JPH0919580A - Cushion material and production thereof - Google Patents

Cushion material and production thereof

Info

Publication number
JPH0919580A
JPH0919580A JP17186095A JP17186095A JPH0919580A JP H0919580 A JPH0919580 A JP H0919580A JP 17186095 A JP17186095 A JP 17186095A JP 17186095 A JP17186095 A JP 17186095A JP H0919580 A JPH0919580 A JP H0919580A
Authority
JP
Japan
Prior art keywords
crimped
fiber
fibers
heat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17186095A
Other languages
Japanese (ja)
Other versions
JP3646814B2 (en
Inventor
Hideo Isoda
英夫 磯田
Tadaaki Hamaguchi
忠昭 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP17186095A priority Critical patent/JP3646814B2/en
Publication of JPH0919580A publication Critical patent/JPH0919580A/en
Application granted granted Critical
Publication of JP3646814B2 publication Critical patent/JP3646814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cushion material which is excellent in flatting resistance at room temperatures and is small in an amount of noxious gas produced when it burns by dispersing resin bonding-parts for joining the intersections of crimped fibers into opened crimped fubers, and by using, as the resin bonding parts, the ones obtained by fusing and aggregating thermoplastic elastic resin. SOLUTION: A cushion material which is most suitable for a vehicle, bed, comforter, etc., is obtained by dispersing resin bonding-parts for joinging the intersections of crimped fibers into opened crimped fibers, and as the resin bonding-parts the ones obtained by fusing and aggregaing thermoplastic elastic resin whose melting point or flow start temperature is 100-200 deg.C are used. The cushion material contains the thermoplastic elastic resin in an amount of 5wt.% or more, and is a three-dimensional structure body in which the crimped fibers form beam structures, and has a bulk density of 0.01-0.10g/cm<3> . Further, as the crimped fibers, stereoscopically crimped polyester fibers whose single fiber fineness is 45 denier or less and initial tension resistance is 30g/d or more are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】熱可塑性弾性樹脂で捲縮繊維の交
差点に接着点を形成したクッション材及びその製法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cushioning material in which an adhesive point is formed at an intersection of crimped fibers with a thermoplastic elastic resin, and a manufacturing method thereof.

【0002】[0002]

【従来技術】現在、ベッド用のベットマットはクッショ
ン層に硬鋼線スプリング又は発泡スチロール等の発泡体
を用い、ワディング層に発泡ウレタンや非弾性捲縮繊維
を接着した樹脂綿や硬綿などが積層一体化されたもの、
及びクッション体が同一組成のウレタン等の発泡体や非
弾性捲縮繊維を接着した樹脂綿又は硬綿のみで構成され
たものが使用されている。
2. Description of the Related Art At present, bed mats for beds use a hard steel wire spring or a foamed material such as styrofoam for a cushion layer, and a wadding layer laminated with resin cotton or hard cotton with adhered urethane foam or inelastic crimped fiber. Integrated,
Also, a cushion body made of only a foamed material such as urethane having the same composition or a resin cotton or a hard cotton to which an inelastic crimped fiber is adhered is used.

【0003】しかしながら、クッション層に硬鋼線スプ
リングを用いたものは、サポ−ト性は著しく優れている
が、折り曲げ性に劣り、又、廃棄時に硬鋼線スプリング
を分離して処理するための煩雑さが大きい問題となって
いる。クッション層又はワディング層又はクッション体
に発泡−架橋型ウレタンを用いたものは、クッション体
としての耐久性は極めて良好だが、透湿透水性に劣り蓄
熱性があるため蒸れやすく、折り曲げ性もやや劣り、か
つ、熱可塑性では無いためリサイクルが困難となり焼却
される場合、焼却炉の損傷が大きく、かつ、有毒ガス除
去に経費が掛かる。このため埋め立てされることが多く
なったが、地盤の安定化が困難なため埋め立て場所が限
定され経費も高くなっていく問題がある。また、加工性
は優れるが製造中に使用される薬品の公害問題などもあ
る。また、最近、病院用ベットがMRSA等の温床とな
る問題からベットマットの洗濯が必要だが、透水性に劣
るウレタンは洗濯ができないため社会問題になってい
る。
However, the one using a hard steel wire spring for the cushion layer is remarkably excellent in supportability, but is inferior in bending property, and the hard steel wire spring is separated and treated at the time of disposal. Complexity is a big problem. The cushion layer or wadding layer or the one using foam-crosslinking type urethane for the cushion body has very good durability as a cushion body, but it has poor moisture permeability and heat storage property, so it easily gets damp and slightly bendable. In addition, since it is not thermoplastic and it is difficult to recycle it and it is incinerated, the incinerator is greatly damaged and the cost of removing toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, recently, it is necessary to wash the bed mat due to the problem that hospital beds become hot beds such as MRSA, but urethane, which has poor water permeability, has become a social problem because it cannot be washed.

【0004】クッション層又はワディング層又はクッシ
ョン体がポリエステル繊維を接着剤で接着した樹脂綿、
例えば接着剤にゴム系を用いたものとして特開昭60−
11352号公報、特開昭61−141388号公報、
特開昭61−141391号公報等がある。又、架橋性
ウレタンを用いたものとして特開昭61−137732
号公報等がある。これらをクッション層又はワディング
層に用いたものは、通気性をよくして蒸れを軽減できる
が、耐久性と折り曲げ性に劣り、且つ、熱可塑性でな
く、単一組成でもないためリサイクルも出来ない等の問
題、及び加工性の煩雑さや製造中に使用される薬品の公
害問題などもある。また、洗濯は可能だが、水切り性が
悪い問題がある。
A resin cotton, in which a cushion layer or a wadding layer or a cushion body is formed by adhering polyester fibers with an adhesive,
For example, as an adhesive using a rubber system, Japanese Patent Laid-Open No. 60-
11352, JP-A-61-141388,
There is JP-A-61-141391. In addition, as one using a crosslinkable urethane, Japanese Patent Laid-Open No. 61-137732
No. publication. Those using these as a cushion layer or a wadding layer can improve breathability and reduce stuffiness, but are inferior in durability and bendability, and are not thermoplastic or single composition and therefore cannot be recycled. There are also problems such as complexity of processability and pollution of chemicals used during manufacturing. Also, although it can be washed, it has a problem of poor drainage.

【0005】クッション層又はワディング層又はクッシ
ョン体にポリエステル硬綿、例えば特開昭58−311
50号公報、特開平2−154050号公報、特開平3
−220354号公報等があるが、用いている熱接着繊
維の接着成分が脆い非晶性のポリマ−を用いるため(例
えば特開昭58−136828号公報、特開平3−24
9213号公報等)接着部分が脆く、使用中に接着部分
が簡単に破壊されて形態や弾力性が低下するなどの耐久
性が劣る問題がある。更に折り曲げ性が劣るものであ
る。また、洗濯は可能だが、水切り性が悪い問題があ
る。耐久性の改良法として、交絡処理する方法が特開平
4−245965号公報等で提案されているが、接着部
分の脆さは解決されず弾力性の低下が大きく、折り曲げ
性も劣る問題がある。また、加工時の煩雑さもある。更
には接着部分が変形しにくくソフトなクッション性を付
与しにくい問題もある。このため、接着部分を柔らか
い、且つある程度変形しても回復するポリエステルエラ
ストマ−を用い、芯成分に非弾性ポリエステルを用いた
熱接着繊維が特開平4−240219号公報で、同繊維
を用いたクッション体がWO−91/19032号公
報、特開平5−156561号公報、特開平5−163
654号公報等で提案されている。この繊維構造物に使
われる接着成分がポリエステルエラストマ−のソフトセ
グメントとしてはポリアルキレングリコ−ルの含有量が
30〜50重量%、ハ−ドセグメントの酸成分にテレフ
タル酸を50〜80モル%含有し、他の酸成分組成とし
て特公昭60−1404号公報に記載された繊維と同様
にイソフタル酸を含有して非晶性が増すことになり、融
点も180℃以下となり低溶融粘度として熱接着部分の
形成を良くしてアメーバー状の接着部を形成しているが
塑性変形しやいため、及び芯成分が非弾性ポリエステル
のため、特に加熱下での塑性変形が著しくなり、耐熱抗
圧縮性が低下する問題点、及び折り曲げ性が劣り、洗濯
は可能だが、水切り性が悪い問題点がある。耐久性を更
なる改良法として、特開平5−163654号公報にシ
−ス成分にイソフタル酸を含有するポリエステルエラス
トマ−、コア成分に非弾性ポリエステルを用いた熱接着
複合繊維のみからなる構造体が提案されているが上述の
理由で加熱下での塑性変形が著しくなり、耐熱抗圧縮性
が低下し、クッション体に使用するには問題がある。
又、硬綿の母材にシリコ−ン油剤を付与して繊維の摩擦
係数を下げて耐久性を向上し、風合いを良くする方法が
特開昭63−158094号公報で提案されている。
が、熱接着繊維の接着性に問題があり、耐久性が劣るの
でクッション体に使用するには好ましくない。他方、折
り曲げ性の改良法として、折り畳み構造にする方法が特
開昭55−36373号公報、特開平2−142513
号公報、特開平5−3894号公報等で提案されている
が、折り曲げ性は改良されたが、耐久性や洗濯時の問題
は何ら改良されず、クッション体として用いるには問題
が多いものである。又、折り曲げ部分に空洞を作って折
り曲げ性を改良したものとして、例えば特開平5−28
5031号公報等があるが、ウレタン等の発泡体の問
題、又は硬綿の問題を何ら解決できていない。
Polyester hard cotton for the cushion layer or the wadding layer or the cushion body, for example, JP-A-58-311.
50, JP-A-2-154050, JP-A-3
However, since an amorphous polymer in which the adhesive component of the heat-adhesive fiber used is brittle is used (for example, JP-A-58-136828 and JP-A-3-24).
(Patent No. 9213, etc.) There is a problem that durability is inferior such that the bonded portion is brittle and the bonded portion is easily broken during use, and the form and elasticity are lowered. Furthermore, it is inferior in bendability. Also, although it can be washed, it has a problem of poor drainage. As a method for improving durability, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965 and the like, but brittleness of an adhesive portion is not solved and elasticity is largely reduced, and there is a problem that bending property is poor. . In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. Therefore, a heat-bonded fiber using a polyester elastomer which is soft and recovers even if it is deformed to some extent and uses an inelastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion using the fiber is disclosed. The body is WO-91 / 19032, JP-A-5-155651, JP-A-5-163.
No. 654, etc. The adhesive component used in this fiber structure contains 30 to 50% by weight of polyalkylene glycol as the soft segment of polyester elastomer, and 50 to 80 mol% of terephthalic acid as the acid component of the hard segment. However, similar to the fiber described in JP-B-60-1404 as another acid component composition, isophthalic acid is added to increase the amorphous property, and the melting point becomes 180 ° C. or lower, resulting in low melt viscosity and thermal bonding. The amoebar-shaped adhesive part is formed by improving the part formation, but it is easy to plastically deform, and because the core component is an inelastic polyester, the plastic deformation becomes remarkable especially under heating, and the heat resistance and compression resistance are high. There is a problem that it deteriorates, and it is inferior in bendability and can be washed, but it has a problem that drainability is poor. As a method of further improving the durability, a structure comprising only a polyester polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding conjugate fiber using an inelastic polyester as a core component is disclosed in JP-A-5-163654. Although proposed, the plastic deformation under heating becomes remarkable due to the above-mentioned reason, the heat resistance and compression resistance are lowered, and there is a problem in using it for the cushion body.
Further, Japanese Patent Laid-Open No. 63-158094 proposes a method in which a silicone oil is added to a hard cotton base material to lower the coefficient of friction of fibers to improve durability and improve the texture.
However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a cushion body. On the other hand, as a method of improving the bendability, a method of forming a folding structure is disclosed in JP-A-55-36373 and JP-A-2-142513.
As disclosed in Japanese Patent Laid-Open No. 5-3894 and Japanese Patent Laid-Open No. 5-3894, the bending property is improved, but the durability and the problem at the time of washing are not improved, and there are many problems when used as a cushion body. is there. In addition, a cavity is formed in the bent portion to improve the bendability, for example, Japanese Patent Laid-Open No. 5-28.
Although there is a publication such as Japanese Patent No. 5031, the problem of foam such as urethane or the problem of hard cotton cannot be solved at all.

【0006】[0006]

【発明が解決しようとする課題】蒸れ難く、室温での耐
へたり性、及び耐熱耐へたり性を有し、難燃性で燃焼時
に有毒ガスの発生を少なくして安全性が高く、リサイク
ルも可能とした、車両用、ベット用、布団用、座蒲団
用、家具用、枕用等に最適なクッション材とその製法を
提供することにある。
[Problems to be Solved by the Invention] It is hard to get stuffy, has sag resistance at room temperature, and has heat and sag resistance. It is flame-retardant and highly safe by reducing generation of toxic gas during combustion. Another object of the present invention is to provide an optimum cushioning material for vehicles, beds, futons, seats, furniture, pillows, etc. and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち、本発明は、開繊された捲縮繊維中に、捲
縮繊維の交差点を接合する樹脂接着部が散在するクッシ
ョン材であり、上記樹脂接着部は、融点又は流動開始温
度が100〜220℃の熱可塑性弾性樹脂が溶融し、凝
集して形成されたものであり、該熱可塑性弾性樹脂は、
クッション材中に全重量比で5%以上含まれており、ク
ッション材は、捲縮繊維を梁構造とした三次元構造体を
形成しており、嵩密度が0.01〜0.10g/cm3
あることを特徴とするクッション材であり、更には、捲
縮繊維が単糸繊度が45デニ−ル以下で、初期引張抵抗
度(IS)が30g/d以上の立体捲縮を持つポリエス
テル繊維であるクッション材であり、クッション材中の
熱可塑性弾性樹脂が示差走査型熱量計にて測定した融解
曲線において、融点以下70℃以上の温度範囲で融点以
外に吸熱ピークを有するクッション材であり、熱可塑性
弾性樹脂がポリエステルであるクッション材であり、厚
みが5mm以上で、見掛け密度が0.02g/cm3 〜0.
06g/cm3 のクッション材であり、熱可塑性弾性樹脂
の含有量が10〜50重量%であるクッション材であ
り、熱可塑性樹脂からなる捲縮繊維と5重量%以上の熱
可塑性弾性樹脂からなる全融型熱接着繊維を混合開繊し
て捲縮繊維中に熱接着繊維を分散させたウェッブを積層
し、嵩密度が0.01g/cm3 〜0.10g/cm3 の構
造体となるように圧縮した状態で、該熱接着繊維を加熱
溶融させて捲縮繊維同志の接触部に凝集させ樹脂接着部
を形成し、捲縮繊維を梁構造とした三次元構造体を形成
させるクッション材の製法であり、捲縮繊維を梁構造と
した三次元構造体を形成させた後、一旦冷却し、次いで
60℃〜熱可塑性弾性樹脂の融点より20℃から100
℃低い温度で少なくとも10分以上疑似結晶化処理する
クッション材の製法であり、該熱接着繊維を構成する熱
可塑性弾性樹脂の融点又は流動開始温度より10〜80
℃高く、捲縮繊維の結晶融解温度以下の温度で溶融させ
て樹脂接着部を形成するクッション材の製法であり、捲
縮繊維に乾熱200℃、5分間のフリー熱処理後の捲縮
の伸びを含む弾性限界伸度(Δε)%とISがIS≧
(Δε+0.6)-2.8×103 +10を満足し、捲縮度
(Ci)が15%以上、捲縮数(Cn)が10個/イン
チ以上のポリエステル立体捲縮繊維を用いたクッション
材の製法である。
[Means for Solving the Problems] Means for solving the above problems, that is, the present invention provides a cushioning material in which resin adhesive portions for joining intersections of crimped fibers are scattered in opened crimped fibers. The melting point or the flow starting temperature of the thermoplastic resin is 100 to 220 ° C., and the resin adhesive part is formed by aggregating, and the thermoplastic elastic resin is
The cushion material contains 5% or more of the total weight ratio, and the cushion material forms a three-dimensional structure having a crimped fiber beam structure and a bulk density of 0.01 to 0.10 g / cm 3. Cushion material characterized by being 3 , and further polyester having a three-dimensional crimp of crimped fibers having a single yarn fineness of 45 denier or less and an initial tensile resistance (IS) of 30 g / d or more. A cushion material which is a fiber, and a thermoplastic elastic resin in the cushion material has an endothermic peak other than the melting point in a temperature range of 70 ° C. or lower and the melting point in a melting curve measured by a differential scanning calorimeter. , The thermoplastic elastic resin is polyester, the thickness is 5 mm or more, and the apparent density is 0.02 g / cm 3 to 0.
It is a cushion material of 06 g / cm 3 and the content of the thermoplastic elastic resin is 10 to 50% by weight, and it is composed of crimped fibers made of the thermoplastic resin and 5% by weight or more of the thermoplastic elastic resin. the web obtained by dispersing heat-bonding fibers laminated into the crimped fibers are mixed spreading the ZenTorugata thermal bonding fibers, bulk density is the structure of 0.01g / cm 3 ~0.10g / cm 3 Cushioning material for forming a three-dimensional structural body having a crimped fiber as a beam structure by heat-melting the heat-adhesive fiber in such a compressed state to agglomerate the contact portions of the crimped fibers to form a resin-bonded portion After forming a three-dimensional structure having a crimped fiber as a beam structure, it is once cooled, and then 60 ° C. to 20 ° C. to 100 ° C. depending on the melting point of the thermoplastic elastic resin.
A method for producing a cushioning material, which is subjected to a pseudo-crystallization treatment at a temperature of a low temperature of at least 10 minutes for 10 minutes or more from a melting point or a flow starting temperature of a thermoplastic elastic resin constituting the thermal bonding fiber.
It is a manufacturing method of a cushioning material which is high in ℃ and melts at a temperature not higher than the crystal melting temperature of the crimped fiber to form a resin adhesive part. The crimped fiber has a dry heat of 200 ° C. Including elastic limit elongation (Δε)% and IS is IS ≧
(Δε + 0.6) −2.8 × 10 3 +10 is satisfied, and the degree of crimp (Ci) is 15% or more, and the number of crimps (Cn) is 10 cushions / inch or more. It is a manufacturing method.

【0008】本発明における熱可塑性樹脂とは、ポリエ
ステル、ポリアミド、ポリオレフィン等が例示できる。
なお、本発明ではガラス転移点温度が少なくとも40℃
以上のものを使用するのが好ましい。例えば、ポリエス
テルでは、ポリエチレンテレフタレ−ト(PET)、ポ
リエチレンナフタレ−ト(PEN)、ポリシクロヘキシ
レンジメチレンテレフタレ−ト(PCHDT)、ポリシ
クロヘキシレンジメチレンナフタレ−ト(PCHD
N)、ポリブチレンテレフタレ−ト(PBT)、ポリブ
チレンナフタレ−ト(PBN)、ポリアリレ−ト等、及
びそれらの共重合ポリエステル等が例示できる。ポリア
ミドでは、ポリカプロラクタム(NY6)、ポリヘキサ
メチレンアジパミド(NY66)、ポリヘキサメチレン
セバカミド(NY6−10)等が例示できる。ポリオレ
フィンとしては、ポリプロピレン(PP)、ポリブテン
・1(PB・1)等が例示できる。本発明に用いる熱可
塑性樹脂の好ましい実施形態として高度の難燃性を付与
する場合は、熱可塑性弾性樹脂中に燐含有量(Bpp
m)が500≦B≦10000の関係を満足するのが良
い。満足しない場合は高度の難燃性が劣る場合がある。
10000ppmを越えると可塑化効果による塑性変形
が大きくなり熱可塑性樹脂の耐熱性が劣るので好ましく
ない。好ましい燐含有量1500≦B≦8000であ
り、より好ましい燐含有量は2000≦B≦6000で
ある。難燃性は多量のハロゲン化物と無機物を添加して
高度の難燃性を付与する方法があるが、燃焼時に致死量
の少ない有毒なハロゲンガスを多量に発生し、火災時の
中毒の問題があり、焼却時には、焼却炉の損傷が大きく
なるので、本発明では、好ましいハロゲン化物の含有量
は10重量%以下、より好ましいハロゲン化物の含有量
は5重量%以下、最も好ましくはハロゲン化物を含有し
ないものである。本発明の燐系難燃剤としては、例え
ば、ポリエステル系熱可塑性弾性樹脂の場合、樹脂重合
時に、ハ−ドセグメント部分に難燃剤として、例えば特
開昭51−82392号公報等に記載された10〔2・
3・ジ(2・ヒドロキシエトキシ)−カルボニルプロピ
ル〕9・10・ジヒドロ・9・オキサ・10ホスファフ
ェナレンス・10オキシロ等のカルボン酸をハ−ドセグ
メントの酸成分の一部として共重合したポリエステル系
熱可塑性弾性樹脂とする方法や、熱可塑性弾性樹脂に後
工程で、例えば、トリス(2・4−ジ−t−ブチルフェ
ニル)フスファイト等の燐系化合物を添加して難燃性を
付与することができる。その他、難燃性を付与できる難
燃剤としては、各種燐酸エステル、亜燐酸エステル、ホ
スホン酸エステル(必要に応じハロゲン元素を含有する
上記燐酸エステル類)、もしくはこれら燐化合物から誘
導される重合物が例示できる。本発明は、熱可塑性弾性
樹脂中に各種改質剤、添加剤、着色剤等を必要に応じて
添加できる。本発明クッション材に高度の難燃性を付与
するために、好ましい実施形態として捲縮繊維に燐を含
有させており、この理由は、上記している如く、安全性
の観点から、火災時に発生するシアンガス、ハロゲンガ
ス等の致死量の少ない有毒ガスをできるだけ少なくする
ことにある。このため、本発明クッション材を構成する
接着成分の燃焼ガスの毒性指数は、好ましくは6以下、
より好ましくは5.5以下である。なお、塩化ビニ−ル
は自己消火性を有するが燃焼すると有毒ガスを多く発生
すること、及び耐熱耐久性が劣るので本発明に用いるの
は好ましくない。クッション材が共にポリエステルやナ
イロンまたはポリオレフィンに統一されている場合は、
クッション材はマテリアルリサイクルも可能となる。例
えばポリエステルの場合、分別分離しないでも溶融再生
してリサイクルできるし、メタノ−ル分解等公知の方法
でモノマ−に分解して回収もできる。少なくとも95%
以上、好ましくは99%以上ポリエステルであり、他の
組成物は添加物として使用されるものを除き制限され
る。添加物中にハロゲン系組成物や窒素系組成物を含む
と火災等の燃焼時に有毒ガスを発生するので含有しない
ものが好ましい。また、熱可塑性のないもの、ポリエス
テルでも架橋して溶融しないものは火災時ロ−ソク効果
でよく燃え危険なため本発明のクッション材および座席
の素材として含有することを制限される。クッション材
がポリエステルで側地にもポリエステルを用いる場合
は、廃棄する場合に分離せずにリサイクルが可能で、耐
熱性も良好なPET、PEN、PBN、PCHDT等の
ポリエステルが特に好ましい。ポリエステル繊維を用い
る他の目的の一つは、繊維の水分率を低下させるためで
あるが、発汗した水分は速やかに皮膚面より移動させる
必要から繊維表面は親水化して放水性を高めるのが好ま
しく、例えば、ポリエチレンオキサイド(PEO)やポ
リエチレングリコ−ル(PEG)、ポリプロピレングリ
コ−ル(PPG)、ポリブチレングリコ−ル(PBG)
等のポリエ−テル類及びそれらの共重合体や燐化合物と
の反応物を少なくとも0.05重量%以上繊維表面に存
在することが好ましい。より好ましくは0.1重量%以
上1重量%以下である。2重量%以上存在させると繊維
の摩擦係数が高くなり、開繊性が劣るので好ましくな
い。後加工で付与してもよいが、洗濯耐久性を保持する
ためには、ポリエステルに混合するのが好ましい。混合
方法は、重合時に添加する方法やポリマ−ブレンドして
練り込む方法、紡糸時に溶融ブレンドして練り込む方法
が使える。混合する場合の添加量は、PEGでは、分子
量5000以上20000以下のものを1重量%以上1
0重量%以下添加するのが好ましい。1重量%未満では
充分な放水性が付与できず、15重量%以上では、繊維
のモジュラスが低下するので好ましくない。更には、繊
維断面を異形断面又は中空異形断面にしてサイホン効果
でより効率的に放水性を付与するのがより好ましい。異
形断面の場合は後加工でも耐久性が付与できるので好ま
しい実施形態である。
Examples of the thermoplastic resin in the present invention include polyester, polyamide, polyolefin and the like.
In the present invention, the glass transition temperature is at least 40 ° C.
It is preferable to use the above. For example, for polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycyclohexylene dimethylene terephthalate (PCHDT), polycyclohexylene dimethylene naphthaleate (PCHD)
N), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyarylate and the like, and copolymerized polyesters thereof can be exemplified. Examples of polyamides include polycaprolactam (NY6), polyhexamethyleneadipamide (NY66), and polyhexamethylenesebacamide (NY6-10). Examples of the polyolefin include polypropylene (PP) and polybutene-1 (PB-1). When a high degree of flame retardancy is imparted as a preferred embodiment of the thermoplastic resin used in the present invention, the phosphorus content (Bpp) is contained in the thermoplastic elastic resin.
It is preferable that m) satisfy the relationship of 500 ≦ B ≦ 10000. If not satisfied, the high flame retardancy may be inferior.
If it exceeds 10000 ppm, the plastic deformation due to the plasticizing effect increases and the heat resistance of the thermoplastic resin deteriorates, which is not preferable. A preferable phosphorus content is 1500 ≦ B ≦ 8000, and a more preferable phosphorus content is 2000 ≦ B ≦ 6000. For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. Therefore, in the incineration, the damage of the incinerator becomes large, so that in the present invention, the preferable halide content is 10% by weight or less, the more preferable halide content is 5% by weight or less, and the most preferable halide content is It does not. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic elastic resin, a flame-retardant in the hard segment portion during resin polymerization is described, for example, in JP-A-51-82392. [2 ...
Carboxylic acid such as 3-di (2-hydroxyethoxy) -carbonylpropyl] 9,10, dihydro, 9, oxa, 10 phosphaphenalene, 10 oxylo was copolymerized as a part of the acid component of the hard segment. A flame-retardant property is imparted by adding a phosphorus-based compound such as tris (2.4-di-t-butylphenyl) -fusphite in a subsequent step to the thermoplastic thermoplastic resin or in the thermoplastic elastic resin. can do. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. In order to impart a high degree of flame retardancy to the cushion material of the present invention, the crimped fiber is made to contain phosphorus as a preferred embodiment. The reason for this is that, in view of safety, it occurs during a fire, as described above. The purpose is to reduce the amount of toxic gas such as cyan gas and halogen gas, which has a small lethal amount, as much as possible. Therefore, the toxicity index of the combustion gas of the adhesive component constituting the cushioning material of the present invention is preferably 6 or less,
It is more preferably 5.5 or less. Although vinyl chloride has self-extinguishing properties, it produces a large amount of toxic gas when burned, and its heat resistance and durability are poor, so it is not preferable to use it in the present invention. If the cushioning materials are both polyester, nylon or polyolefin,
The cushion material can also be recycled. For example, in the case of polyester, it can be recycled by melting and recycling without separation and separation, or it can be recovered by decomposing it into a monomer by a known method such as decomposition of methanol. At least 95%
Above, preferably above 99% polyester, other compositions are limited except those used as additives. If a halogen-based composition or a nitrogen-based composition is included in the additive, a toxic gas is generated at the time of combustion such as a fire, and therefore it is preferable that the additive is not included. Further, those having no thermoplasticity and those which are not cross-linked and melted even with polyester are often burned due to the candle effect in the case of a fire and are dangerous to be contained in the cushion material and the seat material of the present invention. When the cushion material is polyester and polyester is also used for the side material, it is particularly preferable to use PET, PEN, PBN, PCHDT or the like, which can be recycled without being separated when discarded and has good heat resistance. One of the other purposes of using the polyester fiber is to reduce the moisture content of the fiber, but it is preferable to increase the water discharge by hydrophilizing the fiber surface because the sweated water needs to be quickly transferred from the skin surface. , For example, polyethylene oxide (PEO), polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol (PBG)
It is preferable that at least 0.05% by weight or more of the reaction product of the above polyethers and their copolymers and phosphorus compounds is present on the fiber surface. It is more preferably 0.1% by weight or more and 1% by weight or less. When it is present in an amount of 2% by weight or more, the friction coefficient of the fiber becomes high and the openability is deteriorated, which is not preferable. Although it may be applied by post-processing, it is preferably mixed with polyester in order to maintain durability against washing. As a mixing method, a method of adding at the time of polymerization, a method of kneading with a polymer blend, and a method of melt kneading with kneading at the time of spinning can be used. In the case of mixing, PEG has a molecular weight of 5,000 or more and 20,000 or less and 1 wt% or more and 1
It is preferable to add 0% by weight or less. If it is less than 1% by weight, sufficient water discharge cannot be imparted, and if it is 15% by weight or more, the modulus of the fiber decreases, which is not preferable. Furthermore, it is more preferable that the cross section of the fiber is a modified cross section or a hollow modified cross section to more efficiently give water discharge by the siphon effect. A modified cross-section is a preferred embodiment because durability can be imparted even in post-processing.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香8ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜5000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。特殊な例では、ポリシロキサン系のソフトセグメン
トを導入したものも使うこたができる。また、上記エラ
ストマ−に非エラストマ−成分をブレンドされたもの、
共重合したもの、ポリオレフィン系成分をソフトセグメ
ントにしたもの等も本発明の熱可塑性弾性樹脂に包含さ
れる。ポリアミド系エラストマ−としては、ハ−ドセグ
メントにナイロン6、ナイロン66、ナイロン610、
ナイロン612、ナイロン11、ナイロン12等及びそ
れらの共重合ナイロンを骨格とし、ソフトセグメントに
は、平均分子量が約300〜5000のポリエチレング
リコ−ル、ポリプロピレングリコ−ル、ポリテトラメチ
レングリコ−ル、エチレンオキシド−プロピレンオキシ
ド共重合体からなるグリコ−ル等のポリアルキレンジオ
−ルのうち少なくとも1種から構成されるブロック共重
合体を単独または2種類以上混合して用いてもよい。更
には、非エラストマ−成分をブレンドされたもの、共重
合したもの等も本発明に使用できる。ポリウレタン系エ
ラストマ−としては、通常の溶媒(ジメチルホルムアミ
ド、ジメチルアセトアミド等)の存在または不存在下
に、(A)数平均分子量1000〜6000の末端に水
酸基を有するポリエ−テル及び又はポリエステルと
(B)有機ジイソシアネ−トを主成分とするポリイソシ
アネ−トを反応させた両末端がイソシアネ−ト基である
プレポリマ−に、(C)ジアミンを主成分とするポリア
ミンにより鎖延長したポリウレタンエラストマ−を代表
例として例示できる。(A)のポリエステル、ポリエ−
テル類としては、平均分子量が約1000〜6000、
好ましくは1300〜5000のポリブチレンアジペ−
ト共重合ポリエステルやポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体か
らなるグリコ−ル等のポリアルキレンジオ−ルが好まし
く、(B)のポリイソシアネ−トとしては、従来公知の
ポリイソシアネ−トを用いることができるが、ジフェニ
ルメタン4・4’ジイソシアネ−トを主体としたイソシ
アネ−トを用い、必要に応じ従来公知のトリイソシアネ
−ト等を微量添加使用してもよい。(C)のポリアミン
としては、エチレンジアミン、1・2プロピレンジアミ
ン等公知のジアミンを主体とし、必要に応じて微量のト
リアミン、テトラアミンを併用してもよい。これらのポ
リウレタン系エラストマ−は単独又は2種類以上混合し
て用いてもよい。なお、本発明の熱可塑性弾性樹脂の融
点又は流動開始温度が100℃以上220℃以下であ
る。100℃未満ではクッション材の接着点の耐熱性が
劣り好ましくない。220℃を越えると熱接着点形成時
の加熱温度を非常に高くする必要があり、捲縮繊維の劣
化を生じて、クッション材の耐久性が低下するので好ま
しくない。本発明では耐熱耐久性が保持できる140℃
以上210℃以下が好ましく、160℃以上200℃以
下のものを用いるとクッション材の耐熱耐久性が向上す
るのでより好ましい。なお、本発明クッション材の接着
点を形成する熱可塑性弾性樹脂中のソフトセグメントは
熱安定性がやや劣るので、必要に応じ、抗酸化剤等を添
加して耐熱性や耐久性を向上させるのが特に好ましい。
抗酸化剤は、好ましくはヒンダ−ド系抗酸化剤として
は、ヒンダ−ドフェノ−ル系とヒンダ−ドアミン系があ
り、窒素を含有しないヒンダ−ドフェノ−ル系抗酸化剤
を0.3%〜5%添加して、好ましくは0.5%から3
%添加して熱分解を抑制することで、耐熱性がより向上
するので特に好ましい。本発明の目的である好ましい耐
久性とクッション性を兼備できるクッション材の接着点
を構成する熱可塑性弾性樹脂の後述する方法で測定した
伸長回復性は、室温での300%伸長後の回復率(室温
伸長回復率)は20%以上、70℃での10%伸長を2
4時間保持した後の回復率(70℃伸長回復率)は30
%以上であり、より好ましくは、室温伸長回復率が30
%以上、70℃伸長回復率が40%以上であり、最も好
ましくは、室温伸長回復率が40%以上、70℃伸長回
復率が50%以上とする。このような伸長回復性を付与
する成分を構成する熱可塑性弾性樹脂のソフトセグメン
ト含有量は好ましくは15重量%以上、より好ましくは
30重量%以上であり、耐熱耐へたり性からは80重量
%以下が好ましく、より好ましくは70重量%以下であ
る。即ち、本発明の弾性網状体の振動や応力の吸収機能
をもたせる成分のソフトセグメント含有量は好ましくは
15重量%以上80重量%以下であり、より好ましくは
30重量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic 8 dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid and diphenyl 4.4 'dicarboxylic acid. At least 1 of an alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, an aliphatic dicarboxylic acid such as succinic acid, adipic acid, and sebacic acid dimer acid, or a dicarboxylic acid selected from these ester-forming derivatives Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, glycol made of ethylene oxide-propylene oxide copolymer and the like. . The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and polytetramethylene glycol as polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. In addition, the above elastomer is blended with a non-elastomer component,
Those obtained by copolymerization and those obtained by softening the polyolefin component are also included in the thermoplastic elastic resin of the present invention. As a polyamide elastomer, the hard segment is nylon 6, nylon 66, nylon 610,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 612, nylon 11, nylon 12, etc. and their copolymerized nylon. -A block copolymer composed of at least one kind of polyalkylenediol such as glycol composed of a propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal with a number average molecular weight of 1000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as (A) Polyester, Polyester
The tellers have an average molecular weight of about 1000 to 6000,
Preferably from 1300 to 5000 polybutylene adipates
Copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
Polyalkylenediol such as glycol and ethylene oxide-propylene oxide copolymer glycol is preferable, and as the polyisocyanate of (B), a conventionally known polyisocyanate can be used. An isocyanate mainly composed of 4'diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1.2 propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point or flow starting temperature of the thermoplastic elastic resin of the present invention is 100 ° C or higher and 220 ° C or lower. If it is less than 100 ° C., the heat resistance of the cushion material at the bonding point is poor, which is not preferable. If it exceeds 220 ° C., it is necessary to raise the heating temperature at the time of forming the heat-bonding point to an extremely high level, which causes deterioration of the crimped fibers and reduces the durability of the cushion material, which is not preferable. In the present invention, heat resistance and durability can be maintained at 140 ° C.
It is preferably 210 ° C. or lower, and more preferably 160 ° C. or higher and 200 ° C. or lower because the heat resistance and durability of the cushioning material is improved. Since the soft segment in the thermoplastic elastic resin forming the bonding points of the cushioning material of the present invention has slightly poor thermal stability, an antioxidant or the like may be added to improve heat resistance and durability, if necessary. Is particularly preferable.
The antioxidant is preferably a hindered phenol-based antioxidant and a hindered amine-based antioxidant, and a nitrogen-free hindered phenol-based antioxidant is 0.3% to 5% added, preferably 0.5% to 3
% To suppress thermal decomposition, heat resistance is further improved, which is particularly preferable. The elongation recovery measured by the method described later of the thermoplastic elastic resin constituting the adhesion point of the cushioning material which has both the preferable durability and the cushioning property, which is the object of the present invention, is the recovery rate after 300% elongation at room temperature ( Room temperature elongation recovery rate) is 20% or more, 10% elongation at 70 ° C is 2%
Recovery rate (70 ° C extension recovery rate) after holding for 4 hours is 30
% Or more, and more preferably, the room temperature extension recovery rate is 30.
% Or more and 70 ° C. extension recovery rate is 40% or more, and most preferably, room temperature extension recovery rate is 40% or more and 70 ° C. extension recovery rate is 50% or more. The soft segment content of the thermoplastic elastic resin constituting the component imparting such elongation recovery is preferably 15% by weight or more, more preferably 30% by weight or more, and 80% by weight from the viewpoint of heat and fatigue resistance. The following is preferable, and 70% by weight or less is more preferable. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の好ましい実施形態では、クッショ
ン材中の接着点を構成する熱可塑性弾性樹脂が、示差走
査型熱量計にて測定した融解曲線において、融点以下に
吸熱ピ−クを有するのが好ましい。融点以下70℃以上
の温度範囲で融点以外に吸熱ピ−クを有するものは、耐
熱耐へたり性が吸熱ピ−クを有しないものより著しく向
上する。例えば、本発明の好ましいポリエステル系熱可
塑性樹脂として、ハ−ドセグメントの酸成分に剛直性の
あるテレフタル酸やナフタレン2・6ジカルボン酸など
を90モル%以上含有するもの、より好ましくはテレフ
タル酸やナフタレン2・6ジカルボン酸の含有量は95
モル%以上、特に好ましくは100モル%とグリコ−ル
成分をエステル交換後、必要な重合度まで重合し、次い
で、ポリアルキレンジオ−ルとして、好ましくは平均分
子量が500以上5000以下、特に好ましくは100
0以上3000以下のポリテトラメチレングリコ−ルを
15重量%以上70重量%以下、より好ましくは30重
量%以上60重量%以下共重合量させた場合、ハ−ドセ
グメントの酸成分に剛直性のあるテレフタル酸やナフタ
レン2・6ジカルボン酸の含有量が多いとハ−ドセグメ
ントの結晶性が向上し、塑性変形しにくく、かつ、耐熱
抗へたり性が向上するが、溶融熱接着後更に融点より少
なくとも10℃以上低い温度でアニ−リング処理すると
より耐熱抗へたり性が向上する。圧縮歪みを付与してか
らアニ−リングすると更に耐熱抗へたり性が向上する。
このような処理をした網状体を示差走査型熱量計で測定
した融解曲線に室温以上融点以下の温度で吸熱ピークを
より明確に発現する。なおアニ−リングしない場合は融
解曲線に室温以上融点以下に吸熱ピ−クを発現しない。
このことから類推するに、アニ−リングにより、ハ−ド
セグメントが再配列され、疑似結晶化様の架橋点が形成
され、耐熱抗へたり性が向上しているのではないかとも
考えられる。(この処理を疑似結晶化処理と定義する)
この疑似結晶化処理効果は、ポリアミド系弾性樹脂やポ
リウレタン系弾性樹脂にも有効である。
In a preferred embodiment of the present invention, the thermoplastic elastic resin constituting the adhesion point in the cushion material has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. preferable. Those having an endothermic peak in addition to the melting point in the temperature range of not higher than the melting point and not lower than 70 ° C. have markedly improved heat resistance and sag resistance as compared with those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 95
After transesterification of the glycol component with mol% or more, particularly preferably 100 mol%, polymerization is carried out to a required degree of polymerization, and then, as the polyalkylene diol, the average molecular weight is preferably 500 or more and 5000 or less, particularly preferably 100
When 0 to 3000 polytetramethylene glycol is copolymerized in an amount of 15 to 70% by weight, more preferably 30 to 60% by weight, the acid component of the hard segment is rigid. When the content of a certain terephthalic acid or naphthalene 2.6 dicarboxylic acid is high, the crystallinity of the hard segment is improved, the plastic deformation is less likely to occur, and the heat resistance and sag resistance are improved, but the melting point is further increased after the melt heat bonding. When the annealing treatment is performed at a temperature lower by at least 10 ° C. or more, the heat resistance and sag resistance is further improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved.
The endothermic peak is more clearly expressed in the melting curve measured by a differential scanning calorimeter of the reticulated body thus treated at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point.
By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This process is defined as pseudo crystallization process)
This pseudo-crystallization treatment effect is also effective for polyamide-based elastic resins and polyurethane-based elastic resins.

【0011】本発明で言う捲縮繊維とは、機械捲縮また
は立体捲縮が付与された繊維を言う。捲縮形態は所望に
応じ決められるが、嵩高性を求める場合は捲縮繊維に立
体捲縮を用いるのが好ましい。好ましい立体捲縮形態
は、波型立体捲縮である。捲縮度(Ci)が10%以下
では嵩高性が低下し、捲縮数(Cn)が10個/インチ
以下では弾力性が低下する。所望する風合いにあわせ
て、ソフトな風合いが必要な場合ではCnが低く、Ci
が少し高いものを用い、弾力性を出すためにはCi、C
nとも高いものを用いるのが好ましい。ハ−ドな風合い
が必要な場合は、Cnの特に高いものを用いるのがより
好ましい。本発明では、Ciが12%以上30%以下、
Cnが10個/インチ以上が好ましく、Ciが15%以
上25%以下、Cnが12〜30個/インチにすると嵩
高性と共に弾力性と硬さが付与できるので特に好まし
い。本発明の捲縮繊維の単糸繊度は特には限定されない
が、熱接着繊維と混繊しカ−ドウェッブ化してクッショ
ン材を作る場合、単糸繊度が50デニ−ルを越える太い
繊度では、クッション性が低下すると共に構成本数が少
なくなるので耐久性のある低密度クッション材とするの
が困難となるので好ましくない。他方、単糸繊度が0.
5デニ−ル未満では、嵩高性が低下する。本発明での捲
縮繊維の単糸繊度は、1デニ−ル以上45デニ−ル以下
が好ましく、2デニ−ル以上30デニ−ル以下がより好
ましいが、所望に応じて、硬さを付与したい場合は8デ
ニ−ル以上、加工性の良い30デニ−ル以下が好まし
く、ソフトさを付与したい場合2デニ−ル以上8デニ−
ル以下とするのが好ましい。捲縮繊維の初期引張抵抗度
(IS)は、受けた応力に応じて弾性変形しつつ、接触
する捲縮繊維に応力を伝達する梁の機能をもたすために
は30g/デニ−ル以上とするのが好ましい。ISが2
0g/デニ−ル以下では、大きい変形応力を受けると塑
性変形して耐へたり性が低下するので好ましくない。I
Sが100g/デニ−ルを越えるとしなやかな変形がで
きず、衝撃破壊を生じる場合があるので、より好ましく
は35g/デニ−ル以上100g/デニ−ル以下であ
る。捲縮繊維の断面形状は特には限定されないが、中空
断面や異形断面とすることで嵩高性や剛直性が向上する
ので好ましい。突起を三方向に持つ中空異形断面では断
面二次モ−メントが高く、捩じり変形に強くなるので、
立体捲縮とした場合特に好ましい形状である。カット長
は特に限定されないが、製造法からは通常のカ−ド開繊
も可能で絡合性を保持し易い40mmから120mmが好ま
しい。
The crimped fibers referred to in the present invention are fibers to which mechanical crimps or three-dimensional crimps have been applied. Although the crimp form is determined as desired, it is preferable to use three-dimensional crimps for the crimped fibers when bulkiness is desired. A preferred three-dimensional crimp form is a corrugated three-dimensional crimp. When the crimping degree (Ci) is 10% or less, the bulkiness decreases, and when the crimping number (Cn) is 10 pieces / inch or less, the elasticity decreases. When a soft texture is required according to the desired texture, Cn is low and Ci
Is a little higher, Ci, C
It is preferable to use a high n. When a hard texture is required, it is more preferable to use one having a particularly high Cn. In the present invention, Ci is 12% or more and 30% or less,
Cn is preferably 10 pieces / inch or more, Ci is 15% or more and 25% or less, and Cn is 12 to 30 pieces / inch because it is possible to impart bulkiness and elasticity and hardness, which is particularly preferable. Although the single-filament fineness of the crimped fiber of the present invention is not particularly limited, in the case of making a cushioning material by mixing with the heat-adhesive fiber to form a card web, if the single-filament fineness exceeds 50 denier, the cushion Since it is difficult to obtain a durable low-density cushioning material, since it is difficult to obtain a durable low-density cushioning material, it is not preferable. On the other hand, the single yarn fineness is 0.
If it is less than 5 denier, the bulkiness decreases. The single yarn fineness of the crimped fiber in the present invention is preferably 1 denier or more and 45 denier or less, more preferably 2 denier or more and 30 denier or less, but imparts hardness as desired. If desired, it is preferably 8 denier or more and 30 denier or less with good workability, and if softness is desired, 2 denier or more and 8 denier.
It is preferably not more than The initial tensile resistance (IS) of the crimped fiber is 30 g / denier or more in order to have the function of a beam for transmitting the stress to the crimped fiber in contact with the crimped fiber while elastically deforming according to the stress received. Is preferred. IS is 2
When it is less than 0 g / denier, it is not preferable because it is plastically deformed when it receives a large deformation stress and the sag resistance is lowered. I
If S exceeds 100 g / denier, it may not be able to be flexibly deformed to cause impact fracture. Therefore, it is more preferably 35 g / denier or more and 100 g / denier or less. The cross-sectional shape of the crimped fiber is not particularly limited, but a hollow cross section or a modified cross section is preferable because the bulkiness and rigidity are improved. In the hollow irregular cross section having protrusions in three directions, the secondary moment of the cross section is high and it is resistant to torsional deformation.
A three-dimensional crimp is a particularly preferable shape. The cut length is not particularly limited, but it is preferably 40 mm to 120 mm because of the manufacturing method, it is possible to open the card normally and the entanglement is easily maintained.

【0012】本発明は、捲縮繊維を構成繊維とし、全重
量比で5重量%以上の熱可塑性弾性樹脂が溶融して捲縮
繊維同志の接触部で凝集して接着点を形成し、捲縮繊維
を梁構造とした三次元構造体を形成した嵩密度が0.0
1g/cm3 〜0.10g/cm 3 のクッション材である。
捲縮繊維同志の接触部で熱可塑性弾性樹脂が凝集した接
着点を形成しているため、接着点は強固に形成され、且
つ捲縮繊維が梁構造を形成しているので、変形応力を受
けると捲縮繊維が梁の作用で応力を受け止め、捲縮繊維
同士が接触して互いに支えあった支点を熱可塑性弾性樹
脂で接合されているので、梁から梁への応力伝達に必要
な僅かな変形を接着点が僅かに変形して応力を吸収しつ
つ次の捲縮繊維に連続的に応力を伝えていき三次元構造
体全体で応力を吸収することができる。応力が除かれる
と接着点のゴム弾性で直ちに元の形態に回復する。大き
い応力で大変形を伴う場合には、梁が変形しつつ梁が塑
性変形する前に接着点も梁の変形に応じて大変形し、三
次元構造体全体で応力を吸収でき、接着点も捲縮繊維も
応力が解除されると直ちに回復し元の形態を復元するこ
とができる。このことで、梁の剛直性と接合部のゴム弾
性が同時に機能して好ましいクッション性と耐へたり性
を発現する。更に前述の結晶化処理により接着点がより
回復性が改良されているので、耐熱耐へたり性も著しく
良好なクッション材となっている。他方、接着点をシ−
ス・コア構造で、コアが非弾性樹脂からなる熱接着繊維
で構成される場合は、接着点で梁構造の繊維同士が接触
していないで接着された部分や熱接着繊維同士の接合部
分が形成されており、捲縮繊維からの変形応力は接着点
の大変形で吸収する構造となるため接着点が変形限界に
達して後、梁構造が応力に応じて変形するので接着点の
耐久性が低下すると共に熱接着繊維のコア部も梁の機能
を持つが、細くて脆いので変形で破壊されやすい欠陥構
造を持つので、耐へたり性が劣り好ましくない。接着点
が非弾性樹脂で形成された場合は、ゴム弾性のような変
形回復機能がないので、接着点に応力が集中して接着点
が破壊されるので耐久性が劣り好ましくない。本発明で
は、接着点を形成する熱可塑性弾性樹脂の構造体に占め
る全重量比で5重量%以上が必要である。5重量%未満
では接着点が少なくなり上記効果が発現しにくくなり耐
久性が劣ると共に、熱可塑性弾性樹脂がもつ振動吸収機
能が充分発現できないので好ましくない。50重量%を
越えると捲縮繊維の構成本数が少なくなり、変形応力に
対する梁の効果が減少し柔らかなクッション材となるの
で、本発明の好ましい接着点を形成する熱可塑性弾性樹
脂の構造体に占める全重量比は10重量%以上50重量
%以下、より好ましくは20重量%以上40重量%以下
である。本発明の好ましい接着点の形態は凝集して玉状
に捲縮繊維の接触部を被って形成された状態であり、よ
り好ましくは接着点が接触した捲縮繊維全体を被って形
成された状態である。このような接着点を形成すること
で、接着点はより強固になり耐久性が向上する。本発明
クッション材の嵩密度は0.01g/cm3 〜0 .10
g/cm3 である。嵩密度が0.005g/cm3 以下では
反発力が失われクッション機能を発現させにくくなり、
嵩密度が0.20g/cm3 以上では反発力が高すぎてク
ッション性が劣るので好ましくない。振動吸収機能や変
形応力吸収機能が生かせてクッション性能が発現されや
すい嵩密度は0.02g/cm3 〜0 .06g/cm3
好ましく、0.03g/cm3 〜0 .05g/cm3 がよ
り好ましい。本発明クッション材の好ましい厚みは、変
形応力や振動を分散する機能と吸収する機能が発現でき
る5mm以上であり、より好ましくは10mm以上500mm
以下である。本発明で言う捲縮繊維を梁構造とした三次
元構造体とは、三次元構造体の立体的形態の骨格が捲縮
繊維のみで形勢され、捲縮繊維が三次元構造体の梁及び
柱の機能を果たし、梁及び柱の接触点の接合機能を熱可
塑性弾性樹脂で形成された接着点(樹脂接着部)が果た
し、熱可塑性弾性樹脂が梁や柱の機能を持たない形態を
示す三次元構造体を言う。即ち、従来公知の熱接着繊維
が捲縮繊維との接合と共に、熱接着繊維も繊維形態を保
持して梁や柱の機能を有していたものであるのに対し、
本発明に於ける三次元構造体中には、捲縮繊維のみが立
体構造の骨格を形成し、熱接着繊維は、捲縮繊維の接触
点を溶融接合して繊維形態を止めない形態となったもの
である。このよう構造を有するため、以下に述べる理由
から耐久性が一段と向上している。
The present invention uses crimped fibers as constituent fibers and
5% by weight or more of thermoplastic elastic resin is melted and crimped
The crimped fiber is formed by aggregating at the contact portion of the fibers to form an adhesive point.
A three-dimensional structure having a beam structure has a bulk density of 0.0
1 g / cmThree~ 0.10g / cm ThreeCushion material.
A contact part where the thermoplastic elastic resin is aggregated at the contact part of the crimped fibers.
Since the contact point is formed, the adhesive point is firmly formed, and
Since the crimped fibers form a beam structure, they are subjected to deformation stress.
When crimped, the crimped fiber receives stress due to the action of the beam, and the crimped fiber
The fulcrum, which is in contact with each other and supports each other, is a thermoplastic elastic tree.
Necessary for beam-to-beam stress transfer because it is bonded with grease
The adhesive point is slightly deformed to absorb the stress.
Three-dimensional structure that continuously transmits stress to the third crimped fiber
The whole body can absorb stress. Stress is relieved
And the rubber elasticity of the adhesion point immediately restores the original form. big
When a large stress causes large deformation, the beam deforms
Before the elastic deformation, the bonding point also undergoes large deformation according to the deformation of the beam.
The whole three-dimensional structure can absorb stress, and both bonding points and crimped fibers
As soon as the stress is released, it can recover and restore its original form.
Can be. This allows the beam's rigidity and the joint's rubber
The cushioning and sag resistance are desirable due to the simultaneous functioning
Is expressed. Furthermore, the crystallization process described above makes the adhesion points more
Since the recoverability is improved, the heat resistance and sag resistance are also remarkable.
It is a good cushioning material. On the other hand, the adhesive point is
Thermally bonded fiber with a core-core structure made of non-elastic resin
, The beam structure fibers contact each other at the bonding point.
Not bonded and bonded parts between heat bonded fibers
Is formed, and the deformation stress from the crimped fiber is
Since the structure absorbs by the large deformation of the
After reaching, the beam structure will be deformed according to the stress,
Durability is reduced and the core of the heat-bonded fiber also functions as a beam
However, it has a thin and brittle structure that is easily destroyed by deformation.
Since it has a structure, it is not preferable because it has poor sag resistance. Adhesion point
If it is made of non-elastic resin, it will not change like rubber elasticity.
Since there is no shape recovery function, stress concentrates on the bonding point
Is destroyed and durability is poor, which is not preferable. In the present invention
Occupy the structure of the thermoplastic elastic resin forming the bond points
5% by weight or more is required in the total weight ratio. Less than 5% by weight
In that case, the number of adhesion points decreases and the above effects are less likely to appear
Vibration absorber with poor durability and thermoplastic elastic resin
It is not preferable because the ability is not fully expressed. 50% by weight
If the number exceeds the limit, the number of crimped fibers will decrease
The effect of the beam on the opposite is reduced and it becomes a soft cushion material
And the thermoplastic elastic tree that forms the preferred bond points of the present invention.
The total weight ratio of fat in the structure is 10% by weight or more and 50% by weight
% Or less, more preferably 20% by weight or more and 40% by weight or less
It is. The preferred bonding point morphology of the present invention is agglomerated and ball-shaped.
It is a state in which it is formed by covering the contact part of the crimped fiber on the
More preferably, it is formed by covering the entire crimped fiber where the bonding points are in contact.
It has been completed. Forming such bond points
Then, the adhesion point becomes stronger and the durability is improved. The present invention
The cushion material has a bulk density of 0.01 g / cmThree~ 0. 10
g / cmThreeIt is. Bulk density is 0.005g / cmThreeBelow
Repulsive force is lost and it becomes difficult to develop a cushion function,
Bulk density is 0.20 g / cmThreeAbove, the repulsive force is too high.
It is not preferable because it has poor cushioning properties. Vibration absorption function or
The cushioning performance is expressed by utilizing the shape stress absorption function.
Panicle bulk density is 0.02g / cmThree~ 0. 06 g / cmThreeBut
Preferably 0.03 g / cmThree~ 0. 05 g / cmThreeGayo
Is more preferable. The preferred thickness of the cushioning material of the present invention is
The function to disperse and absorb the form stress and vibration can be developed.
5 mm or more, more preferably 10 mm or more and 500 mm
It is as follows. Tertiary having a beam structure of crimped fibers referred to in the present invention
The original structure is a crimped skeleton of the three-dimensional structure.
The crimped fibers are made up of only fibers, and the crimped fibers are
Performs the function of the pillar and heats the joint function of the contact point of the beam and the pillar.
Adhesion points (resin adhesion part) formed of plastic elastic resin
However, if the thermoplastic elastic resin does not have the function of a beam or column,
Refers to the three-dimensional structure shown. That is, conventionally known heat-bonded fibers
When bonded to the crimped fiber, the heat-bonded fiber also maintains its fiber form.
While having the function of a beam or a pillar,
Only crimped fibers stand in the three-dimensional structure of the present invention.
Form the skeleton of the body structure, the heat-bonded fibers contact the crimped fibers
A shape that does not stop the fiber form by melting and joining the points
It is. Because it has such a structure, the reason described below
The durability is further improved.

【0013】以下に本発明クッション材の製造法を述べ
る。好ましい一例として熱可塑性樹脂からなる捲縮繊維
として立体捲縮を持つポリエステル繊維を用いる場合を
例示する。クッション材を製造するのに用いるポリエス
テル立体捲縮糸の捲縮特性は、カ−ド開繊した後の絡合
性を保持できれば特に制限されないが、本発明では、捲
縮度(Ci)が12%以上30%以下、捲縮数(Cn)
が10個/インチ以上が好ましく、Ciが15%以上2
5%以下、Cnが12〜30個/インチにすると嵩高性
と共に弾力性と硬さが付与できるので特に好ましい。用
いるポリエステル立体捲縮糸の初期引張り抵抗度(I
S)は30g/デニ−ル以上が好ましい。20g/dを
下回ると混繊開繊工程でダメ−ジを受け、高温でクッシ
ョン材を成形した時IS低下が大きく、弾力性、耐へた
り性が悪くなるので好ましくない。本発明の好ましいI
Sは35g/デニ−ル以上、より好ましくは40g/デ
ニ−ル以上100g/デニ−ル以下である。このように
高いISを有することで、カ−ド開繊等の加工段階でも
伸張応力に耐え、後加工での熱収縮を抑え、高い耐へた
り性と弾力性を保持することができる。用いるポリエス
テル立体捲縮糸の耐熱性は、乾熱200℃で5分間フリ
−処理後の捲縮の伸びを含めた弾性限界伸度(Δε:
%)とISの関係が IS≧(Δε+0.6)-2.8×1
3 +10を満たし、捲縮度(Ci)が15%以上、捲
縮数(Cn)が10個/インチ以上の立体捲縮を保持す
ることで耐熱耐へたり性が著しく良好となるので好まし
い。 IS≧(Δε+0.6)-2.8×103 +10を外
れると、ISが50g/dと高い場合でも耐熱耐へたり
性が低下し易くなる。IS≧(Δε+0.6)-2.8×1
3+12を満たす場合70℃、5mg/d荷重下15
時間でのCi保持率が70%以上となるのでより好まし
い。さらには、IS≧(Δε+0.6)-2.8×103
15を満たす場合70℃、5mg/d荷重下15時間で
のCi保持率が80%以上となるので特に好ましい。な
お、熱処理後のΔεとISはJIS−L−1063に記
載の方法によって測定し、得られたSS曲線の最大勾配
と接する直線が100%伸長したとした時の応力を処理
後IS(g/d)、巻縮が伸ばされて応力を発生する点
を0%伸度とし、最大勾配と接する直線から外れる弾性
限界点までの伸びを弾性限界伸度(Δε)と定義する。
なお測定数はn=50の平均値で示す。本発明のクッシ
ョン材を製造するのに用いるポリエステル立体捲縮糸の
断面形状は中空断面および異形中空断面とすることで嵩
高性や曲げ剛性が高くなり硬さも付与できる。また、非
対称冷却を用いて製造する場合、大きな断面異方性を付
与できるので好ましい。3つの突起を有する中空異形断
面が特に好ましい。本発明のクッション材を製造するの
に用いるポリエステル立体捲縮糸を200℃処理でも形
態変化が少ない状態にするには結晶化度を公知の立体捲
縮糸より著しく高くしておくのが好ましい。結晶化度の
指標としての比重で言うと1.395以上が好ましく、
1.40以上が特に好ましい。このような好ましいポリ
エステル立体捲縮繊維は次の様にして得ることができ
る。立体捲縮付与には、非対称冷却法や複合紡糸法を用
いる。非対称冷却法では断面異方性を高温高張力延伸で
耐熱耐久性を付与するため断面異方性が消失して必要な
立体捲縮を発現しなくなる場合があり、冷却時に高度の
断面異方性を付与する必要はある。例えば、PETを融
点より20℃高い275℃の紡糸温度で、中空断面や異
形中空断面を形成できるC型や突起を有するC型のオリ
フィスより紡出し、ノズル直下で風速2m/秒以上の冷
却風で急冷し、断面異方性を付与する。紡糸温度が高い
と伸長応力が低くなり断面異方性が低下するので、少な
くとも融点+30℃以下、好ましくは融点+15℃から
融点+25℃以下である。複合紡糸の場合は、溶融粘度
差のみで潜在巻縮能を付与するので、PETの場合は極
限粘度差が0.05以上0.15以下のものをサイドバ
イサイド又は偏芯シ−スコアに複合して紡出する。この
ときの紡糸温度は融点+20℃から融点+30℃が好ま
しい。極限粘度差が0.15以上とする場合は、丸断面
オリフィスでは孔曲がりが著しくなるので、中空部を偏
芯的にもつキドニ−シ−スコア型のオリフィスを用いる
こともできる。また、C型やY型又はYとCの組み合わ
せた形状のオリフィスを使うと潜在捲縮能が向上するの
で特に好ましい。かくして、紡出後冷却して引き取った
未延伸糸は、一旦巻き取るか、振り落として延伸に供す
る。PETの例で示すと、延伸は他段延伸する。1段目
はガラス転移点(Tg)以上85℃以下で破断延伸倍率
(MDR)の0.7倍から0.8倍で延伸し、2段目は
120℃以上180℃でMDRの0.8倍から0.85
倍で延伸し、3段目は210℃から230℃でMDRの
0.9倍から0.95倍で延伸し、4段目は0%から5
%以下のリラックス率で60℃以下まで繊維の温度を下
げて高緊張歪みを掛けたまま構造を固定する。このよう
な延伸を行うことで、高度の断面異方性にもとずく高度
の潜在捲縮能と発現力及び高ISを保持する延伸糸を得
ることができる。従来公知の方法は4段目で構造固定し
ないので、延伸時の緊張歪みが解除され潜在捲縮能が高
温延伸した場合消失すると同時にISも低下する。次い
で必要に応じ、クリンパ−にて機械捲縮を付与するか、
延伸張力を解除させ弾性捲縮を発現させたあと、切断し
て熱処理により立体捲縮を発現させるか、立体捲縮を発
現させた後切断して捲縮繊維を得る。熱処理は1段目は
140℃以上180℃にて捲縮を発現させ、次いで拘束
状態で200℃から220℃で熱固定する。かくして得
られた捲縮繊維は上記の本発明のクッション材を作るに
好ましい耐熱耐久性の優れた捲縮繊維である。
The method for producing the cushioning material of the present invention will be described below. As a preferred example, a case where polyester fibers having three-dimensional crimps are used as crimped fibers made of a thermoplastic resin will be exemplified. The crimp property of the polyester three-dimensional crimped yarn used for producing the cushion material is not particularly limited as long as the entangleability after card opening can be maintained, but in the present invention, the crimping degree (Ci) is 12 % To 30%, number of crimps (Cn)
Is preferably 10 pieces / inch or more, and Ci is 15% or more 2
When it is 5% or less and Cn is 12 to 30 pieces / inch, elasticity and hardness as well as bulkiness can be imparted, which is particularly preferable. Initial tensile resistance of polyester three-dimensional crimped yarn used (I
S) is preferably 30 g / denier or more. If it is less than 20 g / d, it will be damaged in the mixed fiber opening step, and the IS will be greatly lowered when the cushioning material is molded at a high temperature, resulting in poor elasticity and sag resistance, which is not preferable. Preferred I of the Invention
S is 35 g / denier or more, more preferably 40 g / denier or more and 100 g / denier or less. By having such a high IS, it is possible to withstand tensile stress even in the processing stage such as card opening, suppress thermal contraction in post-processing, and maintain high sag resistance and elasticity. The heat resistance of the polyester three-dimensional crimped yarn used is the elastic limit elongation (Δε: including the elongation of the crimp after free treatment at 200 ° C. for 5 minutes).
%) And IS is IS ≧ (Δε + 0.6) -2.8 × 1
It is preferable to hold a three-dimensional crimp satisfying 0 3 +10 and having a crimping degree (Ci) of 15% or more and a crimping number (Cn) of 10 pieces / inch or more, because heat resistance and sag resistance are remarkably improved. . If IS ≧ (Δε + 0.6) −2.8 × 10 3 +10 is exceeded , heat resistance and sag resistance are likely to decrease even when IS is as high as 50 g / d. IS ≧ (Δε + 0.6) -2.8 × 1
When satisfying 0 3 +12, 70 ° C, 5 mg / d under load 15
It is more preferable because the retention rate of Ci in time becomes 70% or more. Furthermore, IS ≧ (Δε + 0.6) −2.8 × 10 3 +
When 15 is satisfied, the Ci retention rate at 70 ° C. under a load of 5 mg / d for 15 hours becomes 80% or more, which is particularly preferable. The Δε and IS after the heat treatment were measured by the method described in JIS-L-1063, and the stress when the straight line in contact with the maximum slope of the obtained SS curve was 100% elongated was treated IS (g / g). d) The 0% elongation is defined as the point where the crimp is stretched to generate stress, and the elongation up to the elastic limit point deviating from the straight line in contact with the maximum gradient is defined as the elastic limit elongation (Δε).
The number of measurements is shown as an average value of n = 50. When the cross-sectional shape of the polyester three-dimensional crimped yarn used for producing the cushioning material of the present invention is a hollow cross section or a modified hollow cross section, bulkiness and bending rigidity are increased and hardness can be imparted. Moreover, when manufacturing using asymmetric cooling, a large cross-section anisotropy can be imparted, which is preferable. Hollow profile sections with three protrusions are particularly preferred. In order to make the polyester three-dimensional crimped yarn used for producing the cushioning material of the present invention to have a small morphological change even at 200 ° C. treatment, it is preferable that the crystallinity is significantly higher than that of the known three-dimensional crimped yarn. In terms of specific gravity as an index of crystallinity, 1.395 or more is preferable,
1.40 or more is particularly preferable. Such a preferable polyester three-dimensional crimped fiber can be obtained as follows. An asymmetric cooling method or a composite spinning method is used to give a three-dimensional crimp. In the asymmetric cooling method, the cross-section anisotropy is imparted with heat resistance and durability by high-temperature high-strength drawing, so the cross-section anisotropy may disappear and the required three-dimensional crimp may not be expressed. Must be given. For example, PET is spun at a spinning temperature of 275 ° C., which is 20 ° C. higher than the melting point, from a C-shaped orifice capable of forming a hollow cross section or a modified hollow cross section or a C-shaped orifice having a protrusion, and a cooling air having a wind speed of 2 m / sec or more directly under the nozzle. To quench and give cross-section anisotropy. When the spinning temperature is high, the elongation stress is low and the cross-section anisotropy is low. Therefore, the melting point is at least + 30 ° C or less, preferably the melting point + 15 ° C to the melting point + 25 ° C or less. In the case of composite spinning, latent crimping ability is imparted only by the difference in melt viscosity. Therefore, in the case of PET, those having an intrinsic viscosity difference of 0.05 or more and 0.15 or less are compounded with side-by-side or eccentric sheath scores. Spin out. The spinning temperature at this time is preferably from melting point + 20 ° C to melting point + 30 ° C. When the difference in the intrinsic viscosity is 0.15 or more, the bending of the hole becomes remarkable in the circular cross-section orifice, so that a kidney-shaped score type orifice having a hollow portion eccentrically can be used. Further, it is particularly preferable to use an orifice of C type, Y type, or a combination of Y and C because the latent crimping ability is improved. Thus, the undrawn yarn which has been spun, cooled, and taken up is once wound up or shaken off for drawing. In the case of PET, the stretching is performed in another stage. The first stage is stretched at a glass transition point (Tg) or more and 85 ° C. or less at a breaking stretch ratio (MDR) of 0.7 to 0.8 times, and the second stage is 120 ° C. or more and 180 ° C. of MDR 0.8. Double to 0.85
Stretching twice, the third stage is 210 ° C to 230 ° C and the MDR is 0.9 times to 0.95 times, and the fourth stage is 0% to 5%.
The temperature of the fiber is lowered to 60 ° C. or less at a relaxation rate of not more than%, and the structure is fixed while high strain is applied. By carrying out such drawing, it is possible to obtain a drawn yarn having a high latent crimping ability and expressing power and a high IS based on a high degree of cross-section anisotropy. Since the conventionally known method does not fix the structure at the fourth stage, the strain in tension during stretching is released and the latent crimping ability disappears when stretched at high temperature, and at the same time IS decreases. Then, if necessary, mechanical crimping may be applied with a crimper,
After the drawing tension is released and the elastic crimp is developed, it is cut and heat-treated to develop the three-dimensional crimp, or the three-dimensional crimp is developed and then cut to obtain the crimped fiber. In the first heat treatment, crimps are developed at 140 ° C. or higher and 180 ° C. in the first step, and then heat set at 200 ° C. to 220 ° C. in a restrained state. The crimped fiber thus obtained is a crimped fiber having excellent heat resistance and durability, which is preferable for producing the cushioning material of the present invention.

【0014】本発明は5重量%以上の熱可塑性弾性樹脂
からなる全融型熱接着繊維を熱接着点を形成するために
用いる。本発明に用いる熱接着繊維は、捲縮繊維間の接
触部を熱接着成分を捲縮繊維の結晶融解温度以下の温度
で溶融流動させて接着点を形成してクッション材を作成
する目的で使用するので、該熱接着成分は、熱溶融によ
り捲縮繊維の交点で接着点を形成する必要から、融点又
は流動開始温度が100℃以上220℃以下の熱可塑性
弾性樹脂を用いる。100℃未満では、繊維構造物の耐
熱性が劣るものしか得られないので好ましくない。22
0℃を越えると捲縮繊維の熱劣化を生じる場合があり好
ましくない。本発明の融点又は流動開始温度は、好まし
くは120℃以上200℃以下、より好ましくは130
℃以上190℃以下である。130℃以上のものを用い
ると、繊維構造体のドライクリ−ニングでのタンブラ−
乾燥も可能になり、又、120℃以上130℃未満で2
0分以上の蒸気による殺菌処理が可能になるのでより好
ましい。加工性の面からも、熱接着するオ−ブンの温度
は130℃以上200℃以下がコントロ−ルが容易なの
で安定した繊維構造体を得ることができる。熱接着繊維
は全融型を用いるので、単一成分か融点の差が20℃未
満の混合系で構成するのが好ましい。特別な場合はシ−
スコア構造の熱接着繊維とし、仮接着時にシ−ス成分を
用い、本接着で熱接着繊維を完全に溶融してクッション
材を形成することもできる。本発明での熱接着繊維の捲
縮形態は特には限定されないが、やや摩擦係数が高い場
合、例えば繊維間の静摩擦係数(μs)が2.5以上で
は捲縮形態は加工時立体捲縮が発現しているとカ−ド開
繊時開繊が不良となるので、工程通過性からは捲縮がジ
グザグの機械捲縮が好ましい。本発明繊維の捲縮数は3
〜20個/25mm、捲縮度は5%以上である。捲縮数が
3個/25mm未満、捲縮度が5%未満では開繊斑を生じ
て熱接着繊維が巻縮繊維中で分散不良となり繊維構造体
中の接着点をランダムに形成できないので好ましくな
い。捲縮数が20個/25mmを越えると開繊時に開繊し
にくいので伸長歪みを受け易く、伸長された熱接着繊維
がウエッブ内でゴム弾性が発現して縮みウェッブ斑やネ
ップを生じて熱接着繊維がマトリックス繊維中で分散不
良となるので好ましくない。好ましい捲縮特性は、捲縮
数が5個/25mm以上、捲縮度が6%以上20%以下で
あり、より好ましくは、捲縮数が8個/25mm以上15
個/25mm、捲縮度が8%以上15%以下である。本発
明の熱接着繊維は繊維間の静摩擦係数(μs)が1.5
以上2.5以下と高い場合は、カ−ド開繊時の伸長応力
が0.05g/デニ−ルから0.1g/デニ−ルと大き
くなるので、0.1g/デニ−ルの伸長応力での伸びが
60%以上を示す場合、伸長された熱接着繊維がウエッ
ブ内でゴム弾性が発現して縮みウェッブ斑やネップを生
じて熱接着繊維が捲縮繊維中で分散不良となるので好ま
しくない。本発明では0.1g/デニ−ルの伸長応力で
の伸びが50%以下、好ましくは30%以下である。か
くして、本発明の熱接着繊維は捲縮繊維と混合開繊する
と捲縮繊維中に均一に開繊、分散でき、該開繊ウェッブ
を所定の温度及び圧縮率で熱接着処理すると捲縮繊維間
の接触部で凝集して強固な接着点(樹脂接着部)をラン
ダムに形成し、耐熱耐久性と優れたクッション性を持つ
3次元繊維構造体を得ることができる。本発明の熱接着
繊維の繊度は特に限定されないが、繊度が太すぎると、
繊維構造体とするときの構成本数が減少して三次元構造
が粗くなり力の分散がしにくくなる。他方、捲縮繊維が
太い繊度の場合は、熱接着繊維の繊度が細過ぎると混繊
がしにくくなり、均一な三次元構造を形成しにくくな
る。極端に熱接着繊維の繊度が細過ぎると開繊も困難と
なるので通常2〜15デニ−ルの範囲が良い。断面形状
は特に限定されないが、所望に応じて各種断面形状のも
のが適用できる。繊維長もカ−ド開繊やエア−開繊が可
能な15mm以上150mm以下なら特には限定されない
が、捲縮繊維との差が大きくなると混繊しにくくなるの
で、混繊が容易な所定の繊維長、例えば、ポリエステル
繊維では28mmから64mmとするのが好ましい。捲縮繊
維が特別な繊維長を持つ場合、捲縮繊維の繊維長に合わ
せるのが望ましい。油剤は熱分解しにくいもの、例え
ば、ラウリルホスフェ−トカリウム、セチルホスフェ−
トカリウムなどのホスフェ−ト塩を使用するのが好まし
い。また、摩擦係数が低くなる油剤を使うと開繊性が向
上するので特に好ましい。が、シリコ−ン系やフッ素系
の離形効果の著しい油剤は熱接着繊維に用いる場合、溶
融接着しにくくなるので好ましくない。熱接着繊維の熱
収縮率は低い方が熱成形時ウエッブ中に分散した熱接着
繊維が縮じみにくいので均一に接点を形成するので好ま
しい。収縮率が高いと層間剥離を生じやすくなるので乾
熱130℃での収縮率は20%以下、より好ましくは1
5%以下とするのがよい。このような本発明の熱接着繊
維の製法は、融点又は流動開始温度が100℃以上22
0℃以下の熱可塑性弾性樹脂を融点又は流動開始温度よ
り20℃以上80℃未満高い溶融温度で紡糸し、少なく
とも50℃以下に冷却後に収束して、1.0重量%以上
の水系油剤を付与して引取り、機械捲縮を付与する熱接
着繊維の製法である。本発明の繊維構造は100%同一
の熱可塑性弾性樹脂からなる繊維なので、公知の方法で
紡糸し、ついで延伸、捲縮付与して所望の繊維長さに切
断して簡単に得ることが出来るので安価に提供できる。
なお、紡糸の際、熱可塑性弾性樹脂の融点又は流動開始
温度より少なくとも20℃高い融点温度で溶融紡糸す
る。20℃未満では、バラス効果が著しくなり、かつゴ
ム弾性が発現して紡糸張力が変動し、吐出糸条に太細斑
が発生して正常な紡糸が困難となる。他方、100℃以
上融点より高い紡糸温度ではソフトセグメントの熱分解
が著しくなり、熱可塑性弾性樹脂のゴム弾性が著しく低
下するので好ましくない。好ましい紡糸温度は融点より
少なくとも30℃以上80℃未満高い温度、より好まし
くは40℃〜60℃融点より高い温度で、溶融粘度が5
00ポイズ以上5000ポイズ以下で溶融紡糸するのが
最も好ましい。本発明の熱接着繊維は融点又は流動開始
温度が100℃以上220℃以下の熱可塑性弾性樹脂を
用いるので、紡出後、冷却して糸温度を少なくとも50
℃以下に冷却後に収束する。糸温度が60℃以上で収束
すると繊維同志が融着し、延伸時の延伸斑や糸切れにな
り品位の劣悪な繊維となるので好ましくない。次いで、
本発明では1.0重量%以上の水系油剤を付与して引取
る。本発明では、油剤濃度を5重量%以下の水でエマル
ジョン化した油剤を水系油剤と言う。油剤が少ないと糸
の冷却が不十分な場合は融着する場合があるので、1重
量%以上付与して水で更に冷却させる。本発明の好まし
い付与量は2重量%以上5重量%以下である。油剤は熱
分解しにくいもの、例えば、ラウリルホスフェ−トカリ
ウム、セチルホスフェ−トカリウムなどのホスフェ−ト
塩を使用するのが好ましい。また、摩擦係数が低くなる
油剤を使うと開繊性が向上するので特に好ましい。が、
シリコ−ン系やフッ素系の離形効果の著しい油剤は熱接
着繊維に用いる場合、溶融接着しにくくなるので好まし
くない。引取速度が4000m/分以上の高速紡糸で
は、次いで捲縮を付与することができる。低速紡糸で未
だ伸度が高い未延伸糸は、0.1g/デニ−ルの伸長応
力付与時の伸びを50%以下とするため延伸後に捲縮を
付与する。延伸条件は、延伸温度を温浴70℃以下で破
断延伸倍率の約0.8〜0.9倍で延伸し、収縮率を抑
える場合は、次いで融点より少なくとも30℃低い温度
で定長又は弛緩熱処理して機械捲縮を付与し、機械捲縮
が伸びないように低張力でカッタ−に供給切断して得る
ことができる。本発明のクッション材は上述のポリエス
テル立体捲縮繊維と熱可塑性弾性樹脂からなる熱接着繊
維を用いて得る場合に用いる熱接着繊維の組成をポリエ
ステルとすることでリサイクルを可能とすることができ
るので好ましい。なお、熱接着繊維を構成する成分に
は、所望に応じ艶消し剤、顔料、酸化防止剤、紫外線吸
収剤、難燃化剤等をリサイクル時問題にならない程度に
含有してもよい。
In the present invention, a fully fused thermobonding fiber comprising 5% by weight or more of a thermoplastic elastic resin is used for forming a thermobonding point. The heat-adhesive fiber used in the present invention is used for the purpose of forming a cushion material by melting and flowing the contact portion between the crimped fibers at a temperature not higher than the crystal melting temperature of the crimped fiber to form an adhesive point. Therefore, as the thermal adhesive component, a thermoplastic elastic resin having a melting point or a flow starting temperature of 100 ° C. or more and 220 ° C. or less is used because it is necessary to form an adhesive point at the intersection of the crimped fibers by heat melting. If the temperature is lower than 100 ° C, only the fiber structure having poor heat resistance can be obtained, which is not preferable. 22
If the temperature exceeds 0 ° C, the crimped fiber may be deteriorated due to heat, which is not preferable. The melting point or flow initiation temperature of the present invention is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or lower.
The temperature is not less than 0 ° C and not more than 190 ° C. A tumbler for dry cleaning of a fiber structure, if used at 130 ° C or higher
Drying is also possible, and at temperatures above 120 ℃ and below 130 ℃ 2
It is more preferable because sterilization treatment with steam for 0 minutes or more is possible. Also from the viewpoint of workability, the temperature of the oven for thermal bonding is 130 ° C. or more and 200 ° C. or less, and the control is easy, so that a stable fiber structure can be obtained. Since the heat-bonding fiber is of the total melting type, it is preferable that the heat-bonding fiber is composed of a single component or a mixed system having a melting point difference of less than 20. Special case
It is also possible to form a cushion material by using a heat-bonding fiber having a score structure, using a seed component at the time of temporary bonding, and completely melting the heat-bonding fiber by main bonding. The crimped form of the heat-adhesive fiber in the present invention is not particularly limited, but when the coefficient of friction is rather high, for example, when the coefficient of static friction (μs) between fibers is 2.5 or more, the crimped form is three-dimensional crimped during processing. When it is expressed, the opening of the card will be poor at the time of opening the card, so a mechanical crimp having a zigzag crimp is preferable from the viewpoint of process passability. The number of crimps of the fiber of the present invention is 3
-20 pieces / 25 mm, crimp degree is 5% or more. When the number of crimps is less than 3/25 mm and the crimping degree is less than 5%, open spots are generated, and the heat-adhesive fibers are poorly dispersed in the crimped fibers, and the adhesive points in the fiber structure cannot be formed randomly, which is preferable. Absent. If the number of crimps exceeds 20/25 mm, it is difficult to open when opening, so it is susceptible to stretching strain, and the stretched heat-bonded fiber develops rubber elasticity in the web and shrinks to produce web unevenness or nep It is not preferable because the adhesive fiber becomes poorly dispersed in the matrix fiber. The preferred crimping property is such that the number of crimps is 5/25 mm or more and the crimping degree is 6% or more and 20% or less, and more preferably 8 crimps / 25 mm or more.
Pieces / 25 mm, crimping degree is 8% or more and 15% or less. The thermal bonding fiber of the present invention has a static friction coefficient (μs) between fibers of 1.5.
When the value is higher than 2.5, the elongation stress at card opening becomes as large as 0.05 g / denier to 0.1 g / denier, so the elongation stress of 0.1 g / denier. In the case where the elongation at 60% or more is 60% or more, the stretched heat-adhesive fiber exhibits rubber elasticity in the web and shrinks, resulting in web unevenness or nep, and the heat-adhesive fiber becomes poorly dispersed in the crimped fiber, which is preferable. Absent. In the present invention, the elongation at an elongation stress of 0.1 g / denier is 50% or less, preferably 30% or less. Thus, the heat-adhesive fiber of the present invention can be uniformly opened and dispersed in the crimped fiber when mixed and opened with the crimped fiber, and the heat-adhesive treatment of the open web at a predetermined temperature and compression rate results in the inter-crimped fiber. It is possible to obtain a three-dimensional fibrous structure having heat resistance and durability and excellent cushioning property by randomly forming strong adhesive points (resin adhesive portions) by aggregating at the contact portions. The fineness of the heat-bonded fiber of the present invention is not particularly limited, but if the fineness is too thick,
When the fiber structure is used, the number of constituents decreases, and the three-dimensional structure becomes rough, so that it is difficult to disperse the force. On the other hand, in the case where the crimped fibers have a large fineness, if the fineness of the heat-bonding fibers is too small, it becomes difficult to mix the fibers, and it becomes difficult to form a uniform three-dimensional structure. If the fineness of the heat-bonded fiber is extremely thin, it will be difficult to open the fiber. Therefore, the range of 2 to 15 denier is usually preferable. The cross-sectional shape is not particularly limited, but various cross-sectional shapes can be applied as desired. The fiber length is not particularly limited as long as it can be card-opened or air-opened and is 15 mm or more and 150 mm or less. However, if the difference from the crimped fiber becomes large, it becomes difficult to mix the fibers. The fiber length is preferably 28 mm to 64 mm for polyester fibers. When the crimped fibers have a particular fiber length, it is desirable to match the fiber length of the crimped fibers. Oil agents are hard to thermally decompose, such as potassium lauryl phosphate and cetyl phosphate.
Preference is given to using a phosphate salt such as potassium citrate. In addition, it is particularly preferable to use an oil agent having a low friction coefficient because the openability is improved. However, an oil agent having a remarkable releasing effect such as a silicone type or a fluorine type is not preferable when it is used for the heat-bonding fiber because it becomes difficult to melt-bond. It is preferable that the heat-shrinkage rate of the heat-bonded fibers is low because the heat-bonded fibers dispersed in the web during thermoforming are less likely to shrink, so that the contacts can be formed uniformly. If the shrinkage ratio is high, delamination is likely to occur. Therefore, the shrinkage ratio at dry heat of 130 ° C. is 20% or less, more preferably 1%.
It is preferable to be 5% or less. Such a method for producing a heat-bonded fiber according to the present invention has a melting point or a flow starting temperature of 100 ° C. or higher.
A thermoplastic elastic resin of 0 ° C. or lower is spun at a melting temperature higher than the melting point or the flow start temperature by 20 ° C. or higher and lower than 80 ° C., cooled to at least 50 ° C. or lower and then converged to give 1.0 wt% or more of a water-based oil agent. It is a method for producing a heat-bonded fiber which is then drawn and mechanically crimped. Since the fiber structure of the present invention is a fiber composed of 100% identical thermoplastic elastic resin, it can be easily obtained by spinning it by a known method, then stretching and crimping it and cutting it to a desired fiber length. It can be provided at low cost.
During spinning, melt spinning is performed at a melting point temperature that is at least 20 ° C. higher than the melting point or flow starting temperature of the thermoplastic elastic resin. If the temperature is lower than 20 ° C., the loosening effect becomes remarkable, the rubber elasticity is developed, the spinning tension is changed, and thick and thin spots are generated on the discharged yarn, which makes normal spinning difficult. On the other hand, at a spinning temperature of 100 ° C. or higher and higher than the melting point, the thermal decomposition of the soft segment becomes remarkable, and the rubber elasticity of the thermoplastic elastic resin is significantly decreased, which is not preferable. The preferred spinning temperature is at least 30 ° C. and less than 80 ° C. higher than the melting point, more preferably 40 ° C. to 60 ° C. higher than the melting point, and the melt viscosity is 5
Most preferably, melt spinning is performed at 00 poises or more and 5000 poises or less. Since the thermoadhesive fiber of the present invention uses a thermoplastic elastic resin having a melting point or a flow starting temperature of 100 ° C. or higher and 220 ° C. or lower, it is cooled at a yarn temperature of at least 50 after spinning.
It converges after cooling below ℃. When the yarn temperature converges at 60 ° C. or higher, the fibers are fused with each other, resulting in stretch unevenness or yarn breakage during stretching, resulting in poor quality fibers, which is not preferable. Then
In the present invention, 1.0% by weight or more of a water-based oil agent is applied and removed. In the present invention, an oil agent emulsified with water having an oil agent concentration of 5% by weight or less is called an aqueous oil agent. If the amount of the oil agent is small, the yarn may be fused if the yarn is not sufficiently cooled, so 1% by weight or more is applied and further cooled with water. The preferable application amount of the present invention is 2% by weight or more and 5% by weight or less. It is preferable to use an oil agent which is not easily decomposed by heat, for example, a phosphate salt such as potassium lauryl phosphate or potassium cetyl phosphate. In addition, it is particularly preferable to use an oil agent having a low friction coefficient because the openability is improved. But,
When a silicone-based or fluorine-based oil agent having a great releasability is used for the heat-bonding fiber, it is difficult to melt and bond, which is not preferable. In high-speed spinning at a take-up speed of 4000 m / min or more, crimp can be applied next. The undrawn yarn, which has a still high elongation in the low-speed spinning, is crimped after being drawn so that the elongation upon application of an elongation stress of 0.1 g / denier is 50% or less. The stretching conditions include stretching at a stretching temperature of about 0.8 to 0.9 times the breaking stretching ratio in a warm bath of 70 ° C. or lower, and in the case of suppressing the shrinkage ratio, a constant length or relaxation heat treatment is then performed at a temperature lower than the melting point by at least 30 ° C. Then, a mechanical crimp is applied, and a mechanical crimp is applied to the cutter with a low tension so that the mechanical crimp does not stretch, and the resulting product can be obtained. Since the cushioning material of the present invention can be recycled by using polyester as the composition of the heat-bonding fiber used when the heat-bonding fiber composed of the polyester three-dimensional crimped fiber and the thermoplastic elastic resin is used. preferable. If desired, the components constituting the heat-bonded fiber may contain a matting agent, a pigment, an antioxidant, an ultraviolet absorber, a flame retardant, etc. to such an extent that they do not pose a problem during recycling.

【0015】かくして得られた捲縮繊維と全融型熱接着
繊維は捲縮繊維の含有量を50重量%から95重量%
と、接着点を形成する熱接着繊維の含有量を5重量%か
ら50重量%の混合比で混合分散させたウェッブを積層
し、嵩密度が0.01g/cm3から0.1g/cm3 の構
造体になるように圧縮した状態で、該熱接着繊維を構成
する熱可塑性弾性樹脂の融点又は流動開始温度より10
℃から80℃高く、捲縮繊維の結晶融解温度以下の温度
で10℃から80℃高い温度で溶融させて接着点を形成
させ本発明のクッション材を得る。混合方法は例えば、
捲縮繊維の上に熱接着繊維を所望の混合比でシ−ト状に
積層してオ−プナ−に供給、予備開繊して混合して予備
開繊原綿を作り、カ−ドに供給して開繊ウエッブを作
る。開繊ウエッブはエアレイを用いても作ることが出来
る。エアレイの場合単繊維1本1本が積層されたウエッ
ブが得られるので層間剥離を少なくできる。開繊ウエッ
ブは積層して嵩密度が0.01g/cm3 から0.1g/
cm3 の構造体になるように所望の目付けに積層圧縮し
て、熱可塑性弾性樹脂の融点又は流動開始温度より10
℃から80℃高く、捲縮繊維の結晶融解温度以下の温度
で5分以上30分未満加熱溶融させて接着点を形成させ
る。10℃未満では流動性が悪くなり凝集した接着点を
形成しにくいので好ましくない。80℃を越える温度で
は、逆に流動性が良すぎて接着点での凝集が起こりにく
いので捲縮繊維を包んだ玉状の接着点を形成しにくいと
共に、熱可塑性弾性樹脂の熱劣化が生じ回復特性が低下
するので好ましくない。他方、捲縮繊維の結晶融解温度
(ボ−ルドウイン社製バイブロンにて測定したE’が、
溶融前に急激に低下する直前の温度と定義する。PET
では225℃から235℃である。)以下の温度以上で
は捲縮繊維の劣化を生じるので好ましくない。また、処
理時間は200℃以上では30分以上処理すると熱可塑
性弾性樹脂の熱劣化が生じ回復特性が低下するので好ま
しくない。好ましい接着点形成温度は、捲縮繊維がPE
Tの場合で、熱可塑性弾性樹脂の融点が163℃の場合
180℃から230℃であり、処理時間は5分以上30
分未満である。熱処理は連続的に圧縮熱処理ができる硬
綿セッタ−が望ましいが、バッチ方式の圧縮熱処理でも
良い。次いで冷却して所望の本発明クッション材を得
る。単にウェッブを積層する以外に、開繊ウエッブを遠
赤外線などで表面を仮接着する方法も使える。また、嵩
密度調整や取扱易くするためニ−ドルパンチで交絡処理
したり、金型成形する場合は成形時より低い嵩密度の範
囲で一旦圧縮熱成形してもよい。積層ウエッブ、ニ−ド
ルパンチウエッブまたは1次熱成形シ−トをついで積層
し、金型等を用い一体熱成形し、所望のクッション材を
得る。金型成形の場合、高温の加熱気体をおす金型側か
らめす金型側へ貫通させて溶融接着させるのが好まし
い。表層の嵩密度を小さくしたい時は中間層とベ−ス層
を別の金型で一旦圧縮熱成形して、表層の上の積層後一
体熱成形することができる。熱成形温度をあまり高くす
ると母材のIS低下が大きくなりへたり易くなる。深絞
りが必要な場合は再熱処理を兼ねて多段で深絞り部分を
再成形することができる。溶融熱成形時間は好ましくは
2分以上10分以内より好ましくは3分〜5分である。
再熱処理時間は温度によるが、5分以上30分以下が好
ましく、より好ましくは10分から15分である。な
お、用いる金型の開孔率は10%以上50%以下が好ま
しい。金型での一体熱成形されたクッション材の平均の
嵩密度は任意に設定できるが、軽量化効果を出すために
は0.02〜0.06g/cm3 とするのが好ましい。本
発明の最も好ましい実施形態としては、所望の嵩密度の
1/2〜2/3で溶融熱成形した後次いで一旦冷却し、
所望の嵩密度まで圧縮し70℃以上Tm1より少なくと
も30℃低い温度で再熱処理しクッション材を形成す
る。この処理により70℃での回復性が著しく向上す
る。この理由は明らかではないが、再熱処理したものの
みにクッション材中の熱接着成分の結晶融解にもとずく
と考えられるような小さな吸熱ピーク(Tmc)が70
℃以上融点以下にTm1以外に認められることから、完
全な結晶ではないが、ソフトセグメントをつなぐ架橋点
の働きをする構造が形成され、耐熱耐へたり性が著しく
向上するのではないかと推測される。
The crimped fiber and the total fusion type heat-bonded fiber thus obtained have a crimped fiber content of 50% by weight to 95% by weight.
And a web in which the content of the heat-bonding fibers forming the bonding points is mixed and dispersed at a mixing ratio of 5% by weight to 50% by weight, and the bulk density is 0.01 g / cm 3 to 0.1 g / cm 3 In the state of being compressed so as to have a structure of No. 10, the melting point or flow starting temperature of the thermoplastic elastic resin constituting the heat-bonding fiber is 10
The cushioning material of the present invention is obtained by melting at a temperature higher by 10 ° C. to 80 ° C. and lower than the crystal melting temperature of the crimped fiber at a temperature higher by 10 ° C. to 80 ° C. to form an adhesive point. The mixing method is, for example,
Heat-bonded fibers are laminated on the crimped fibers in a desired mixing ratio and fed to the opener, pre-opened and mixed to prepare pre-opened raw cotton, which is then fed to the card. And make an open web. The open web can also be made using air lay. In the case of air laying, since a web in which single fibers are laminated one by one can be obtained, delamination can be reduced. Opened webs are laminated to have a bulk density of 0.01 g / cm 3 to 0.1 g /
Laminate and compress to a desired basis weight so as to obtain a structure of cm 3 , and apply 10 or more from the melting point or flow starting temperature of the thermoplastic elastic resin.
C. to 80.degree. C. higher than the crystal melting temperature of the crimped fiber and heated for 5 minutes to less than 30 minutes to form an adhesive point. If the temperature is lower than 10 ° C, the fluidity is deteriorated and it is difficult to form agglomerated adhesion points, which is not preferable. At temperatures above 80 ° C, conversely, the fluidity is so good that cohesion does not readily occur at the bonding points, making it difficult to form ball-shaped bonding points wrapping crimped fibers and causing thermal degradation of the thermoplastic elastic resin. It is not preferable because the recovery property is deteriorated. On the other hand, the crystal melting temperature of the crimped fiber (E 'measured with a vibron manufactured by Boldwin Co.
It is defined as the temperature immediately before the temperature drops sharply before melting. PET
Is 225 ° C to 235 ° C. ) It is not preferable that the temperature is not less than the following because the crimped fiber is deteriorated. Further, if the treatment time is 200 ° C. or higher, if the treatment is performed for 30 minutes or longer, the thermoplastic elastic resin is thermally deteriorated and the recovery characteristics are deteriorated, which is not preferable. The preferred bonding point formation temperature is PE crimped fiber.
In the case of T, when the melting point of the thermoplastic elastic resin is 163 ° C., it is 180 ° C. to 230 ° C., and the treatment time is 5 minutes or more 30 minutes.
Less than a minute. The heat treatment is preferably a hard cotton setter capable of continuously performing compression heat treatment, but batch-type compression heat treatment may also be used. Then, it is cooled to obtain the desired cushion material of the present invention. In addition to simply laminating webs, a method of temporarily adhering the open web with far infrared rays can be used. Further, in order to adjust the bulk density and to make it easier to handle, entanglement treatment may be performed with a needle punch, or in the case of die molding, compression thermoforming may be performed once within a range of bulk density lower than that at the time of molding. A laminated web, a needle punched web or a primary thermoforming sheet is then laminated and thermoformed integrally using a mold or the like to obtain a desired cushion material. In the case of die molding, it is preferable that high-temperature heated gas penetrates from the male die side to the female die side and is melt-bonded. When it is desired to reduce the bulk density of the surface layer, the intermediate layer and the base layer can be once subjected to compression thermoforming with different molds, and then laminated on the surface layer and then integrally thermoformed. If the thermoforming temperature is too high, the IS decrease of the base material becomes large and it tends to occur. When deep drawing is required, the deep drawing portion can be re-formed in multiple stages, which also serves as reheat treatment. The melt thermoforming time is preferably 2 minutes or more and 10 minutes or less, more preferably 3 minutes to 5 minutes.
The reheat treatment time depends on the temperature, but is preferably 5 minutes or more and 30 minutes or less, more preferably 10 minutes to 15 minutes. The porosity of the die used is preferably 10% or more and 50% or less. The average bulk density of the integrally thermoformed cushion material in the mold can be set arbitrarily, but it is preferably 0.02 to 0.06 g / cm 3 in order to achieve the weight reduction effect. In the most preferred embodiment of the present invention, melt thermoforming is performed at 1/2 to 2/3 of the desired bulk density, followed by cooling once,
It is compressed to a desired bulk density and reheat-treated at a temperature of 70 ° C. or higher and at least 30 ° C. lower than Tm1 to form a cushion material. This treatment significantly improves the recoverability at 70 ° C. Although the reason for this is not clear, a small endothermic peak (Tmc), which is considered to be due to the crystal melting of the heat-adhesive component in the cushioning material, is 70 only in the reheated material.
Since it is observed at temperatures above ℃ and below melting point except for Tm1, it is presumed that a structure that acts as a cross-linking point connecting soft segments is formed, and that heat and sag resistance is significantly improved. It

【0016】[0016]

【実施例】以下実施例で本発明を具体的に詳述する。The present invention will be described in detail with reference to the following examples.

【0017】なお、本発明で言う融点、融点以下の吸熱
ピ−ク、結晶融解温度、捲縮繊維のIS、Δε、構成繊
維と接着点の状態は以下の方法で測定したものである。 融点及び融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で溶融による吸熱ピ−ク(T
m1)まで測定し、Tm以下の吸熱ピークの温度(Tm
c)も求めた。 捲縮繊維の結晶融解温度 オリエンテック社製バイブロンDDVII型を使用し、1
10Hz、昇温速度1℃/分で測定し、弾性率の実数部分
(E`)が融点直前にE’の低下率が一旦減少し、次い
で溶断する時急激にE’が低下する領域において、低下
率が一旦減少するときのE’の変化曲線の接線と溶断す
る時急激にE’が低下する領域の変化曲線の接線との交
点の温度を求めた。この温度を捲縮繊維の結晶融解温度
と定義する。 クッション材中及び加工前の捲縮繊維のIS クッション材中の熱接着繊維部分を注意深く切断して捲
縮繊維を取り出し、又は処理前の捲縮繊維を取り出し、
比重と断面写真から断面積を求めてデニ−ルに換算し、
初荷重をきめる。SS曲線はJIS−L−1063の方
法により測定してISを求める。 Δε 捲縮繊維のSS曲線からIS測定のために引いた初期の
歪み応力の最大勾配の接線がSS曲線とずれる点までの
伸びを測定しΔεとして求めた。(n=20) 構成繊維と接着点の状態 クッション材を2cm厚みで10cm角に切断スライスした
サンプル5個を作成して、各サンプルの5か所を実体顕
微鏡で50倍に拡大しクッション材中の構成繊維(熱可
塑性弾性樹脂及び捲縮繊維の残存状態)を目視で識別し
た。同時に接着点を観察して接着点の状態を目視で識別
した。
In the present invention, the melting point, the endothermic peak below the melting point, the crystal melting temperature, the IS of the crimped fiber, Δε, the state of the constituent fiber and the bonding point are measured by the following methods. Melting point and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu Corporation is used, and endothermic peak (T
m1), and the temperature of the endothermic peak below Tm (Tm
c) was also sought. Crystal melting temperature of crimped fiber Using Vibron DDVII type manufactured by Orientec Co., Ltd., 1
Measured at 10 Hz and a heating rate of 1 ° C./minute, the real part of the elastic modulus (E ′) in the region where the decreasing rate of E ′ is once decreased immediately before the melting point, and then E ′ is rapidly decreased when melted, The temperature at the intersection of the tangent of the change curve of E'when the rate of decrease once decreases and the tangent of the change curve of the area where E'decreases sharply when melting is determined. This temperature is defined as the crystal melting temperature of the crimped fiber. IS of the crimped fiber in the cushion material and before processing Carefully cut the heat-bonded fiber portion in the cushion material to take out the crimped fiber, or take out the crimped fiber before treatment,
Obtain the cross-sectional area from the specific gravity and the cross-sectional photograph and convert it to denier,
Determine the initial load. The SS curve is measured by the method of JIS-L-1063 to obtain IS. Δε Elongation to the point where the tangent line of the maximum gradient of initial strain stress drawn for IS measurement from the SS curve of the crimped fiber deviates from the SS curve was measured and determined as Δε. (N = 20) State of constituent fibers and bonding points Cushion material was cut into 10 cm squares with a thickness of 2 cm, and five sliced samples were prepared. The constituent fibers (the remaining state of the thermoplastic elastic resin and the crimped fibers) were visually identified. At the same time, the adhesion points were observed to visually identify the state of the adhesion points.

【0018】実施例および比較例 熱接着繊維の作成 酸成分としてジメチルテレフタレ−ト(DMT)または
及びジメチルイソフタレ−ト(DMI)またはナフタレ
ン2・6ジカルボン酸(DMN)とグリコ−ル成分とし
て1・4・ブタンジオ−ル(BD)、ネオペンチルグリ
コ−ル(NPG)、エチレングリコ−ル(EG)および
ポリテトラメチレングリコ−ル(PTMG)を少量の触
媒と安定剤とともに仕込み、公知の方法でエステル交換
反応後昇温減圧しつつ重縮合してポリエステルエ−テル
ブロック共重合物を生成した。該ポリエステルエ−テル
ブロック共重合物を加熱真空乾燥し、抗酸化剤として1
・3・5・トリメチル・2・4・6・トリス(3・5・
ジ・t・ブチル・4・ヒドロキシベンジル)ベンゼン
(TTtBHB)を2軸押出機にてソフトセグメント当
たり1重量%溶融練込みしたものをペレット化し、加熱
不活性ガスにて水分を充分除去し得られた熱可塑性樹脂
の処方および特性を表1に示す。
Examples and Comparative Examples Preparation of Heat-Adhesive Fibers Dimethyl terephthalate (DMT) or and dimethyl isophthalate (DMI) or naphthalene 2.6 dicarboxylic acid (DMN) as an acid component and a glycol component. 1.4-Butanediol (BD), neopentyl glycol (NPG), ethylene glycol (EG) and polytetramethylene glycol (PTMG) were charged together with a small amount of a catalyst and a stabilizer, and a known method was used. Then, after the transesterification reaction, polycondensation was performed while heating and decompressing to produce a polyester ether block copolymer. The polyester ether block copolymer is heated and vacuum-dried to obtain 1 as an antioxidant.
・ 3 ・ 5 ・ Trimethyl ・ 2 ・ 4 ・ 6 ・ Tris (3.5 ・
Di ・ t ・ butyl ・ 4 ・ hydroxybenzyl) benzene (TTtBHB) was melt-kneaded with a twin-screw extruder in an amount of 1% by weight per soft segment, and then pelletized, and moisture was sufficiently removed by heating with an inert gas. Table 1 shows the formulations and properties of the thermoplastic resins.

【0019】[0019]

【表1】 [Table 1]

【0020】得られたA−1からA−5の熱可塑性樹脂
を単成分で常法により単孔吐出量2g/分にてφ0.3
mmのオリフィスより吐出し、糸温度が40℃以下の点で
収束し、濃度4%のラウリルフォスフェ−トカリウム水
溶液をピックアップで5%付与し、1300m/分で紡
糸した。得られた未延伸糸を次いで、50℃温浴で破断
延伸倍率の0.85倍で延伸し、連続して乾熱90℃で
定張熱処理し、仕上げ油剤を付与した後クリンパ−にて
機械捲縮を付与し、機械捲縮が伸びない張力でカッタ−
に供給し51mmに切断して得られた3デニ−ルから5デ
ニ−ルの熱接着繊維の特性を表2に示す。なお、A−5
の未延伸糸は脆くて延伸が困難であったので特性は測定
していない。0.1g/デニ−ルの伸長応力での伸び
は、単繊維の100%伸長速度での歪み/荷重曲線から
求めた。
The thermoplastic resin of A-1 to A-5 thus obtained was used as a single component by a conventional method at a single hole discharge rate of 2 g / min.
It was discharged from an orifice of mm, converged at a point where the yarn temperature was 40 ° C. or lower, 5% of 4% concentration of lauryl phosphate potassium aqueous solution was applied by a pickup, and spun at 1300 m / min. The obtained unstretched yarn is then stretched in a 50 ° C. hot bath at 0.85 times the breaking stretch ratio, continuously subjected to constant tension heat treatment at 90 ° C. dry heat, and after applying a finishing oil agent, mechanical winding with a crimper. Cutter that gives crimp and tension that mechanical crimp does not stretch
Table 2 shows the properties of the heat-bonded fibers of 3 to 5 denier, which were obtained by feeding the same to the above and cut to 51 mm. In addition, A-5
Since the undrawn yarn of No. 1 was brittle and difficult to draw, the characteristics were not measured. The elongation at an elongation stress of 0.1 g / denier was determined from the strain / load curve of a single fiber at 100% elongation rate.

【0021】[0021]

【表2】 [Table 2]

【0022】A−5及びA−6の樹脂を鞘成分に、ポリ
エチレンテレフタレ−ト(PET)を芯成分にし、鞘/
芯の重量比を50/50で常法により紡糸温度を280
℃にて紡糸し、未延伸糸を得た。次いで、50℃温浴で
3.4倍に延伸し、連続して乾熱90℃で定張熱処理
し、仕上げ油剤を付与した後クリンパ−にて機械捲縮を
付与し、機械捲縮が伸びない張力でカッタ−に供給し5
1mmに切断して4デニ−ルの熱接着繊維(B−6及びB
−7)を作成した。得られた繊維の特性を表2に示す。
Resins A-5 and A-6 are used as sheath components, and polyethylene terephthalate (PET) is used as a core component.
The core weight ratio is 50/50 and the spinning temperature is 280 by the conventional method.
Unstretched yarn was obtained by spinning at 0 ° C. Then, it was stretched 3.4 times in a 50 ° C. hot bath, continuously subjected to constant tension heat treatment at 90 ° C. in dry heat, and after applying a finishing oil agent, mechanical crimping was applied with a crimper so that the mechanical crimping did not extend. Supply to the cutter with tension 5
4 denier heat-bonded fibers (B-6 and B)
-7) was created. The properties of the fibers obtained are shown in Table 2.

【0023】巻縮繊維の作成 極限粘度0.70と0.63のPETを紡糸温度280
℃にて単孔吐出量3g/分と3g/分(合計6g/分)
をノズル背面でサイドバイサイドに接合して、外側に3
個の突起を持つC型オリフィスより吐出させ1300m
/分にて引き取った未延伸糸を次の条件にて延伸−熱処
理した。(イ)1段目80℃にてMDRの0.7倍、2
段目160℃にてMDRの0.85倍、3段目210℃
にてMDRの0.92倍、4段目定長で糸温度を室温ま
で冷却して巻取った延伸糸を64mmに切断し、180℃
で5分間巻縮発現処後、200℃にて拘束状態で10分
間熱処理して得られた捲縮繊維は13デニ−ルの中空で
外側に3個の突起を有する断面形状で、強度5.2g/
デニ−ル、伸度17%、IS45g/デニ−ル、捲縮形
態が波型の立体捲縮でCi28%、Cn18個/イン
チ、比重1.405、Δε5.8、〔(Δε+0.6)
-2.8×103 +10〕が15.5であった。(ロ)1段
目80℃でMDRの0.9倍で延伸し巻き取ったものを
64mmに切断し、160℃で5分間捲縮発現処理して得
られた捲縮繊維は、15デニ−ルの中空で外側に3個の
突起を有する断面形状で、強度2.8g/デニ−ル、伸
度47%、IS23g/デニ−ル、捲縮形態が波型の立
体捲縮でCi24%、Cn22個/インチ、比重1.3
75、Δε3.0、〔(Δε+0.6)-2.8×103
10〕が37.7であった。
Preparation of crimped fiber PET having an intrinsic viscosity of 0.70 and 0.63 was spun at a spinning temperature of 280.
Single hole discharge rate of 3g / min and 3g / min at ℃ (6g / min in total)
To the outside of the nozzle by joining side by side on the back of the nozzle.
Discharge from a C-shaped orifice with one protrusion 1300m
The unstretched yarn drawn at a speed of 1 / min was stretched and heat-treated under the following conditions. (A) 0.7 times the MDR at the first stage of 80 ° C, 2
0.85 times MDR at 160 ° C in the third stage 210 ° C in the third stage
At 0.92 times the MDR, the yarn temperature is cooled to room temperature at the fourth stage fixed length, and the drawn yarn is wound into 64 mm and cut at 180 ° C.
After crimping for 5 minutes, the crimped fiber obtained by heat-treating at 200 ° C. for 10 minutes in a restrained state has a hollow cross section of 13 denier and has three protrusions on the outside, and has a strength of 5. 2 g /
Denier, Elongation 17%, IS45g / Denier, Crimping form is wavy three-dimensional crimp Ci28%, Cn18 pieces / inch, specific gravity 1.405, Δε5.8, [(Δε + 0.6)
-2.8 x 10 3 +10] was 15.5. (B) The crimped fiber obtained by stretching the first stage at 80 ° C. at 0.9 times the MDR and winding up, cutting it into 64 mm, and performing crimp expression treatment at 160 ° C. for 5 minutes was 15 deniers. Hollow hollow cross-sectional shape with three protrusions on the outside, strength 2.8 g / denier, elongation 47%, IS 23 g / denier, crimp form is wavy three-dimensional crimp Ci 24%, 22 Cn / inch, specific gravity 1.3
75, Δε3.0, [(Δε + 0.6) −2.8 × 10 3 +
10] was 37.7.

【0024】クッション材の作成 得られた機械捲縮を持つ熱接着繊維を3重量%から30
重量%と(イ)及び(ロ)の方法で作成した捲縮繊維を
70重量%から97重量%とをカ−ドにて混繊−開繊し
て得たウエッブを密度0.005g/cm3 0.15g/
cm3 となるように圧縮し、150〜240℃の熱風を強
制貫通させて5分間熱処理し、次いで、一旦冷却し、密
度が0.03g/cm3 とした一部は更に密度が0.04
g/cm3となるように圧縮し、100℃で30分再熱処
理して、平板状のクッション材を得た。得られたクッシ
ョン材の作成状況と特性を表3に示す。なお、70℃の
圧縮残留歪み、常温での繰返し圧縮残留歪み、及び反発
弾性はJIS−K−6401の方法による。なお、市販
の機械捲縮を有する3デニ−ル、IS21g/デニ−
ル、強度1.8g/デニ−ル、伸度17%、Ci10
%、Cn8個/インチのレ−ヨンを熱可塑性樹脂からな
る捲縮繊維の比較(ハ)として用いた。
Preparation of Cushioning Material The heat-bonded fiber having the mechanical crimp obtained was used in an amount of 3% by weight to 30% by weight.
% By weight and 70% to 97% by weight of the crimped fibers prepared by the methods (a) and (b) in a card, and the web obtained by opening the fibers has a density of 0.005 g / cm. 3 0.15 g /
compressed so that the cm 3, and heat-treated for 5 minutes by forcing through a hot air of 150 to 240 ° C., then, once cooled, further density part having a density was 0.03 g / cm 3 0.04
It was compressed to g / cm 3 and reheat-treated at 100 ° C. for 30 minutes to obtain a flat cushion material. Table 3 shows the preparation status and characteristics of the obtained cushioning material. The compression residual strain of 70 ° C., the repeated compression residual strain at room temperature, and the impact resilience are according to the method of JIS-K-6401. Incidentally, 3 denier having a commercially available mechanical crimp, IS 21 g / denier
, Strength 1.8 g / denier, elongation 17%, Ci10
%, Cn 8 pieces / inch rayon was used as a comparison (c) of crimped fibers made of a thermoplastic resin.

【0025】[0025]

【表3】 [Table 3]

【0026】本発明の要件を満足する実施例1〜2は耐
熱耐久性に優れ、常温での耐久性にも優れたクッション
材の性能も優れたものを得ることができる。比較例1は
熱接着成分の融点が220℃以上高いため捲縮繊維の劣
化により耐熱耐久性が劣る例である。比較例2は融点の
低い熱接着繊維のため、耐熱耐久性が劣る例である。比
較例3は熱接着成分が非弾性樹脂のため、接着点が脆く
耐久性が著しく劣る例である。比較例4は非弾性樹脂を
芯成分にもつため、固くなるが、熱接着点が弾性樹脂に
もかかわらず芯成分の耐久性がおとり、クッション性能
が劣る例である。比較例5は熱接着成分が3重量%と少
ないため、耐久性が劣る例である。比較例6は接着点が
捲縮繊維同志の接触部で凝集した接着点を作れないため
耐久性が劣る例である。比較例7は見掛け密度が著しく
低いためクッション機能が十分に発現できない例であ
る。比較例8は見掛け密度が0.10g/cm3 を越える
ためクッション材に適さず、耐熱耐久性も劣るものであ
る。比較例9は捲縮繊維が熱可塑性樹脂ではない場合
で、耐久性が劣る例である。なお、参考のため、実施例
1及び比較例7及び比較例8について、30℃室内にて
パネラ−10人に1時間座らせて、床つき感、座り心
地、蒸れ感を評価させた結果、実施例1は、床つき感が
無く、座り心地も良好で蒸れ感の少ない快適なクッショ
ン材であったが、比較例7は床つき感が著しく座り心地
は比較例8より劣るものであった。比較例8は臀部や大
腿部が痛くなり座り心地の悪いものであった。なお、実
施例1〜2のクッション材を45°メセナミン法及び4
5°アルコ−ルランプ法で難燃性の評価を行った結果は
全て合格した。比較にポリウレタンを評価した結果は不
合格であった。本発明のクッション材は安全性も高いこ
とが判る。
In Examples 1 and 2 which satisfy the requirements of the present invention, it is possible to obtain a cushion material having excellent heat resistance and durability and excellent durability at room temperature. Comparative Example 1 is an example in which the heat-adhesion component has a high melting point of 220 ° C. or higher and thus the heat resistance and durability are poor due to the deterioration of the crimped fibers. Comparative Example 2 is an example in which the heat resistance durability is inferior because it is a thermal bonding fiber having a low melting point. Comparative Example 3 is an example in which the heat-bonding component is a non-elastic resin and therefore the bonding point is brittle and the durability is extremely poor. Comparative Example 4 is an example in which the core component is hard because it has a non-elastic resin as a core component, but the core component has poor durability and the cushioning performance is poor despite the fact that the thermal bonding point is the elastic resin. Comparative Example 5 is an example in which durability is inferior because the thermal adhesive component is as small as 3% by weight. Comparative Example 6 is an example in which the adhesive points are inferior in durability because the adhesive points cannot be aggregated at the contact portions of the crimped fibers. Comparative Example 7 is an example in which the cushioning function cannot be sufficiently exhibited because the apparent density is extremely low. Comparative Example 8 has an apparent density of more than 0.10 g / cm 3 and therefore is not suitable as a cushioning material and has poor heat resistance and durability. Comparative Example 9 is an example in which the crimped fiber is not a thermoplastic resin and the durability is poor. For reference, with respect to Example 1 and Comparative Example 7 and Comparative Example 8, a paneler-10 person was allowed to sit in a room at 30 ° C. for 1 hour to evaluate the feeling of flooring, sitting comfort, and stuffiness, Example 1 was a comfortable cushioning material that did not have a floor feeling, had a good sitting comfort and had a low stuffiness, but Comparative Example 7 had a significantly floor feeling and was inferior to Comparative Example 8 in sitting comfort. . In Comparative Example 8, the buttocks and thighs were sore that the sitting comfort was poor. In addition, the cushion materials of Examples 1 and 2 were prepared by the 45 ° mesenamine method and 4
All the results of evaluation of flame retardancy by the 5 ° alcohol lamp method passed. The result of evaluating polyurethane for comparison was unsuccessful. It can be seen that the cushion material of the present invention has high safety.

【0027】[0027]

【発明の効果】本発明は、熱可塑性樹脂からなる捲縮繊
維同志の接触部を耐熱耐久性のある伸縮性の優れた熱可
塑性弾性樹脂が接着点を形成し、捲縮繊維を梁構造とし
た三次元構造体を形成したクッション材であるので、極
めて優れたクッション性、常温および加熱下での耐久性
を持つ安全性の高いクッション材を提供できる。なお、
透湿透水性も保持できるので蒸れの少ない快適な座席を
提供できる。本発明のクッション材の用途としては、車
両用、船舶用、家具、ベッド用に適する。他の用途とし
ては、伸縮性を生かした不織布用途、例えば衛材基布、
肩パッドやカップ、合成皮革基布や立毛布帛類用基布、
通気性良好で接着できるワディング層や内装材、70℃
を越えない範囲の断熱材や衝撃吸収材等々にも広く適用
できる。
Industrial Applicability According to the present invention, a thermoplastic elastic resin having heat resistance and excellent stretchability forms an adhesive point at a contact portion between crimped fibers made of a thermoplastic resin, and the crimped fiber has a beam structure. Since it is a cushion material formed with the three-dimensional structure, it is possible to provide a highly safe cushion material having extremely excellent cushioning properties and durability at room temperature and under heating. In addition,
Since it can retain moisture and water permeability, it can provide a comfortable seat with less stuffiness. The use of the cushion material of the present invention is suitable for vehicles, ships, furniture, and beds. Other applications include non-woven fabric applications that take advantage of elasticity, such as sanitary fabric base cloth,
Shoulder pads and cups, synthetic leather base cloth and base cloth for napped cloth,
Wading layer and interior material with good breathability and adhesion, 70 ℃
It can be widely applied to heat insulating materials and shock absorbing materials, etc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 開繊された捲縮繊維中に、捲縮繊維の交
差点を接合する樹脂接着部が散在するクッション材であ
り、上記樹脂接着部は、融点又は流動開始温度が100
〜220℃の熱可塑性弾性樹脂が溶融し、凝集して形成
されたものであり、該熱可塑性弾性樹脂は、クッション
材中に全重量比で5%以上含まれており、クッション材
は、捲縮繊維を梁構造とした三次元構造体を形成してお
り、嵩密度が0.01〜0.10g/cm3 であることを
特徴とするクッション材。
1. A cushioning material in which resin adhesive portions for joining intersections of crimped fibers are scattered in opened crimped fibers, and the resin adhesive portion has a melting point or a flow starting temperature of 100.
It is formed by melting and aggregating a thermoplastic elastic resin having a temperature of up to 220 ° C., and the thermoplastic elastic resin is contained in the cushioning material in an amount of 5% or more in a total weight ratio. A cushion material having a three-dimensional structure having a crimped fiber as a beam structure and having a bulk density of 0.01 to 0.10 g / cm 3 .
【請求項2】 捲縮繊維が単糸繊度が45デニ−ル以下
で、初期引張抵抗度(IS)が30g/d以上の立体捲
縮を持つポリエステル繊維である請求項1記載のクッシ
ョン材。
2. The cushioning material according to claim 1, wherein the crimped fiber is a polyester fiber having a three-dimensional crimp having a single yarn fineness of 45 denier or less and an initial tensile resistance (IS) of 30 g / d or more.
【請求項3】 熱可塑性樹脂からなる捲縮繊維と5重量
%以上の熱可塑性弾性樹脂からなる全融型熱接着繊維を
混合開繊して捲縮繊維中に熱接着繊維を分散させたウェ
ッブを積層し、嵩密度が0.01g/cm3 〜0.10g
/cm3 の構造体となるように圧縮した状態で、該熱接着
繊維を加熱溶融させて捲縮繊維同志の接触部に凝集させ
樹脂接着部を形成し、捲縮繊維を梁構造とした三次元構
造体を形成させることを特徴とするクッション材の製
法。
3. A web in which crimped fibers made of a thermoplastic resin and fully melted heat-bonded fibers made of 5% by weight or more of thermoplastic elastic resin are mixed and opened to disperse the heat-bonded fibers in the crimped fibers. And have a bulk density of 0.01 g / cm 3 to 0.10 g
/ Cm in a compressed state such that the structure 3, tertiary to the heat adhesive fiber is heated and melted to form a is not resin bonded portion aggregation contact portion crimped fibers each other, and the crimped fiber and beam structure A method for manufacturing a cushion material, which comprises forming an original structure.
【請求項4】 捲縮繊維を梁構造とした三次元構造体を
形成させた後、一旦冷却し、次いで60℃〜熱可塑性弾
性樹脂の融点又は流動開始温度より20℃から100℃
低い温度で少なくとも10分以上疑似結晶化処理する請
求項3記載のクッション材の製法。
4. After forming a three-dimensional structure having a crimped fiber as a beam structure, the three-dimensional structure is once cooled, and then 60 ° C. to 20 ° C. to 100 ° C. depending on the melting point or flow starting temperature of the thermoplastic elastic resin.
The method for producing a cushioning material according to claim 3, wherein the pseudo crystallization treatment is performed at a low temperature for at least 10 minutes.
【請求項5】 全融型熱接着繊維を構成する熱可塑性弾
性樹脂の融点又は流動開始温度より10〜80℃高く、
捲縮繊維の結晶融解温度以下の温度で溶融させて樹脂接
着部を形成する請求項3記載のクッション材の製法。
5. The melting point or flow starting temperature of the thermoplastic elastic resin constituting the fully melted heat-bonded fiber is 10 to 80 ° C. higher,
The method for producing a cushion material according to claim 3, wherein the resin-bonded portion is formed by melting the crimped fiber at a temperature not higher than the crystal melting temperature.
【請求項6】 捲縮繊維に乾熱200℃、5分間のフリ
ー熱処理後の捲縮の伸びを含む弾性限界伸度(Δε)%
とISがIS≧(Δε+0.6)-2.8×10 3 +10を
満足し、捲縮度(Ci)が15%以上、捲縮数(Cn)
が10個/インチ以上のポリエステル立体捲縮繊維を用
いた請求項3記載のクッション材の製法。
6. The crimped fibers are dried at 200 ° C. for 5 minutes to dry them.
ー Elastic limit elongation (Δε)% including elongation of crimp after heat treatment
And IS is IS ≧ (Δε + 0.6)-2.8× 10 Three+10
Satisfied, crimp degree (Ci) is 15% or more, crimp number (Cn)
Use polyester three-dimensional crimped fiber of 10 pieces / inch or more
The method for producing a cushioning material according to claim 3, wherein
JP17186095A 1995-07-07 1995-07-07 Cushion material and its manufacturing method Expired - Fee Related JP3646814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17186095A JP3646814B2 (en) 1995-07-07 1995-07-07 Cushion material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17186095A JP3646814B2 (en) 1995-07-07 1995-07-07 Cushion material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0919580A true JPH0919580A (en) 1997-01-21
JP3646814B2 JP3646814B2 (en) 2005-05-11

Family

ID=15931133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17186095A Expired - Fee Related JP3646814B2 (en) 1995-07-07 1995-07-07 Cushion material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3646814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018165A1 (en) 2005-08-10 2007-02-15 Toray Industries, Inc. Sponge-like structural body or powder, and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018165A1 (en) 2005-08-10 2007-02-15 Toray Industries, Inc. Sponge-like structural body or powder, and process for production thereof
US9896563B2 (en) 2005-08-10 2018-02-20 Toray Industries, Inc. Process for producing spongelike structure

Also Published As

Publication number Publication date
JP3646814B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3596623B2 (en) Seat and manufacturing method
JP3646814B2 (en) Cushion material and its manufacturing method
JP3541969B2 (en) Bed mat
JP3473711B2 (en) Polyester wadding material and its manufacturing method
JP2001061605A (en) Seat for vehicle
JPH06306708A (en) Elastomer-based thermally bondable conjugate fiber and its production
JPH08851A (en) Fibrous wadding material and its production
JP3620604B2 (en) Flame retardant seating and manufacturing method
JP3589307B2 (en) Seat and recipe
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH0913219A (en) Thermally adhesive fiber and its production
JP3275973B2 (en) Elastomer-based heat-bonded fiber and method for producing the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454363B2 (en) Fiber structure and manufacturing method thereof
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3526041B2 (en) Mat and its manufacturing method
JP3496724B2 (en) Fiber structure and manufacturing method thereof
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3627825B2 (en) Mat and its manufacturing method
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040909

A521 Written amendment

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20041105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees