is irradiated onto the. Alternatively, as shown in FIG. 3, after passing through the focus once, the surface of the sample 4 may be irradiated with substantially divergent light 5b. The point is that the light is not parallel light and may be light that is incident on the surface of the sample 4 at various angles θ (illustrated in FIG. 1).

【0014】試料4に照射された光5は、試料4から反
射される。この試料4からの反射光とは、試料表面、試
料裏面における反射光および試料内部での散乱後の反射
光を含むものである。たとえば、基板4a上に形成され
た薄膜4bの光学定数が測定対象となる場合、照射され
た光5の反射は、図4に示すように、多重反射の形態で
行われる。
The light 5 applied to the sample 4 is reflected from the sample 4. The reflected light from the sample 4 includes the reflected light on the front surface of the sample, the reflected light on the back surface of the sample, and the reflected light after being scattered inside the sample. For example, when the optical constant of the thin film 4b formed on the substrate 4a is to be measured, the reflected light 5 is reflected in the form of multiple reflection as shown in FIG.

【0015】図4において、tは薄膜4bの膜厚、
0 、n1 、n2 はそれぞれ空気、薄膜4b、基板4a
の屈折率であり、r1 、r2 は空気と薄膜、薄膜と基板
の境界での光の反射率である。この光の反射率はP偏光
とS偏光とでは異なりそれぞれ次の(1)〜(4)式で
表される。
In FIG. 4, t is the film thickness of the thin film 4b,
n 0 , n 1 and n 2 are air, thin film 4b and substrate 4a, respectively.
And r 1 and r 2 are the reflectances of light at the boundary between air and the thin film, and between the thin film and the substrate. The reflectance of this light differs between P-polarized light and S-polarized light and is expressed by the following equations (1) to (4).

【0016】 r1S=(n1 cos θ1 −n0 cos θ0)/(n1 cos θ1 +n0 cos θ0) (1) r1P=(n1 cos θ0 −n0 cos θ1)/(n1 cos θ0 +n0 cos θ1) (2) r2S=(n2 cos θ2 −n1 cos θ1)/(n2 cos θ2 +n1 cos θ1) (3) r2P=(n2 cos θ1 −n1 cos θ2)/(n2 cos θ1 +n1 cos θ2) (4) ここでSおよびPの添字はそれぞれS偏光およびP偏光
であることを意味する。またθ0 、θ1 、θ2 はそれぞ
れ光が各媒質を通過するときの試料面の法線に対する角
度である。
R 1S = (n 1 cos θ 1 −n 0 cos θ 0 ) / (n 1 cos θ 1 + n 0 cos θ 0 ) (1) r 1P = (n 1 cos θ 0 −n 0 cos θ 1 ) / (N 1 cos θ 0 + n 0 cos θ 1 ) (2) r 2S = (n 2 cos θ 2 −n 1 cos θ 1 ) / (n 2 cos θ 2 + n 1 cos θ 1 ) (3) r 2P = (n 2 cos θ 1 −n 1 cos θ 2 ) / (n 2 cos θ 1 + n 1 cos θ 2 ) (4) where the suffixes S and P mean S-polarized light and P-polarized light, respectively. To do. Further, θ 0 , θ 1 , and θ 2 are angles with respect to the normal to the sample surface when light passes through each medium.

【0017】さて、r1 、r2 は一般的に0でないの
で、図4に示したように光の多重反射が起きる。レーザ
光のようなコヒーレント光では、この多重反射した各光
線a、b、c・・・の間で干渉を考慮した総合的な反射
率Rは、次の(5)式のようになる。 R=(r1 +r2 id)/(1+r1 2 id) (5) ここでdは d=(2π/λ)n1 tcosθ1 (6) であり、tは薄膜の膜厚、λは光の波長である。(5)
式の入射角θ0 に対する反射率の変化をプロットする
と、たとえば図5、図6に示すようなプロファイル(理
論反射率分布)が得られる。この入射角θ0 に対する反
射率の分布は、膜厚tが変われば変化する。
Since r 1 and r 2 are generally not 0, multiple reflection of light occurs as shown in FIG. In coherent light such as laser light, the total reflectance R considering the interference among the multiple-reflected light beams a, b, c ... Is as shown in the following expression (5). R = (r 1 + r 2 e id ) / (1 + r 1 r 2 e id ) (5) where d is d = (2π / λ) n 1 tcos θ 1 (6), and t is the film thickness of the thin film, λ is the wavelength of light. (5)
When the change in reflectance with respect to the incident angle θ 0 in the equation is plotted, for example, profiles (theoretical reflectance distribution) shown in FIGS. 5 and 6 are obtained. The distribution of reflectance with respect to the incident angle θ 0 changes if the film thickness t changes.

【0018】さて、再び図1を参照するに、試料4から
の反射光7は、受光光学系8により光強度分布センサ9
へと導かれる。本実施態様においては、受光光学系8
は、レンズ12、ハーフミラー11と、照射光学系6と
共通の要素、光道を有しているが、照射光学系6とは異
なる光道で構成してもよい。
Referring again to FIG. 1, the reflected light 7 from the sample 4 is reflected by the light receiving optical system 8 and the light intensity distribution sensor 9
It is led to. In the present embodiment, the light receiving optical system 8
Has a lens 12, a half mirror 11, and an element and an optical path that are common to the irradiation optical system 6, but may have an optical path different from that of the irradiation optical system 6.

【0019】光強度分布センサ9は、受光光学系8を導
かれてきた反射光7の光ビーム内強度分布を検出する。
つまり、光ビームの断面方向に、一次元または二次元の
CCDなどのアレイセンサまたはイメージインテンシフ
ァイアなど、少なくとも一次元的な光強度の分布を測定
できる光のセンサを指す。小さな単一の受光部位が少な
くとも一次元的に配列されたものの他、該小さな単一の
受光部位が時間的にビーム内を移動するものを含む。
The light intensity distribution sensor 9 detects the intensity distribution in the light beam of the reflected light 7 guided through the light receiving optical system 8.
That is, it refers to a light sensor capable of measuring at least a one-dimensional distribution of light intensity, such as an array sensor such as a one-dimensional or two-dimensional CCD or an image intensifier in the cross-sectional direction of the light beam. In addition to the arrangement in which at least one dimensional array of small single light receiving portions is arranged, the small single light receiving portion includes one in which the small single light receiving portion moves in the beam with time.

【0020】前述したように、試料4に照射される光5
は様々な角度θで入射されるから、光強度分布センサ9
では、この入射角θに対する光ビーム内光強度の分布、
ひいては反射率の分布として検出される。
As described above, the light 5 irradiated on the sample 4
Is incident at various angles θ, the light intensity distribution sensor 9
Then, the distribution of the light intensity in the light beam with respect to this incident angle θ,
As a result, it is detected as a distribution of reflectance.

【0021】上記検出された光ビーム内光強度分布(た
とえば反射率分布)に基づいて、より具体的には検出さ
れた光強度分布(反射率分布)と前述の理論反射率分布
とが照合され、対象となる試料の光学定数が算出され
る。この算出が、光学定数算出装置3によって行われ
る。光学定数算出装置3は、たとえばマイクロコンピュ
ータからなる。
More specifically, the detected light intensity distribution (reflectance distribution) is collated with the above-mentioned theoretical reflectance distribution based on the detected light intensity distribution (eg reflectance distribution) in the light beam. , The optical constant of the target sample is calculated. This calculation is performed by the optical constant calculation device 3. The optical constant calculation device 3 is composed of, for example, a microcomputer.

【0022】光学定数算出装置3においては、図7にそ
の処理を概念的に示すように、たとえば基板4a上に形
成された薄膜4bについて、前述の如く予め薄膜4bの
物理的なモデル20から理論的に入射角θに対する反射
率Rを、各膜厚tについて算出しておく。この理論式に
より、たとえばモデル21に示すように、膜厚tをパラ
メータとして各種反射率特性(特性カーブ)が求まる。
そして、センサ9による実測値として、モデル22に示
すような入射角θに対する反射率Rの実測特性が検出さ
れるから、この実際に測定された反射率分布情報を上記
理論カーブに対して、たとえば非線形最小2乗法でフィ
ッティング(カーブフィッティング23)を行うことに
より、膜厚等の各パラメータを算出(推定24)するこ
とが可能となる。
In the optical constant calculation device 3, as conceptually shown in FIG. 7, for the thin film 4b formed on the substrate 4a, for example, as described above, theoretically from the physical model 20 of the thin film 4b. Specifically, the reflectance R with respect to the incident angle θ is calculated for each film thickness t. With this theoretical formula, various reflectance characteristics (characteristic curves) can be obtained with the film thickness t as a parameter, as shown in the model 21, for example.
Then, as the actual measurement value by the sensor 9, the actual measurement characteristic of the reflectance R with respect to the incident angle θ as shown in the model 22 is detected, and thus the actually measured reflectance distribution information is compared with the theoretical curve, for example. By performing the fitting (curve fitting 23) by the non-linear least squares method, each parameter such as the film thickness can be calculated (estimated 24).

【0023】本発明は、上述のような測定ヘッド2およ
び光学定数算出装置3を備えた光学定数測定装置1を、
一つのまとまった装置として実現したものである。上記
カーブフィッティングによる算出から、前述の(5)、
(6)式に基づいて、測定対象が基板の場合にはその屈
折率、消衰係数を求めることが可能となり、測定対象が
薄膜の場合には、その屈折率、消衰係数または膜厚を求
めることが可能となる。
The present invention provides an optical constant measuring device 1 having the measuring head 2 and the optical constant calculating device 3 as described above,
It was realized as a single unit. From the above curve fitting calculation, the above (5),
When the measurement target is a substrate, the refractive index and the extinction coefficient can be calculated based on the equation (6). When the measurement target is a thin film, the refractive index, the extinction coefficient, or the film thickness can be calculated. It becomes possible to ask.

【0024】上述のような測定原理に基づいて、上記の
ような測定ヘッドを顕微鏡に組み込むことができる。す
なわち、図8に本発明に係る顕微鏡の一実施態様の基本
構成を示すように、該顕微鏡31は、試料台32と、該
試料台32に装着された試料33の表面に前述のような
収束光または発散光を照射する照射光学系、上記収束光
または発散光の試料33からの反射光を導く受光光学系
および該受光光学系により導かれた反射光の光ビーム内
光強度分布を検出する光強度分布センサを備えた測定ヘ
ッド34と、該測定ヘッド34を装着する顕微鏡本体3
5とを備えている。上記測定ヘッド34は、顕微鏡本体
35に着脱可能に構成されている。
Based on the above-described measuring principle, the measuring head as described above can be incorporated in a microscope. That is, as shown in FIG. 8 which shows the basic configuration of one embodiment of the microscope according to the present invention, the microscope 31 has the above-described focusing on the surface of the sample stage 32 and the sample 33 mounted on the sample stage 32. An irradiation optical system for irradiating light or divergent light, a light receiving optical system for guiding the converged light or divergent light reflected from the sample 33, and a light intensity distribution in the light beam of the reflected light guided by the light receiving optical system are detected. Measuring head 34 equipped with a light intensity distribution sensor, and microscope body 3 to which the measuring head 34 is attached
5 is provided. The measuring head 34 is configured to be attachable to and detachable from the microscope body 35.

【0025】また、測定ヘッド34以外の部分は、基本
的には市販の顕微鏡と同等の構成を有しており、本実施
態様においては、対物レンズ36、照明光源37(たと
えば白色光源)、CCDカメラ等からなる撮像カメラ3
8、接眼鏡39を備えている。
The parts other than the measuring head 34 have basically the same structure as a commercially available microscope. In this embodiment, the objective lens 36, the illumination light source 37 (for example, a white light source), the CCD. Imaging camera 3 including a camera
8. The eyepiece 39 is provided.

【0026】より具体的な構造は、たとえば図9に示す
ように実現できる。図9においては、図8に示したと同
等の機能を有する部位に、図8に付したのと同じ符号を
付してある。
A more specific structure can be realized, for example, as shown in FIG. In FIG. 9, portions having the same functions as those shown in FIG. 8 are designated by the same reference numerals as those given in FIG.

【0027】この顕微鏡31の内部は、たとえば図10
に示すような構成を有している。図10において、測定
ヘッド34は、試料33に向けて照射される光としての
レーザ光を出射するレーザ光源40を備えており、レー
ザ光源40からのレーザ光41がハーフミラー42で反
射された後、対物レンズ36で集光されて試料33の表
面に照射される。
The inside of the microscope 31 is, for example, as shown in FIG.
It has a configuration as shown in FIG. In FIG. 10, the measurement head 34 includes a laser light source 40 that emits laser light as light to be irradiated toward the sample 33, and after the laser light 41 from the laser light source 40 is reflected by the half mirror 42. The light is condensed by the objective lens 36 and is irradiated onto the surface of the sample 33.

【0028】試料33からの反射光が、本実施態様では
照射光学系と一部同じ光道を有する受光光学系を通り、
ハーフミラー42を透過した後ハーフミラー43で反射
され、コンデンサレンズ44で集光され、ピンホール4
5を通した後ビームスプリッタ46を介して、アレイセ
ンサ47、48にて、光ビーム内光強度分布がP偏光成
分、S偏光成分として検出される。
In the present embodiment, the reflected light from the sample 33 passes through the light receiving optical system having the same optical path as that of the irradiation optical system,
After passing through the half mirror 42, it is reflected by the half mirror 43 and condensed by the condenser lens 44, and the pinhole 4
After passing 5 through the beam splitter 46, the array sensors 47 and 48 detect the light intensity distribution in the light beam as a P-polarized component and an S-polarized component.

【0029】そして本実施態様では、検出された光ビー
ム内光強度分布の信号が光学定数算出装置49に送ら
れ、該光学定数算出装置49にて、検出された光ビーム
内光強度分布に基づいて、前述の測定原理により試料3
3の光学定数が算出される。
In the present embodiment, the signal of the detected light intensity distribution in the light beam is sent to the optical constant calculation device 49, and the optical constant calculation device 49 uses the detected light intensity distribution in the light beam based on the detected light intensity distribution. Then, the sample 3
The optical constant of 3 is calculated.

【0030】上記光学定数算出装置49は、顕微鏡31
と一体的な、あるいは1セットの装置として構成されて
いる。したがって、光学定数算出装置49を含む顕微鏡
装置として、前述の測定原理に基づいて試料33の光学
定数を測定することが可能となる。
The optical constant calculating device 49 comprises a microscope 31.
It is configured as an integrated device or a set of devices. Therefore, it becomes possible to measure the optical constant of the sample 33 based on the above-mentioned measurement principle as a microscope device including the optical constant calculation device 49.

【0031】また、予め光学定数が判っている標準試料
を各種準備し、その標準試料でキャリブレーションして
測定対象となる試料33の光学定数を求めることもでき
る。
It is also possible to prepare various standard samples whose optical constants are known in advance and calibrate with the standard samples to obtain the optical constants of the sample 33 to be measured.

【0032】また、上記測定ヘッド34は、顕微鏡本体
35に着脱可能なコンパクトな構成を有するから、市販
の顕微鏡に簡単な改造を加えるだけで本測定ヘッド34
を組み込むことが可能となっている。
Further, since the measuring head 34 has a compact structure which can be attached to and detached from the microscope main body 35, the main measuring head 34 can be obtained by simply modifying a commercially available microscope.
Can be incorporated.

【0033】なお、図10に示した態様では、従来から
知られている顕微鏡と同様、照明光源として白色光源5
0、集光レンズ51、ハーフミラー52、撮像カメラと
してCCDカメラ53、リレーレンズ54を組み込んで
ある。
In the embodiment shown in FIG. 10, the white light source 5 is used as the illumination light source as in the conventionally known microscope.
0, a condenser lens 51, a half mirror 52, a CCD camera 53 as an imaging camera, and a relay lens 54 are incorporated.

【0034】また、前述の接眼鏡39で肉眼にて観る場
合には、レーザ光が接眼鏡内にまで到達してくることは
好ましくないので、該到達レーザ光を弱くするか、レー
ザ光のみ選択的にカットすることが好ましい。レーザ光
のみを選択的にカットする手段として、たとえばレーザ
光に含まれる波長域の光のみ反射または吸収するノッチ
フィルタ(図示略)があり、これをたとえばハーフミラ
ー43とハーフミラー52の間に挿入して、該ノッチフ
ィルタでレーザ光のみをカットした状態で接眼鏡を通し
て観るようにすればよい。
When viewing with the naked eye through the eyepiece 39, it is not preferable that the laser light reaches the inside of the eyepiece. Therefore, the reaching laser light is weakened or only the laser light is selected. It is preferable to cut it. As a means for selectively cutting only the laser light, for example, there is a notch filter (not shown) that reflects or absorbs only the light in the wavelength range included in the laser light, which is inserted between the half mirror 43 and the half mirror 52, for example. Then, the notch filter may be used to view only the laser light through the eyepiece.

【0035】このように、本発明に係る顕微鏡において
は、上述のような機能を備えた小型の測定ヘッド34を
組み込むことにより、つまり、汎用顕微鏡における光学
系の途中に上記の小型測定ヘッド34を挿入すること
で、極めて便利に試料33の光学定数を測定することが
可能になる。
As described above, in the microscope according to the present invention, the small measuring head 34 having the above-mentioned functions is incorporated, that is, the small measuring head 34 is provided in the middle of the optical system of the general-purpose microscope. By inserting, the optical constant of the sample 33 can be measured very conveniently.

【0036】[0036]

【発明の効果】以上説明したように、本発明の光学定数
測定装置によれば、コンパクトな装置構成で、基板や基
板表面に形成された薄膜の各種光学定数を測定すること
が可能となる。
As described above, according to the optical constant measuring device of the present invention, it is possible to measure various optical constants of the substrate or the thin film formed on the substrate surface with a compact device configuration.

【0037】また、顕微鏡本体に本発明に係る測定ヘッ
ドを組み込むことで、汎用の顕微鏡とそれ程変わらない
サイズのコンパクトな顕微鏡構成にて、試料の光学定数
を簡単に測定することができるようになる。
Further, by incorporating the measuring head according to the present invention in the main body of the microscope, it becomes possible to easily measure the optical constants of the sample with a compact microscope structure having a size not much different from that of a general-purpose microscope. .

【0038】本発明は、たとえば、液晶ディスプレイ用
基板や、各種基板上に形成された薄膜の光学定数、たと
えば膜厚や、屈折率、消衰係数等の光学定数の測定に適
用でき、さらに、光学定数の測定を要するあらゆる分野
においての適用が可能である。
The present invention can be applied to, for example, measurement of optical constants of liquid crystal display substrates and thin films formed on various substrates, for example, optical constants such as film thickness, refractive index and extinction coefficient. It can be applied to all fields that require measurement of optical constants.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様に係る光学定数測定装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an optical constant measuring device according to an embodiment of the present invention.

【図2】試料に照射される収束光の一例を示す概略構成
図である。
FIG. 2 is a schematic configuration diagram showing an example of convergent light with which a sample is irradiated.

【図3】試料に照射される発散光の一例を示す概略構成
図である。
FIG. 3 is a schematic configuration diagram showing an example of divergent light with which a sample is irradiated.

【図4】試料における多重反射の様子を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a state of multiple reflection in a sample.

【図5】S偏光反射率の一例を示す、入射角に対する特
性図である。
FIG. 5 is a characteristic diagram showing an example of S-polarized reflectance with respect to an incident angle.

【図6】P偏光反射率の一例を示す、入射角に対する特
性図である。
FIG. 6 is a characteristic diagram showing an example of P-polarized reflectance with respect to an incident angle.

【図7】光学定数算出装置における処理例を示す説明図
である。
FIG. 7 is an explanatory diagram showing a processing example in the optical constant calculation device.

【図8】本発明の一実施態様に係る顕微鏡の概略構成図
である。
FIG. 8 is a schematic configuration diagram of a microscope according to an embodiment of the present invention.

【図9】本発明の一実施態様に係る顕微鏡のより具体的
な外観構成を示す構成図である。
FIG. 9 is a configuration diagram showing a more specific external configuration of the microscope according to the embodiment of the present invention.

【図10】本発明の顕微鏡の内部構成例を示す概略構成
図である。
FIG. 10 is a schematic configuration diagram showing an internal configuration example of a microscope of the present invention.

【符号の説明】[Explanation of symbols]

1 光学定数測定装置 2 測定ヘッド 3 光学定数算出装置 4 試料 4a 基板 4b 薄膜 5 照射される光 5a 収束光 5b 発散光 6 照射光学系 7 反射光 8 受光光学系 9 光強度分布センサ 10 レーザ光源 11 ハーフミラー 12 対物レンズ 31 顕微鏡 32 試料台 33 試料 34 測定ヘッド 35 顕微鏡本体 36 対物レンズ 37 照明光源 38 撮像カメラ 39 接眼鏡 40 レーザ光源 41 レーザ光 42、43、52 ハーフミラー 44 コンデンサレンズ 45 ピンホール 46 ビームスプリッタ 47、48 アレイセンサ 49 光学定数算出装置 50 白色光源 51 集光レンズ 53 CCDカメラ 54 リレーレンズ DESCRIPTION OF SYMBOLS 1 Optical constant measuring device 2 Measuring head 3 Optical constant calculating device 4 Sample 4a Substrate 4b Thin film 5 Irradiated light 5a Convergent light 5b Convergent light 6 Irradiation optical system 7 Reflected light 8 Light receiving optical system 9 Light intensity distribution sensor 10 Laser light source 11 Half mirror 12 Objective lens 31 Microscope 32 Sample stage 33 Sample 34 Measuring head 35 Microscope main body 36 Objective lens 37 Illumination light source 38 Imaging camera 39 Eyepiece 40 Laser light source 41 Laser light 42, 43, 52 Half mirror 44 Condenser lens 45 Pinhole 46 Beam splitter 47, 48 Array sensor 49 Optical constant calculation device 50 White light source 51 Condenser lens 53 CCD camera 54 Relay lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料表面に収束光または発散光を照射す
る照射光学系、前記収束光または発散光の前記試料から
の反射光を導く受光光学系および該受光光学系により導
かれた反射光の光ビーム内光強度分布を検出する光強度
分布センサを備えた測定ヘッドと、検出された該光ビー
ム内光強度分布に基づいて前記試料の光学定数または前
記試料表面に形成された薄膜の光学定数を算出する光学
定数算出装置とを備えたことを特徴とする光学定数測定
装置。
1. An irradiation optical system for irradiating a sample surface with convergent light or divergent light, a light receiving optical system for guiding the reflected light of the convergent light or divergent light from the sample, and a reflected light guided by the light receiving optical system. A measuring head including a light intensity distribution sensor for detecting a light intensity distribution in the light beam, and an optical constant of the sample or a thin film formed on the sample surface based on the detected light intensity distribution in the light beam. An optical constant measuring device for calculating the optical constant.
【請求項2】 試料台と、該試料台に装着された試料表
面に収束光または発散光を照射する照射光学系、前記収
束光または発散光の前記試料からの反射光を導く受光光
学系および該受光光学系により導かれた反射光の光ビー
ム内光強度分布を検出する光強度分布センサを備えた測
定ヘッドと、該測定ヘッドを装着する顕微鏡本体とを備
えたことを特徴とする顕微鏡。
2. A sample table, an irradiation optical system for irradiating the surface of the sample mounted on the sample table with convergent light or divergent light, a light receiving optical system for guiding the reflected light of the convergent light or divergent light from the sample, and A microscope comprising: a measuring head having a light intensity distribution sensor for detecting a light intensity distribution in a light beam of reflected light guided by the light receiving optical system; and a microscope main body to which the measuring head is mounted.
【請求項3】 前記測定ヘッドは、前記顕微鏡本体に着
脱可能なものである、請求項2に記載の顕微鏡。
3. The microscope according to claim 2, wherein the measuring head is attachable to and detachable from the microscope body.
【請求項4】 前記光強度分布センサにより検出された
光ビーム内光強度分布に基づいて前記試料の光学定数ま
たは前記試料表面に形成された薄膜の光学定数を算出す
る光学定数算出装置を備えている、請求項2または3に
記載の顕微鏡。
4. An optical constant calculating device for calculating an optical constant of the sample or an optical constant of a thin film formed on the sample surface based on the light intensity distribution in the light beam detected by the light intensity distribution sensor. The microscope according to claim 2 or 3, which is present.
【請求項5】 前記照射光学系がレーザ光発生装置を備
えている、請求項2ないし4のいずれかに記載の顕微
鏡。
5. The microscope according to claim 2, wherein the irradiation optical system includes a laser light generator.
【請求項6】 接眼鏡を備えている、請求項2ないし5
のいずれかに記載の顕微鏡。
6. The apparatus according to claim 2, further comprising an eyepiece.
The microscope according to any one of 1.
JP02316396A 1996-01-16 1996-01-16 Optical constant measuring device and microscope Expired - Fee Related JP3794745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02316396A JP3794745B2 (en) 1996-01-16 1996-01-16 Optical constant measuring device and microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02316396A JP3794745B2 (en) 1996-01-16 1996-01-16 Optical constant measuring device and microscope

Publications (2)

Publication Number Publication Date
JPH09196630A true JPH09196630A (en) 1997-07-31
JP3794745B2 JP3794745B2 (en) 2006-07-12

Family

ID=12102955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02316396A Expired - Fee Related JP3794745B2 (en) 1996-01-16 1996-01-16 Optical constant measuring device and microscope

Country Status (1)

Country Link
JP (1) JP3794745B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300205A (en) * 2008-06-12 2009-12-24 Horiba Ltd End point detecting apparatus
WO2019031667A1 (en) * 2017-08-07 2019-02-14 한국표준과학연구원 Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
KR102015216B1 (en) * 2018-03-12 2019-08-28 한국표준과학연구원 An apparatus and method for measuring the thickness and refractive index of multilayer thin films using angle-resolved spectral interference image according to polarization
WO2021020604A1 (en) * 2019-07-29 2021-02-04 한국표준과학연구원 Measurement apparatus and measurement method for thickness and refractive index of multi-layer thin film, using angle-resolved spectral interference image according to polarization
WO2021033860A1 (en) * 2019-08-16 2021-02-25 한국표준과학연구원 Device and method for measuring thickness of multilayer thin film using one-shot angle-resolved spectroscopic reflectometry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300205A (en) * 2008-06-12 2009-12-24 Horiba Ltd End point detecting apparatus
WO2019031667A1 (en) * 2017-08-07 2019-02-14 한국표준과학연구원 Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
US20210341283A1 (en) * 2017-08-07 2021-11-04 Korea Research Institute Of Standards And Science Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
US11906281B2 (en) * 2017-08-07 2024-02-20 Korea Research Institute Of Standards And Science Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
KR102015216B1 (en) * 2018-03-12 2019-08-28 한국표준과학연구원 An apparatus and method for measuring the thickness and refractive index of multilayer thin films using angle-resolved spectral interference image according to polarization
WO2021020604A1 (en) * 2019-07-29 2021-02-04 한국표준과학연구원 Measurement apparatus and measurement method for thickness and refractive index of multi-layer thin film, using angle-resolved spectral interference image according to polarization
US11466978B2 (en) 2019-07-29 2022-10-11 Korea Research Institute Of Standard And Science Apparatus and method for measuring the thickness and refractive index of multilayer thin films using angle-resolved spectral interference image according to polarization
WO2021033860A1 (en) * 2019-08-16 2021-02-25 한국표준과학연구원 Device and method for measuring thickness of multilayer thin film using one-shot angle-resolved spectroscopic reflectometry
US11243070B2 (en) 2019-08-16 2022-02-08 Korea Research Institute Of Standards And Science Apparatus and method for multilayer thin film thickness measurement using single-shot angle-resolved spectral reflectometry

Also Published As

Publication number Publication date
JP3794745B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
EP0647827B1 (en) Film thickness measurement of structures containing a scattering surface
US20080018909A1 (en) Droplet shape measuring method and apparatus
US7466427B2 (en) Vibration-resistant interferometer apparatus
JP2002034919A (en) Eye optical characteristic measuring apparatus
JP3794745B2 (en) Optical constant measuring device and microscope
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP2003035510A (en) Position detector
JP3688560B2 (en) Optical measuring device
JPH01145504A (en) Optically measuring apparatus
JP2003075764A (en) Apparatus for determining light power level, microscope, and method for microscopy
JPH10176906A (en) Measuring device
JP2000056236A (en) Focusing device, focusing method, optical constant measuring instrument and microscope
JPS6266111A (en) Optical distance detecting device
JP4112072B2 (en) Optical measuring device and optical measuring adapter
JP4068237B2 (en) Nasal permeability tester
KR20090068838A (en) Apparatus for inspection of surface shape
JPH10158834A (en) Optical system for film thickness measurement and film forming system having the optical system
JP2000105101A (en) Oblique-incidence interferometer device
JPH10142078A (en) Non-contact temperature measuring device
JP3829663B2 (en) Spectrophotometer
JP2815808B2 (en) Radiation thermometer
JPS60211304A (en) Measuring instrument for parallelism
JPH07270145A (en) Flatness measuring apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040206

A521 Written amendment

Effective date: 20040326

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees