JPH09194905A - Production of cutting tool and so on - Google Patents

Production of cutting tool and so on

Info

Publication number
JPH09194905A
JPH09194905A JP467196A JP467196A JPH09194905A JP H09194905 A JPH09194905 A JP H09194905A JP 467196 A JP467196 A JP 467196A JP 467196 A JP467196 A JP 467196A JP H09194905 A JPH09194905 A JP H09194905A
Authority
JP
Japan
Prior art keywords
powder
hip
cip
capsule
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP467196A
Other languages
Japanese (ja)
Inventor
Sukeaki Hamanaka
亮明 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP467196A priority Critical patent/JPH09194905A/en
Publication of JPH09194905A publication Critical patent/JPH09194905A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing cutting tool, etc., capable of increasing the rate of material yield of an expensive stock, shortening the time necessary for working, and improving quality. SOLUTION: A thin-walled resin mold (capsule), having a shape corresponding to the prescribed outside dimension, is previously prepared, filled, under vibration, with a metal or alloy powder having a composition of tool material, etc., evacuated, and hermetically sealed. The resultant capsule body in which the powder is hermetically sealed is subjected to CIP(cold isostatic pressing). After the capsule is removed from the capsule body, in which the powder is hermetically sealed, after CIP, the powder is heated and held in vacuum or in a reducing atmosphere and simultaneously subjected to brighttening treatment and subjected to sintering and HIP (hot isostatic pressing). After the excess metal of the member after sintering-HIP treatment is worked and removed, heat treatment is applied according to the material components of the tool material, etc., and further, finish grinding is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金型も含む切削工
具等の粉末冶金製品の素形材製造に適用される製造法の
改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a manufacturing method applied to manufacturing a raw material for a powder metallurgy product such as a cutting tool including a mold.

【0002】[0002]

【従来の技術】[Prior art]

(1)従来から知られている高速度鋼製歯切工具の製造
方法。 歯切工具用材には主として高速度鋼(ハイス鋼)が用い
られる。このハイス鋼には、溶解ハイス鋼と粉末ハイス
鋼とがあり、前者は、所定成分に溶解製錬した後インゴ
ット(鋳塊)とし、鍛造,圧延等の塑性加工を踏えて丸
棒,角棒,ディスク状等の素形材に成形される。一方、
後者では溶解,製錬により所定成分に調整後、例えば、
アトマイジング法により不活性ガス(主にN2 ガス)中
で、溶湯を噴霧化、凝固させて粉末金属粒子を製造し、
薄肉金属缶内に充填,密封して、HIP(高温静水圧加
圧)により、インゴットを製作し、鍛造圧延等の塑性加
工を経て、丸棒,角棒,ディスク状の素形材に成形され
る。
(1) A conventionally known method for manufacturing a high speed steel gear cutting tool. High speed steel (high speed steel) is mainly used as a material for gear cutting tools. These high-speed steels include molten high-speed steels and powder high-speed steels. The former is an ingot after being melted and smelted to a predetermined composition, and then subjected to plastic working such as forging and rolling to obtain round bars and square bars. , It is formed into a blank such as a disc. on the other hand,
In the latter case, after adjusting to predetermined components by melting and smelting, for example,
Atomizing method is used to produce powder metal particles by atomizing and solidifying the molten metal in an inert gas (mainly N 2 gas),
It is filled and sealed in a thin metal can, and an ingot is manufactured by HIP (high temperature isostatic pressing), and after being subjected to plastic working such as forging and rolling, it is molded into round bar, square bar, disk-shaped raw material. It

【0003】(2)従来から知られている超硬製歯切工
具の製造方法。 近年、切削工具の長寿命化、ワーク1個当りの工具コス
ト削減を狙いとしてまた、被削材の高硬度化に対応し
て、超硬製歯切工具の需要が漸増している。この超硬工
具には、一体超硬歯切工具とろう付超硬歯切工具とがあ
る。前者では、超硬原料粉末、即ち金属炭化物(例、W
C,TiC,NbC,TaC,Ta(Nb)Cなど)を
コバルト粉(Co粉)と混練,配合した後、薄肉金属缶
に充填,密封し、HIPにより焼結して丸棒,角棒およ
び所定形状の素形材に成形される。後者では、歯切工具
本体部に、予め安価かつ加工性に優れた工具鋼(例、ハ
イス鋼,ダイス鋼及び金型鋼など)の予備整形材に、歯
先材として、超硬チップをろう付後、完成工具に向けて
ダイヤモンド砥石等で完成させる方法である。
(2) A conventionally known method for manufacturing a cemented carbide gear cutting tool. In recent years, the demand for cemented carbide gear cutting tools has been gradually increasing in order to prolong the life of cutting tools and reduce the tool cost per work piece, and to respond to the increase in hardness of work materials. This cemented carbide tool includes an integral cemented carbide gear cutting tool and a brazed cemented carbide gear cutting tool. In the former case, a cemented carbide raw material powder, that is, a metal carbide (eg, W
C, TiC, NbC, TaC, Ta (Nb) C, etc.) are kneaded and mixed with cobalt powder (Co powder), then filled in a thin metal can, sealed, and sintered by HIP to form round bar, square bar and It is molded into a predetermined shape. In the latter case, the tooth cutting tool body is brazed with a carbide tip as a tooth tip material on a preliminary shaping material of tool steel (eg, high-speed steel, die steel, mold steel, etc.) that is inexpensive and has excellent workability. After that, it is a method of completing with a diamond grindstone or the like toward the finished tool.

【0004】歯切工具の一例として、図7に一体ホブ、
図8にピニオンの完成工具の形状を示す。これらの完成
工具は、高速度鋼製の場合には、上述の丸棒或はディス
ク状素形材から切削加工により熱処理後の研磨加工代を
見込んで所謂、焼前加工を行い、熱処理(焼入,焼戻
し)を施した後、研磨加工により完成させる。一方、超
硬一体工具の場合には、超硬丸棒或はディスク状素形材
からダイヤモンド砥石等により、研磨加工を行い完成さ
せる。他方超硬ろう付ホブについては、既述の如く、歯
先用超硬チップを本体にろう付後、研磨砥石により研磨
加工を行い完成させる。
As an example of a gear cutting tool, FIG.
FIG. 8 shows the shape of the completed pinion tool. When these finished tools are made of high-speed steel, they are subjected to so-called pre-baking, which is a so-called pre-baking process, in consideration of the grinding allowance after the heat treatment from the round bar or the disk-shaped material described above by cutting. After quenching and tempering), it is completed by polishing. On the other hand, in the case of a cemented carbide integrated tool, it is completed by polishing a cemented round bar or disc-shaped material with a diamond grindstone or the like. On the other hand, as for the cemented carbide brazing hob, as described above, the cemented carbide tip tip is brazed to the main body and then polished by a polishing grindstone to be completed.

【0005】[0005]

【発明が解決しようとする課題】前節で、歯切工具の従
来製法について概述したが、図9に示す歯切工具の一種
である一体ホブの例を交えて、従来製法の課題を説明す
る。 (1)高価素形材の材料歩留率が悪く不経済である。図
9に示す如く素形材10から一体ホブ20を完成させる
ためには歯部ネジ溝40、溝部50、穴部60、キー溝
70等を除去する必要がある。従って、素形材の材料歩
留率は一体ホブで50〜70%、図8に示したポット型
ピニオンでは30%以下となり、極めて不経済である。
これは、前述の溶解ハイス,粉末ハイス及び一体超硬工
具で、丸棒,ディスク状時には角棒を用いる従来後方で
の共通課題である。
Although the conventional method for manufacturing a gear cutting tool has been outlined in the previous section, the problems of the conventional manufacturing method will be described with reference to an example of an integral hob which is a kind of gear cutting tool shown in FIG. (1) It is uneconomical because the material yield of expensive shaped materials is poor. As shown in FIG. 9, in order to complete the integral hob 20 from the blank 10, it is necessary to remove the tooth groove 40, the groove 50, the hole 60, the key groove 70, and the like. Therefore, the material yield of the blank is 50 to 70% in the integral hob and 30% or less in the pot type pinion shown in FIG. 8, which is extremely uneconomical.
This is a common problem in the conventional rear using the melting high speed steel, the powder high speed steel, and the integrated cemented carbide tool, and using the round bar or the square bar when the disk type.

【0006】(2)素形材から完成までの「加工所要時
間」が極て長い。 ・(1)で述べた如く、素形材の材料歩留が低いこと
は、除去すべき材料体積の増大を招き、加工時間の延長
となる。一方、歯切工具は、主に自動車産業の歯車加工
ラインを支える重要治工具であり、経済的に安価に、納
期通りに安定して供給すべき社会的任務を帯びている
が、長時間加工を要することは、時として、客先に迷惑
をかけることがある。 ・溶解ハイスや粉末ハイスの歯切工具では、図9の一体
ホブの例では焼ならし状態の丸棒材から切削により「焼
前加工」を行ない、熱処理(焼入,焼戻)により硬化さ
せた後、研磨により「焼後加工」を施し完成させるが、
この焼前加工時間は、全加工時間の約1/3も占めるに
至っており、この工数省略がコスト低減、納期短縮化の
重要ポイントとなるが、今まで打解策が見当らなかっ
た。 ・一方超硬一体工具では、丸棒或はディスク状素材か
ら、高硬度であるが故に除去すべき材料体積の全量をダ
イヤモンド砥石により研磨除去する必要があり、加工が
極て長時間となる。
(2) The "processing time" from the blank to the completion is extremely long. -As described in (1), the low material yield of the raw material causes an increase in the volume of material to be removed, which extends the processing time. On the other hand, gear cutting tools are important jigs and tools that mainly support the gear processing line of the automobile industry, and have a social mission to supply them economically at low cost and stably on time, but for long-term machining. In some cases, this may cause trouble to the customer.・ In the case of a gear cutting tool of melted high speed steel or powder high speed steel, in the example of the integral hob in Fig. 9, "pre-working" is performed by cutting from a round bar in a normalized state and hardened by heat treatment (quenching, tempering). After finishing, it is completed by "post-baking processing" by polishing,
This pre-baking processing time accounts for about one-third of the total processing time, and the reduction of man-hours is an important point for cost reduction and shortening of delivery time, but until now no solution has been found. -On the other hand, in the cemented carbide tool, since it has a high hardness, it is necessary to polish and remove the entire material volume to be removed from the round bar or disk-shaped material with a diamond grindstone, resulting in extremely long processing time.

【0007】(3)長寿命化、耐チッピング性など更な
る品質向上対策が必要である。 ・溶解ハイス工具では、素形材が押出,圧延,鍛造等に
より展伸される為、材料中の非金属介在物も線状あるい
は帯状に展伸され、また、初晶炭化物の網目状組織も分
断されつつも展伸方向に配向されて材料に異方性を生じ
る。この展伸方向に直交方向では、材料取り如何により
マイクロチッピングの発生を招く欠点がある。溶解,製
錬時に非金属介在物量(特に、P,S)を大幅に削減す
るとしても、高価になるのみならず、初晶炭化物(溶解
ハイス材の成分によって決定される)の配向分布は回避
できないので溶解ハイス材の耐チッピング性向上による
工具寿命向上は限界にきている。 ・一方、粉末ハイス工具では、前述のアトマイジング処
理で、溶融金属を噴霧化により微細,急冷するため、金
属粉末粒子内の非金属介在物及び初晶炭化物は超微細化
されるため、HIP法による焼結後のビレットを展伸し
た場合にも方向性は存在するものの溶解ハイス程には耐
チッピング性は低下しにくい傾向にある。但し、HIP
時に金属粉末の充填容器が大きい場合や加熱,加圧が不
充分な時には、容器中央部付近の金属粉末間の結合力不
足や空孔(Void)が残留し、展伸後であっても靱
性、即ち耐チッピング性を損うことがある。これは、偏
に現状の粉末ハイスの製法が生産性の点から、充填容器
径を大きく設定している(約600φmm)為、HIP
時の加圧,加熱時に於て、粒子間での荷重伝達や伝熱不
良による芯部の焼結程度が劣ることによる。 ・超硬ろう付工具特にホブ,ピニオン等のろう付大面積
を必要とする歯切工具に於ては、工具本体と超硬チップ
界面へのろう回り不良やろう付時の過熱による超硬内部
での微細クラックの発生,内在等による寿命低下を伴う
ことがある。
(3) Further quality improvement measures such as long life and chipping resistance are required.・ In the molten high-speed steel tool, the base material is expanded by extrusion, rolling, forging, etc., so non-metallic inclusions in the material are also expanded in a linear or strip shape, and the network structure of primary carbide is also expanded. While being divided, it is oriented in the direction of expansion and causes anisotropy in the material. In the direction orthogonal to the expansion direction, there is a drawback that microchipping occurs due to material removal. Even if the amount of non-metallic inclusions (particularly P and S) is significantly reduced during melting and smelting, not only becomes expensive but also the orientation distribution of primary carbides (determined by the components of the molten high-speed steel) is avoided. Since it is not possible to improve the tool life by improving the chipping resistance of melted high-speed steel, it has reached the limit. On the other hand, in the powder HSS tool, since the molten metal is finely and rapidly cooled by atomization in the atomizing treatment described above, the non-metal inclusions and primary carbides in the metal powder particles are ultra-fine grained. Although there is a directionality even when the billet after sintering is expanded by, the chipping resistance tends to be less likely to decrease as much as the melting high-speed steel. However, HIP
When the container filled with metal powder is large or when heating and pressurization are insufficient, insufficient bonding force between metal powders near the center of the container and voids remain, resulting in toughness even after expansion. That is, the chipping resistance may be impaired. This is due to the fact that the current powder HSS manufacturing method sets the diameter of the filling container to a large value (about 600 mm) from the viewpoint of productivity.
This is because the degree of sintering of the core is poor due to load transfer between particles and poor heat transfer during pressurization and heating.・ Carbide brazing tools, especially hobbing, pinion, and other gear cutting tools that require a large brazing area. It may be accompanied by the generation of fine cracks and shortened life due to internal factors.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

〔I〕高速度鋼製歯切工具の焼前素形材の製造方法とし
て、以下の手段を取る(図1参照)。 〔手段1〕歯切工具の焼前素形材の外形に相当する薄肉
プラスチック容器(以下、カプセルと称す)を予め準備
する。{図2参照} 〔手段2〕上記カプセル内に所定の高速度鋼組成を有す
る合金粉末を加振充填させ、カプセル内空気を吸引除去
すると同時に密封シールすること。{図3,図4参照} 〔手段3〕粉末充填密封カプセルをCIP(低温静水圧
加圧)炉内で3次元圧縮し、カプセル内の粉末をカプセ
ルのシェル(外殻)形状に自己保形させる。{図5参
照} (続いて、シェルであるカプセルを剥離除去する。→後
のテストの結果、カプセル除去は不要であることが確認
できたが、剥離工程を残しても支障ない。) 〔手段4〕CIP後の密封カプセルをSinter−H
IP炉に挿入し、加熱昇温すると共に助燃ガス(空気な
ど)を炉内に供給し、カプセルを燃焼すると共に排気,
減圧ポンプで燃焼ガスを除去した後、所定温度まで昇
温,保持して表層をSinteringさせ更に昇温させなが
ら、加圧ガス(N2 )を炉内に供給して、所定温度,圧
力下でHIP処理を行なうこと。{図6参照} 〔手段5〕HIP炉冷却後、焼結後の完成素形材を取出
し、一部の贅肉部を除去後、所定の硬度となる様に焼
入,焼戻の熱処理を施す。以後、仕上研磨と検査を終え
て歯切工具を完成させる。
[I] The following means are taken as a method for producing a pre-fired material for a high-speed steel gear cutting tool (see FIG. 1). [Means 1] A thin-walled plastic container (hereinafter referred to as a capsule) corresponding to the outer shape of the pre-fired raw material of the gear cutting tool is prepared in advance. {Refer to FIG. 2} [Means 2] The capsule powder is vibrated and filled with an alloy powder having a predetermined high-speed steel composition, and the air in the capsule is sucked and removed, and at the same time, hermetically sealed. {See FIGS. 3 and 4} [Means 3] The powder-filled hermetically sealed capsule is three-dimensionally compressed in a CIP (low temperature isostatic pressurization) furnace, and the powder in the capsule is self-maintained in the shape of a shell (outer shell) of the capsule. Let {Refer to FIG. 5} (Next, the capsule that is the shell is peeled off. → As a result of the subsequent test, it was confirmed that the capsule removal was unnecessary, but there is no problem even if the peeling step is left.) 4] Seal the sealed capsule after CIP with Sinter-H
Insert into an IP furnace, heat up and heat up, supply auxiliary combustion gas (air etc.) into the furnace, burn capsules and exhaust,
After removing the combustion gas with a decompression pump, the temperature was raised to and maintained at a predetermined temperature, and the surface layer was subjected to Sintering to further raise the temperature, and pressurized gas (N 2 ) was supplied into the furnace at a predetermined temperature and pressure. Perform HIP processing. {Refer to FIG. 6} [Means 5] After cooling the HIP furnace, take out the completed raw material after sintering, remove a part of the extraneous portion, and then perform heat treatment such as quenching and tempering so as to have a predetermined hardness. . After that, finishing polishing and inspection are completed to complete the gear cutting tool.

【0009】〔II〕超硬製一体歯切工具の製造方法とし
て、以下の手段を取る。 〔手段1〕歯切工具の仕上研磨前素形材の外形に相当す
る薄肉プラスチック容器(カプセル)予め準備する。 〔手段2〕複数種類の金属炭化物粉末とCo粉を所定配
合比率で混練した後、上記カプセル内に加振充填させた
後、カプセル内の空気を吸引除去すると同時に密封シー
ルすること。 〔手段3〕粉末充填密封カプセルをCIP炉内で3次元
圧縮すること。 〔手段4〕CIP後の密封カプセルをSinter−H
IP炉内で所定加熱サイクルに基き、カプセル除去と、
表層Sinteringを行ない、更に加熱,加圧保持してHI
P処理を行なうこと。 〔手段5〕HIP炉冷却後、焼結後の完成素材を取出
し、研磨加工により歯切工具を完成させる。
[II] The following means are taken as a method for manufacturing a cemented carbide integrated gear cutting tool. [Means 1] Finishing of gear cutting tool Thin plastic container (capsule) corresponding to the outer shape of the blank before polishing is prepared in advance. [Means 2] After kneading a plurality of kinds of metal carbide powder and Co powder at a predetermined mixing ratio, after vibrating and filling the capsule, air in the capsule is removed by suction and hermetically sealed. [Means 3] Three-dimensionally compressing the powder-filled sealed capsule in a CIP furnace. [Means 4] Seal the sealed capsule after CIP with Sinter-H
Capsule removal based on a predetermined heating cycle in the IP furnace,
HI by performing surface Sintering and then heating and maintaining pressure
Perform P processing. [Means 5] After cooling the HIP furnace, the finished material after sintering is taken out, and a gear cutting tool is completed by polishing.

【0010】〔作用〕 (1)薄肉プラスチック製のカプセルを用いることによ
り、複雑な3次元形状を呈する歯切工具素形材の輪郭に
対応したシェル(殻)を容易,安価,迅速に調達でき
る。また、薄肉であっても機密性に優れ、且つ保形製に
も優れる。また、多種多様の歯切工具に対して内外径,
溝条数,ネジ条数等の範囲を数種のタイプに分類,標準
化することにより、型式数を削減できる。 (2)金属粉末をカプセル内に加振充填させることによ
り、充填密度を高めると共に、カプセル内の空気を吸引
除去密封シールすることができ、次工程でのCIP加圧
を確実ならしめ、シール後の放置期間が長引いても、粉
体の酸化,発錆がない。また、シェルに被覆されている
ので、取扱い性が良好である。 (3)CIP加圧することにより、カプセル内の粉体を
高圧で加圧することができ、粒子表層酸化膜の破壊によ
る活性面間の粘着,粒子の幾何学的な噛み合い,分子間
引力等によりShell形状に沿って保形された粉体塊
が得られる。 (4)Sinter−HIPにより、先ず、昇温過程の
初期段階で低融点のプラスチックを燃焼(多量の空気供
給時)もしくは炭化(空気遮断加熱時)により消失させ
る。次の昇温,昇圧段階で粉体塊の粒間にSinteringを
行ない、最終の加熱,加圧により、完全な粒間結合と空
孔(Void)を消滅させる。
[Operation] (1) By using a thin-walled plastic capsule, a shell corresponding to the contour of a tooth-cutting tool blank having a complicated three-dimensional shape can be easily, inexpensively and quickly procured. . Further, even if it is thin, it is excellent in airtightness and also excellent in shape retention. Also, for a wide variety of gear cutting tools,
The number of models can be reduced by classifying and standardizing the range of the number of groove threads and the number of screw threads into several types. (2) By vibrating and filling the metal powder into the capsule, the filling density can be increased, and the air inside the capsule can be removed by suction and hermetically sealed, and the CIP pressurization in the next step can be ensured and after sealing. No oxidization or rusting of the powder even if the standing period is prolonged. Further, since it is coated on the shell, it is easy to handle. (3) By applying CIP pressure, the powder in the capsule can be pressed at a high pressure, and due to the adhesion between the active surfaces due to the destruction of the oxide film on the surface of the particle, the geometrical meshing of the particles, the intermolecular attractive force, etc. A powder mass that is shaped according to the shape is obtained. (4) By Sinter-HIP, first, in the initial stage of the temperature rising process, the low-melting-point plastic is burnt (when a large amount of air is supplied) or carbonized (when air is blocked and heated) to disappear. Sintering is performed between the grains of the powder mass in the next temperature rising and pressure raising steps, and complete intergrain bonding and voids are eliminated by the final heating and pressing.

【0011】[0011]

【発明の実施の形態】歯切工具の代表例として、一体ホ
ブを例に挙げ実施例を以下に詳述する。 〔実施例1〕一体ホブの完成品には、図7に示す如く、
外径(D),全長(L),歯数,条数,モジュールなど
の組合せにより、各種のバリエーションがあるが、本発
明に対応した素形材形状として分類統廃合して、定型
化,標準化すると、バリエーション数は1/10程度に
削減できるためカプセル成形用金型を準備した。
BEST MODE FOR CARRYING OUT THE INVENTION As a typical example of a gear cutting tool, an embodiment will be described in detail below by taking an integral hob as an example. [Embodiment 1] As shown in FIG.
There are various variations depending on the combination of the outer diameter (D), the total length (L), the number of teeth, the number of threads, the module, etc. However, if standardization and standardization are performed by classifying and aggregating as a shape material shape corresponding to the present invention. Since the number of variations can be reduced to about 1/10, a mold for capsule molding was prepared.

【0012】プラスチックカプセルの準備 図2に示した輪郭を内壁形状とする2分割金型を用い
て、ブロー成形により、PET(ポリエチレンテレフタ
ール)製のカプセル本体(0.15tmm)1とキャッ
プ(0.15tmm)2及び製品の内孔60(図9参
照)となるべき、金属管(Cr−Mo鋼)3を準備す
る。金属管3の内径は、カプセルの突起部1−1,2−
1と嵌合する構成となっており、キャップ2には、空気
抜孔2−2を有する。カプセル本体1及びキャップ2に
は鍔部1−3,2−3有し、位置合せ用の円形突起1−
4,2−4を有する。なお、カプセルの寸法は、後工程
のCIP及びHIP時の収縮,熱処理時の変形,熱処理
後の研磨加工代等を予め見込んで設定してある。
Preparation of Plastic Capsule By using a two-divided mold having the contour shown in FIG. 2 as an inner wall shape, a capsule main body (0.15 tmm) 1 and a cap (0) made of PET (polyethylene terephthale) are formed by blow molding. .15 tmm) 2 and an inner hole 60 (see FIG. 9) of the product, a metal tube (Cr-Mo steel) 3 is prepared. The inner diameter of the metal tube 3 is equal to the projections 1-1 and 2- of the capsule.
The cap 2 has an air vent hole 2-2. The capsule main body 1 and the cap 2 have collar portions 1-3 and 2-3, and have circular protrusions 1- for alignment.
4 and 2-4. The size of the capsule is set in consideration of shrinkage during CIP and HIP in the subsequent process, deformation during heat treatment, polishing allowance after heat treatment, and the like.

【0013】カプセル内への粉末充填,密封シール 粉末金属としては、1.2%C−4.2%Cr−5.0
%Mo−6.4%W−8%Co−3%Vの化学成分を有
する粉末ハイス原料を用いた。図3に示すように、直径
1.200mmのロータリーテーブル上の6分割(60
°)位置に加振器付の台盤10をセットし、その台盤上
には、夫々(I)カプセル本体搬入ローダー,(II)粉
末金属供給ホッパー8、(III )カプセルキャップ搬入
ローダー、(IV)鍔部超音波溶接シーラー12、(V)
カプセル内空気排出ゴムノズル13及び密封用超音波シ
ーラー14,(VI)密封カプセル排出ローダーが(I)
〜(VI)の順で定置的に取付けられている。このロータ
リーテーブルの方は、間欠的に60°ピッチで旋回する
構造となっており、(I)工程の入口部には、カプセル
本体1内へ予め芯部パイプ(金属管)3を突起部1−1
に挿入,嵌合するインサーターが配置してある。尚、図
3中には、(II)〜(V)工程が示されている。
Powder filling into capsules and hermetic sealing As powder metal, 1.2% C-4.2% Cr-5.0
A powder HSS raw material having a chemical composition of% Mo-6.4% W-8% Co-3% V was used. As shown in FIG. 3, 6 divisions (60
The base 10 with a shaker is set at a position (°), and (I) the capsule body loading loader, (II) the powder metal supply hopper 8, (III) the capsule cap loading loader, (). IV) Collar ultrasonic welding sealer 12, (V)
Capsule air discharge rubber nozzle 13 and sealing ultrasonic sealer 14, (VI) Sealed capsule discharge loader (I)
They are fixedly installed in the order of ~ (VI). This rotary table has a structure which intermittently turns at a pitch of 60 °, and a core pipe (metal pipe) 3 is preliminarily inserted into the capsule body 1 at the entrance of the step (I). -1
There is an inserter to insert and fit into. Incidentally, in FIG. 3, steps (II) to (V) are shown.

【0014】上記装置により、(II)工程で加振器11
を作動させながら且つ台盤10を旋回させつつ粉末金属
を供給するので、均一高密度でカプセル内に充填でき
る。(IV)工程では、一対の鍔部の重なり部を超音波シ
ーラ12でノンリーク接合する。(V)工程では吸引ノ
ズル(カプセル内空気排出ゴムノズル)13によりカプ
セル内空気を除去する(1〜5×10-1Torr)と同
時に、図4に示すように、空気抜孔2−2を超音波シー
ラー14で密封した。
With the above apparatus, the vibrator 11 is used in the step (II).
Since the powder metal is supplied while operating the and while rotating the base plate 10, it is possible to fill the inside of the capsule with uniform and high density. In the step (IV), the overlapping portion of the pair of collar portions is non-leak-bonded by the ultrasonic sealer 12. In the step (V), the air in the capsule is removed by the suction nozzle (air discharge rubber nozzle in the capsule) 13 (1 to 5 × 10 −1 Torr), and at the same time, as shown in FIG. Sealed with a sealer 14.

【0015】CIP(低温静水圧加圧)による保形加
工 図5に示すように、CIP装置本体容器15内に、粉末
金属充填カプセルA(一体ホブ),B(ピニオン)等を
治具19を介して投入し、上蓋16を閉じ、内部の空気
20を排気系18を経由して抜き乍ら、加圧水21を加
圧系17を経由して注入後、空気を抜き終えた時点で排
気系18のバルブを閉じ、増圧して30kgf/cm2
×10分保持した。このCIP処理後には、カプセル内
の粉末金属塊は、圧縮により体積収縮しており、カプセ
ルは弾力性がある為、ピンホールを一個穿けるとによ
り、初期形状に戻り、粉末金属塊表面との間に隙間が形
成されるので、簡単にカプセルを脱皮させることが出来
た。また、脱皮後の粉末金属塊は、30kgf/cm2
加圧によりカプセルシェル(殻)と相似形の形状で自己
保持されている。
Shape-Retaining Processing by CIP (Low Temperature Isostatic Pressing) As shown in FIG. 5, a jig 19 for powder metal-filled capsules A (integrated hob), B (pinion), etc. is provided in a CIP device body container 15. And then the upper lid 16 is closed, the internal air 20 is extracted via the exhaust system 18, the pressurized water 21 is injected via the pressurizing system 17, and the exhaust system 18 is exhausted when the air is completely removed. Close the valve and increase the pressure to 30 kgf / cm 2
× 10 minutes hold. After this CIP treatment, the powder metal lump in the capsule has contracted in volume due to compression, and since the capsule has elasticity, it can be returned to the initial shape by punching one pinhole, and the powder metal lump surface Since a gap was formed between them, the capsule could be easily peeled. In addition, the powder metal mass after dehulling is 30 kgf / cm 2
It is self-held in a shape similar to the capsule shell by pressure.

【0016】Sinter−HIP(高温静水圧加
圧)による焼結 カプセルを除去した粉末金属塊A’(一体ホブ),B’
(ピニオン)を図6に示すSinter−HIP炉で焼
結した。Sinter−HIP炉の構成は、圧力容器部
22に真空排気ポンプ25(P 2 )を介した排気系と、
必要に応じて流量計27を介して還元ガス(主にH2
を供給できる系統と、炉壁内面を高温加圧できるヒータ
ー23と、高圧加圧ポンプ29(P1 )を介した加圧系
とから成る。尚、図中26,28,30はバルブで、3
1は底壁部である。先ず炉内にワークを挿入後、真空排
気ポンプ25を作動させ10-4Torrオーダーの真空
度を維持しつつヒータ電源24を入れ1200℃×30
分保持により、金属粉末表面の酸化皮膜除去を行なっ
た。加熱途上適時流量計27を経由して還元作用を有す
るH2 ガスを炉内注入し、光輝還元(Sintering)した
後、純窒素ガスを高圧加圧ポンプ25を介して圧入し、
2000kgf/cm2 以下で1150℃×2H のHI
P処理を行なった。炉の冷却を待って、ワークを取出す
ことにより、歯切工具の焼前素形材を得た。
Sinter-HIP (high temperature hydrostatic pressure
Sintering by pressure) Powder metal lumps A '(integral hobs), B'without capsules removed
(Pinion) is baked in the Sinter-HIP furnace shown in FIG.
Tied. The configuration of the Sinter-HIP furnace is the pressure vessel section.
22 to the vacuum pump 25 (P Two) Through the exhaust system,
If necessary, reducing gas (mainly HTwo)
And a heater that can pressurize the inner wall of the furnace at high temperature
-23 and high-pressure pressurizing pump 29 (P1) Via pressure system
Consisting of In the figure, 26, 28 and 30 are valves.
1 is a bottom wall part. First, insert the work into the furnace, and then vacuum
Operate the air pump 25 10-FourTorr order vacuum
Turn on the heater power supply 24 while maintaining the temperature of 1200 ° C × 30
The oxide film on the surface of the metal powder is removed by holding
Was. Has a reducing action via the flow meter 27 at appropriate times during heating
HTwoGas was injected into the furnace and bright reduction (Sintering) was performed.
After that, pure nitrogen gas was injected under pressure through the high pressure pressurizing pump 25,
2000 kgf / cmTwoBelow 1150 ℃ x 2HHI
P treatment was performed. Wait for the furnace to cool, and then take out the work
Thus, a pre-fired raw material for a gear cutting tool was obtained.

【0017】贅肉除去加工 上記素形材は、焼ならし状態になっており、未硬化状態
であり、切削加工が容易であるので、定型化,標準化さ
れた形状からの贅肉部を後工程の研磨代のみ残して除去
した。以後焼入,焼戻しにより硬化させた後研磨仕上加
工を行ないハイス製歯切工具を完成させた。なお、一体
ホブで芯材として用いた金属管は中空であり、内径加工
を大幅に短縮し得た。
Luxury Material Removal Process Since the above-mentioned raw material is in a normalizing state, is in an uncured state and is easy to cut, it is possible to form a standardized and standardized shape into a post-process in which the extraneous part is processed. It was removed leaving only the polishing allowance. Then, after hardening by tempering and tempering, polishing finishing was performed to complete a HSS gear cutting tool. The metal tube used as the core material in the integral hob was hollow, and the inner diameter processing could be greatly shortened.

【0018】〔実施例2〕実施例1に於けるプロセス
〜は全く同様であるが、プロセスのCIPによる保
形加工に於て、30kgf/cm2 ×10minの保持
後カプセルを剥離除去せずに、被覆状態のままで次のS
inter−HIP加圧工程に入る。
[Embodiment 2] The processes 1 to 3 in Example 1 are exactly the same, but in the shape retention process by CIP in the process, the capsules are not peeled and removed after being held at 30 kgf / cm 2 × 10 min. , The next S in the coated state
Enter the inter-HIP pressurization step.

【0019】Sinter−HIP(高温静水圧加
圧)による焼結 上述のカプセルで被覆されたCIP後の粉末金属塊A”
(一体ホブ),B”(ピニオン)をSinter−HI
P炉に投入し焼結した。以下に図6を流用して詳述す
る。装置構成としては、圧力容器に吸気系として助燃ガ
ス(空気及びN2)送給ポンプP3 (図中不記載)と、
排気系として排気ポンプP4 (図中不記載)を追加す
る。
Sintering by Sinter-HIP (hot isostatic pressing) Powder metal mass A ″ after CIP coated with the above-mentioned capsules
(Integrated hob), B "(pinion) Sinter-HI
It was put into a P furnace and sintered. A detailed description will be given below with reference to FIG. As the device configuration, an auxiliary combustion gas (air and N 2 ) feed pump P 3 (not shown in the figure) is used as an intake system in the pressure vessel,
An exhaust pump P 4 (not shown in the figure) is added as an exhaust system.

【0020】先ずモータ電源を投入し、炉内温度が30
0℃になった時点で送給ポンプP3から空気を供給し、
排気ポンプP4 を作動させ、プラスチックカプセルを溶
融させながら850℃時点で燃焼を完了させる。続い
て、P3 ,P4 のバルブを閉じ、真空排気ポンプを作動
させて10-4Torrオーダを維持しながら1200℃
×30分保持に入る直前に流量計27を経由してH2
スを炉内注入し、金属粉末表面の酸化皮膜除去により光
輝還元(Sintering)を行なった。続いて純窒素ガスを
高圧加圧ポンプP1 を介して圧入し、2000kgf/
cm2 下で、1150℃×2H のHIP処理を行なっ
た。炉の冷却を待ってワークを取出すことにより、歯切
工具の焼前形状を有する素形材を得た。以下実施例1と
同様贅肉除去加工,熱処理(焼入,焼戻し)及び仕上研
磨加工を踏えてハイス製歯切工具を完成させた。
First, the motor power is turned on so that the temperature in the furnace is 30
When the temperature reaches 0 ° C, air is supplied from the feed pump P 3 ,
The exhaust pump P 4 is operated to complete the combustion at 850 ° C. while melting the plastic capsule. Subsequently, the valves P 3 and P 4 were closed, the vacuum exhaust pump was operated, and the temperature was maintained at 10 −4 Torr order while maintaining the temperature at 1200 ° C.
Immediately before starting to hold for 30 minutes, H 2 gas was injected into the furnace via the flow meter 27 to remove the oxide film on the surface of the metal powder to perform bright reduction (Sintering). Subsequently, pure nitrogen gas was injected under pressure through the high pressure pressurizing pump P 1 to obtain 2000 kgf /
HIP treatment was performed at 1150 ° C. × 2 H under cm 2 . By waiting for the furnace to cool and taking out the work, a blank having the shape of the gear cutting tool before burning was obtained. The HSS gear cutting tool was completed in the same manner as in Example 1 by following the steps of removing extraneous meat, heat treatment (quenching and tempering) and finishing polishing.

【0021】〔実施例3〕実施例1に於けるプロセス
〜は全く同一であるが、金属粉末としては、ハイス材
に代えて、超硬成分の粉末を用いた。即ち、JISB4
053 P30に対応する組成の金属炭化物として重量
比でWC:80%,TiC:5%,TaC:4%,Nb
C:2%からなる硬質層の粉末と9%のCo粉末を十分
に均一混合した後、プロセス即ち、図3に示した如
く、カプセル内へ充填,密封シールを行なった。以下、
プロセスのCIPは実施例1と同一条件で実施した。
また、プロセスのSinter−HIPでは、120
0℃×30分H2 雰囲気下でのSintering後1410℃
×2H のHIP焼結を実施した。続いてダイヤモンド砥
石を用いて贅肉を研磨除去して超硬製歯切工具を完成さ
せた。
[Example 3] The processes 1 to 3 in Example 1 are exactly the same, but as the metal powder, powder of a superhard component is used instead of the high-speed steel material. That is, JISB4
053 by weight as a metal carbide having a composition corresponding to P30: WC: 80%, TiC: 5%, TaC: 4%, Nb
C: Hard layer powder consisting of 2% and 9% Co powder were thoroughly and uniformly mixed, and then the process, that is, filling into a capsule and hermetic sealing were performed as shown in FIG. Less than,
The CIP of the process was performed under the same conditions as in Example 1.
Also, in the process Sinter-HIP, 120
1410 ° C after Sintering in H 2 atmosphere at 0 ° C for 30 minutes
HIP sintering of × 2 H was performed. Subsequently, the extraneous meat was polished and removed using a diamond grindstone to complete a cemented carbide gear cutting tool.

【0022】〔実施例4〕実施例1に於けるプロセス
のCIP保形加工を終えた後、カプセル除去した粉末金
属塊A’(一体ホブ)及びB’(ピニオン)等は、自己
保形作用は十分に有しているが、外力(衝突,落下な
ど)に対して脆弱であること及び次工程でSinteringを
行なわずにHIPのみを実施する場合には、粉末金属塊
表面が多孔質であるためHIP時の静水圧加圧が付加さ
れない。従って、Sinteringを施さない場合の対応とし
て、カプセル除去した粉末金属塊A’,B’の多孔質部
に対して、乾式封孔,補強処理を施した。具体的には、
真空蒸着装置によりNi,Ti,Cr等を溶解蒸発させ
て、約3〜5μmの金属蒸着膜で粉末金属塊の外面を被
覆した。なお、本法に於ては真空加熱後に蒸着を施すの
で金属粉末表面は光輝還元されている。以下、プロセス
に於て、HIPのみで、Ni,Ti,Crのいづれの
蒸着膜に於ても、Sintering工程を省略しうる性能,品
質を得た。但し、後の加工工程に於て、Cr蒸着膜は硬
質であったため若干、加工能率が低下した。
[Embodiment 4] The powder metal lumps A '(integral hob) and B' (pinion) which are decapsulated after the completion of the CIP shape-retaining process in the embodiment 1 have a self-shape-retaining action. Is sufficient, but is vulnerable to external force (collision, drop, etc.), and if only HIP is performed without Sintering in the next step, the surface of the powder metal mass is porous. Therefore, no hydrostatic pressure is applied during HIP. Therefore, as a measure against the case where Sintering is not performed, the dry sealing and the reinforcing treatment were performed on the porous portions of the powder metal lumps A ′ and B ′ from which the capsules were removed. In particular,
Ni, Ti, Cr, etc. were dissolved and evaporated by a vacuum vapor deposition device, and the outer surface of the powder metal mass was covered with a metal vapor deposition film of about 3 to 5 μm. In this method, the surface of the metal powder is brightly reduced because vapor deposition is performed after vacuum heating. Hereinafter, in the process, the performance and the quality which can omit the Sintering step were obtained in any vapor-deposited film of Ni, Ti, and Cr using only HIP. However, in the subsequent processing step, the Cr deposition film was hard, so the processing efficiency was slightly lowered.

【0023】〔実施例5〕実施例4に於ては、多孔質部
の乾式封孔,補強処理法として、真空蒸着法を用いた
が、これに代って、生産性を高める為に、溶融金属とし
てZn(融点:420℃),Sn(同:630℃),A
l(同:660℃),Cu(同:1038℃),Mn
(同:1245℃)の浴槽へ浸漬し、粉末金属塊中から
の発泡現像の沈静を持って引上げる浸漬メッキを行なっ
た。この浸漬メッキによる金属膜被覆即ちCannig後にSi
nteringを省略して2000kgf/cm2 下で115
0℃×2H のHIP処理を実施した。その結果、Znは
途中で蒸発し焼結が不充分となり、Cu,Mn,Znは
拡散して表層から最大3mmの変質層を生じた。一方、
Sn、Alでは融点が低いにも拘らず良好なCannig効果
を発揮すると共に拡散層深さは後工程での切削除去厚さ
以内で実用上問題とはならなかった。但し、靱性につい
てはHIP前にSinteringを施していないので低目の値
を示したが、浸漬メッキ前にH2 雰囲気中加熱を施すこ
とにより靱性は若干向上し得た。
[Embodiment 5] In Embodiment 4, the porous portion is used.
Vacuum deposition method was used as a dry sealing and reinforcement treatment method for
However, instead of this, in order to improve productivity, molten metal was used.
Zn (melting point: 420 ° C), Sn (same: 630 ° C), A
l (the same: 660 ° C), Cu (the same: 1038 ° C), Mn
(Same: 1245 ° C) Immerse in bathtub
Immersion plating that pulls up with the calming of foam development
Was. Metal film coating by this immersion plating, that is, Si
2000kgf / cm without nteringTwo115 below
0 ° C x 2H HIP treatment was performed. As a result, Zn
Cu, Mn, Zn are
Diffusion occurred and an altered layer of maximum 3 mm was formed from the surface layer. on the other hand,
Sn and Al have good Cannig effect despite their low melting points
And the depth of the diffusion layer is the thickness removed by cutting in the subsequent process.
It did not cause any problems in practical use. However, regarding toughness
Is a low value because Sintering is not applied before HIP
However, H before the immersion platingTwoHeating in an atmosphere
With, the toughness could be slightly improved.

【0024】[0024]

【発明の効果】以上説明したように本発明の切削工具等
の製造方法によれば、下記の効果が得られる。 高価素形材の材料歩留が高く、経済的である。歯切工
具の従来製法では、丸棒,角棒,ディスク状等からの切
出しであった為、その歩留は50〜70%で、30〜5
0%の高価な素材をスクラップ化していたが、本発明に
より歩留は90%以上となり、スクラップ化率は10%
以下に激減した。スクラップ化率が激減したことはハイ
ス製工具では、焼前荒加工が1/3以下となり、切削工
具費の削減,各種のN/C工作機台数の削減,人員削減
などの効果を生じる。また、超硬製工具の製作に於ても
高価なダイヤモンド砥石の使用量が数分の1となり経済
的である。一方、カプセルの製作に当っては、完成品で
はバリエーションの多い歯切工具と雖も、焼前加工段階
の形状を狙うことにより、その統廃合,定型標準化によ
り、種類は少なくなることに加え、安価なプラスチック
製薄肉カプセルを簡易型によりブロー成形するため、前
項のメリットに比べ微小なコストアップ要因に過ぎな
い。
As described above, according to the method for manufacturing a cutting tool or the like of the present invention, the following effects can be obtained. The material yield of expensive shaped materials is high and economical. In the conventional method of manufacturing a gear cutting tool, the yield is 50 to 70% and 30 to 5 because it is cut from a round bar, a square bar, a disc shape or the like.
The expensive material of 0% was scraped, but the present invention increased the yield to 90% or more, and the scrap rate was 10%.
It was drastically reduced to the following. The drastic reduction in the scrapping rate results in less than one-third of the pre-fire roughing of HSS tools, reducing cutting tool costs, reducing the number of various N / C machine tools, and reducing personnel. Further, even in the production of a cemented carbide tool, the amount of expensive diamond grindstone used is a fraction, which is economical. On the other hand, when manufacturing capsules, the number of types of gear cutting tools and 雖, which have many variations in finished products, is reduced by aiming at the shape in the pre-baking processing stage, and by combining and eliminating them and standardizing standard sizes, it is cheaper. Since thin plastic capsules are blow-molded with a simple mold, they are only a small factor of cost increase compared to the merit of the previous item.

【0025】加工時間を大幅に短縮できる。本発明に
より、製作された素形材の形状は、穴部,ネジ溝部,条
溝部,凹部等の大略が成形されており、ハイス製工具に
於ては焼前の一部手直し、タッチアップ程度の修正加工
に過ぎない。超硬製工具に於ても、丸棒,角棒等からの
ダイヤモンド砥石による研削出しに比べて大幅な加工時
間短縮となる 以上の長所は、製造コスト削減,設備費及び消耗量の削
減に留まらず、短納期で顧客に歯切工具を安定供給でき
る。
The processing time can be greatly reduced. According to the present invention, the formed blank has a shape such as a hole, a screw groove, a groove, a recess, etc. In a HSS tool, it is necessary to partially revise it before firing and touch it up. It's just a correction process. Even in the case of carbide tools, the processing time is greatly shortened compared to grinding out with a diamond grindstone from round bars, square bars, etc. The above advantages are not limited to the reduction of manufacturing costs, equipment costs and consumption. In addition, the gear cutting tool can be stably supplied to the customer with a short delivery time.

【0026】耐チッピング性,長寿命化などの点で高
品質が得られる。従来製法に於ける素形材は、溶解ハイ
ス,粉末ハイスの如何を問わず、大きなインゴットやビ
レットからスタートする為に鍛造,押出し,圧延等の塑
性加工を受けるのが原則である。特に溶解ハイスでは、
大型インゴット造塊時の徐冷による粗大初晶炭化物の発
生に対し分断,微細化の為の分塊,圧延は不可避であ
り、材料の「等方性」を犠牲にして敢えて異方性を発生
させ、その異方性を合わせて、材料採りを行うのが現実
である。また、非金属介在物についても同様であり、材
料靱性確保の点で、非金属(特にP,Sなど)の除去を
目ざして長時間の脱硫,脱磔などの製錬,原材料(スク
ラップ)の厳選など材料コストの上昇の一要因となって
いた。
High quality can be obtained in terms of chipping resistance and long life. In principle, the material used in the conventional manufacturing method, regardless of whether it is molten high-speed steel or powder high-speed steel, is subjected to plastic working such as forging, extrusion and rolling in order to start from a large ingot or billet. Especially in melted HSS,
It is unavoidable to separate and ingot to make coarse primary crystals due to slow cooling during large ingot ingot formation, and anisotropy is intentionally generated at the sacrifice of "isotropy" of the material. The reality is that the materials are collected by matching the anisotropy. The same applies to non-metallic inclusions. For the purpose of ensuring material toughness, long-term desulfurization, smelting such as desulfurization, and raw material (scrap) are aimed at removing non-metals (especially P, S, etc.). It was one of the factors that increased the material cost due to careful selection.

【0027】一方、本発明によるハイス材は、全てアト
マイズされた急冷,微細合金粉末を用いるので、初晶炭
化物や非金属介在物は初期段階から微細でること及びH
IP後に展伸,塑性加工を施さないので、材料の等方性
に優れている。他方、従来の粉末ハイスの製法では大型
容器(通常内径600φmm)に合金粉末をCannigして
いるため、粉末粒子間の伝熱及び力の伝達の悪さにより
can芯部までの昇温に長時間を要することとなり、生
産性を考慮して、HIP炉外でcan予熱(約1000
℃×数時間)を施している。この間に高温に曝されて粉
末粒子表面に非金属特にS(硫黄)は拡散,発汗現象を
伴い、折角微細化された非金属はHIP後に偏析したこ
とになると共に鍛造,押出し,圧延等の展伸加工によ
り、非金属介在物も展伸され、異方性を生じていた。こ
れに対して、本発明に基づく粉末ハイスは小型(一体ホ
ブでは、50φ〜150φmm、ピニオンでは最大25
0φmmであるが薄肉である),小径であるため、芯部
までの伝熱即ち、高温に曝される時間は短時間となり、
粉末粒子表面への非金属の発汗現象は少い。即ち、HI
P後の粒界には非金属介在物の偏析は殆ど認められない
ことに加えて、As−HIP状態(展伸加工されていな
い)であるので異方性を生じない。
On the other hand, since the high-speed steel material according to the present invention uses the atomized rapidly cooled and fine alloy powder, the primary carbides and non-metallic inclusions are fine from the initial stage and H
It is excellent in material isotropy since it is not stretched or plastically worked after IP. On the other hand, in the conventional powder HSS manufacturing method, since the alloy powder is Cannig in a large container (usually 600 mm in inner diameter), it takes a long time to heat up to the can core due to poor heat transfer between powder particles and poor power transfer. Therefore, in consideration of productivity, can preheating outside the HIP furnace (approximately 1000
(° C x several hours). During this period, the non-metal, especially S (sulfur), is exposed to a high temperature and diffuses and perspires on the surface of the powder particles. Non-metallic inclusions were also stretched by the stretching process, resulting in anisotropy. On the other hand, the powder HSS based on the present invention is small (in the integral hob, 50φ to 150φmm, and in the pinion up to 25 mm).
(0 mm in diameter, but thin), and because of its small diameter, the heat transfer to the core, that is, the time of exposure to high temperatures, is short,
There are few non-metallic sweating phenomena on the surface of powder particles. That is, HI
Segregation of non-metallic inclusions is hardly observed at the grain boundaries after P, and since it is in the As-HIP state (not expanded), anisotropy does not occur.

【0028】更に、本発明では、Sinteringを施した後
HIPを行うため、粉末粒子表面は光輝状態即ち、酸化
皮膜が除去された後に粒子間焼結されており、結合力が
大きく耐チッピング性に優れている。従来の粉末ハイス
のHIP製法では、粉末を金属缶内にCannig(溶接で密
封)されているため、缶内の粉末粒子に対して光輝還元
(Sintering)されないので粒子間結合力は低い。これ
を補う意味からも後工程で展伸加工を施す必要があっ
た。
Further, in the present invention, since HIP is carried out after Sintering, the surface of the powder particles is in a bright state, that is, after the oxide film is removed, the particles are sintered and the bonding strength is large and chipping resistance is high. Are better. In the conventional HIP manufacturing method of powder HSS, since the powder is Cannig (sealed by welding) in a metal can, the powder particles in the can are not bright-reduced (Sintering), so that the interparticle bonding force is low. From the meaning of compensating for this, it was necessary to perform expansion processing in a later process.

【0029】本発明の当該分野での著大な発展効果とし
て、特殊鋼メーカーから粉末のみを購入し、工具メーカ
ーが規格成分材質以外の性能,品質,仕様を有する工具
を随意に製作しうる。具体的に云えば、粉末の混練技術
(Blending Tehnique)を発揮できる点である。例えば
JIS,G4403,SKH51,SKH55,SKH
57などのハイス系金属粉末等の配合比変更により、こ
れらの中間的性能を有する工具の製作やWC,TiC,
TaC,NbCなど超硬材成分やTiN,TiCN,M
oCなどサーメット成分を適時添加することにより、従
来の粉末ハイス製法(HIP後展伸加工)では、展伸加
工時に延性が乏しく疵割れ等により製造不可能であった
組成の工具を容易に製造できる。
As a significant development effect of the present invention in this field, only the powder can be purchased from a special steel manufacturer, and the tool manufacturer can arbitrarily manufacture a tool having performances, qualities and specifications other than the standard component materials. Specifically, it is a point that powder kneading technology (Blending Tehnique) can be exhibited. For example, JIS, G4403, SKH51, SKH55, SKH
By changing the compounding ratio of high speed metal powder such as 57, production of tools with intermediate performance between these and WC, TiC,
Carbide components such as TaC, NbC and TiN, TiCN, M
By appropriately adding cermet components such as oC, it is possible to easily manufacture a tool having a composition that cannot be manufactured by the conventional powder HSS manufacturing method (HIP post-expansion processing) due to poor ductility at the time of expansion processing, such as cracking. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による歯切工具製造に於ける一連の要部
工程を示すフロー図である。
FIG. 1 is a flowchart showing a series of main steps in manufacturing a gear cutting tool according to the present invention.

【図2】本発明による歯切工具製造工程で使用する中空
プラスチック容器(カプセル)及び芯材の形状を示す断
面図である。
FIG. 2 is a cross-sectional view showing the shapes of a hollow plastic container (capsule) and a core material used in the step of manufacturing a gear cutting tool according to the present invention.

【図3】本発明の要部となる歯切工具の製造方法の実施
例として、粉末金属をカプセル内に充填,密封する手順
を示す断面図である。
FIG. 3 is a cross-sectional view showing a procedure of filling and sealing a powder metal in a capsule as an example of a method for manufacturing a gear cutting tool which is a main part of the present invention.

【図4】本発明の実施例として、ホブカッタ用に粉末金
属をカプセル内に充填,密封した断面図である。
FIG. 4 is a cross-sectional view in which a powder metal is filled and sealed in a capsule for a hob cutter as an embodiment of the present invention.

【図5】本発明の実施例として、粉末金属充填密封カプ
セル郡をCIP(低温静水圧加圧)処理している工程を
示す図である。
FIG. 5 is a view showing a process of performing CIP (low temperature isostatic pressing) on a powder metal-filled hermetic capsule group as an example of the present invention.

【図6】本発明の実施例として、CIP後の粉末金属充
填密封のカプセルの焼滅,シンタリング,焼結を兼ねた
Sinter−HIP炉で処理中の状況を示す図であ
る。
[Fig. 6] Fig. 6 is a diagram showing a state during processing in a Sinter-HIP furnace that also performs burning, sintering and sintering of a capsule filled with powder metal after CIP as an example of the present invention.

【図7】歯切工具の一例としての完成一体ホブを示す断
面図である。
FIG. 7 is a sectional view showing a completed integrated hob as an example of a gear cutting tool.

【図8】歯切工具の一例として、完成ピニオンを示す断
面図である。
FIG. 8 is a cross-sectional view showing a completed pinion as an example of a gear cutting tool.

【図9】従来の歯切工具製法として、丸棒素材から切
削,研削により完成された一体ホブについて素材と完成
品との関係を示す図である。
FIG. 9 is a diagram showing a relationship between a material and a finished product of an integral hob completed by cutting and grinding a round bar material as a conventional gear cutting tool manufacturing method.

【符号の説明】 1 カプセル本体 2 キャップ 3 金属管 8 粉末金属供給ホッパー 10 台盤 11 加振器 12 鍔部超音波溶接シーラー 13 カプセル内空気排出ゴムノズル 14 密封用超音波シーラー 15 CIP装置本体容器 16 上蓋 17 加圧系 18 排気系 19 治具 20 空気 21 加圧水[Explanation of symbols] 1 Capsule body 2 Cap 3 Metal tube 8 Powder metal supply hopper 10 Platform 11 Vibrator 12 Collar ultrasonic welding sealer 13 Air discharge rubber nozzle in capsule 14 Ultrasonic sealing sealer 15 CIP device body container 16 Upper lid 17 Pressurization system 18 Exhaust system 19 Jig 20 Air 21 Pressurized water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 切削工具等の製造方法として、一連の製
作過程に於ける変形,変位量及び最終仕上げ研磨工程で
の研磨代等の加工代を見込んだ外形寸度に対応した形状
を有する薄肉樹脂型を予め準備し、 工具材等の組成を有する金属または合金粉末を加振充
填,真空,密封する充填工程と、 該粉末密封カプセル体をCIP(低温静水圧加圧)する
CIP工程と、 CIPされた該粉末密封カプセル体のカプセルを除去
後、真空もしくは還元雰囲気中で加熱保持し、光輝処理
してSintering (焼結)を行ない、HIP(高温静水圧
加圧)するSiter−HIP工程と、 Siter−HIPされた部材の贅肉を加工除去し、工
具材等の材料成分に応じて熱処理を行う熱処理工程と、 仕上げ研磨を行う仕上げ工程と、 から成ることを特徴とする切削工具等の製造方法。
1. A method of manufacturing a cutting tool or the like, which has a shape corresponding to an external dimension in consideration of deformation, displacement in a series of manufacturing processes and machining allowance such as polishing allowance in a final finishing polishing process. A resin mold is prepared in advance, and a filling process of vibrating and filling metal or alloy powder having a composition such as a tool material, vacuuming and sealing, and a CIP process of CIP (low temperature isostatic pressing) of the powder-sealed capsule body, After removing the capsule of the powder-sealed capsule body that has been CIP, heating and holding in a vacuum or a reducing atmosphere, performing brightening treatment, Sintering (sintering), and HIP (high temperature isostatic pressing), a Sitter-HIP step. , Sitter-HIP of the member is processed and removed, and a heat treatment step of performing heat treatment according to the material composition of the tool material and the like, and a finishing step of performing finish polishing. Production methods such as ingredients.
【請求項2】 請求項1に於いて、充填工程と、CIP
工程とを経た後、 CIPされた該粉末密封カプセル体をカプセル被覆のま
ま炉中へ投入し、加熱,焼損後、真空もしくは還元雰囲
気中で加熱保持し、光輝処理を施してSintering を行な
いHIPするBurn−Sinter−HIP工程と、 Burn−Sinter−HIPされた部材の贅肉を加
工除去し、工具材等の材料成分に応じて熱処理を行う熱
処理工程と、 仕上げ研磨を行う仕上げ工程と、 とから成ることを特徴とする切削工具等の製造方法。
2. The filling step and the CIP according to claim 1.
After the above steps, the powder-sealed CIP-encapsulated capsule body is put into a furnace with the capsule coating as it is, heated and burned, and then heated and held in a vacuum or a reducing atmosphere, and subjected to a brightening treatment to perform Sintering and HIP. It comprises a Burn-Sinter-HIP step, a heat treatment step of processing and removing the flesh of the Burn-Sinter-HIP member, and performing heat treatment according to the material composition of the tool material, and a finishing step of finishing polishing. A method of manufacturing a cutting tool or the like characterized by the above.
【請求項3】 請求項1に於いて、充填工程と、CIP
工程とを経た後、 CIPされた該粉末密封カプセル体のカプセルを除去
後、真空蒸着装置内で加熱保持後、Ni,Cr,Ti等
の金属薄膜を蒸着する工程と、 蒸着後HIPするHIP工程と、 HIP後、部材の贅肉を加工除去し、工具材等の材料成
分に応じて熱処理を行う熱処理工程と、 仕上げ研磨を行う仕上げ工程と、 から成ることを特徴とする切削工具等の製造方法。
3. The filling process according to claim 1, and CIP
After removing the CIP of the powder-sealed capsule body, after heating and holding in a vacuum deposition apparatus, depositing a metal thin film of Ni, Cr, Ti, etc., and a HIP step of HIPing after deposition. And a process for removing extraneous material from the member after HIP and performing heat treatment according to the material composition of the tool material, and a finishing process for finishing polishing, and a method for manufacturing a cutting tool or the like. .
【請求項4】 請求項1に於いて、充填工程と、CIP
工程とを経た後、 CIPされた該粉末密封カプセル体のカプセルを除去
後、Sn,Al,Cuなどの溶融金属浴中で浸漬メッキ
を行なうメッキ工程と、 浸漬メッキされた該金属粉末体にHIPするHIP工程
と、 HIP後、部材の贅肉を加工除去し、工具材等の材料成
分に応じて、熱処理を行う熱処理工程と、 仕上げ研磨を行う仕上げ工程と、 から成ることを特徴とする切削工具等の製造方法。
4. The filling step and CIP according to claim 1.
After the steps, after the CIP, the capsule of the powder-sealed capsule is removed, and then immersion plating is performed in a molten metal bath of Sn, Al, Cu or the like, and HIP is applied to the immersion-plated metal powder. A cutting tool characterized by comprising: a HIP step of performing a heat treatment, a step of removing the extraneous material of the member after the HIP, and performing a heat treatment according to the material composition of the tool material, and a finishing step of performing finish polishing. Etc. manufacturing method.
JP467196A 1996-01-16 1996-01-16 Production of cutting tool and so on Withdrawn JPH09194905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP467196A JPH09194905A (en) 1996-01-16 1996-01-16 Production of cutting tool and so on

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP467196A JPH09194905A (en) 1996-01-16 1996-01-16 Production of cutting tool and so on

Publications (1)

Publication Number Publication Date
JPH09194905A true JPH09194905A (en) 1997-07-29

Family

ID=11590378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP467196A Withdrawn JPH09194905A (en) 1996-01-16 1996-01-16 Production of cutting tool and so on

Country Status (1)

Country Link
JP (1) JPH09194905A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179817A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Method for producing carbide tool
JP2010047840A (en) * 2000-03-03 2010-03-04 Boehler Uddeholm Ag Material produced by powder metallurgy with improved isotropy of the mechanical property
JP2010138472A (en) * 2008-12-15 2010-06-24 Mitsubishi Heavy Ind Ltd Method for producing cemented carbide tool
JP2014001451A (en) * 2012-05-30 2014-01-09 Rolls Royce Plc Apparatus and method of manufacturing article from powder material
US9199309B2 (en) 2011-11-08 2015-12-01 Rolls-Royce Plc Hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
US9248502B2 (en) 2011-11-08 2016-02-02 Rolls-Royce Plc Hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
CN106424733A (en) * 2016-12-13 2017-02-22 广东汉唐量子光电科技有限公司 CoCrMo alloy dental crown 3D printing and electrolytic polishing combined machining system
WO2022017760A1 (en) * 2020-07-21 2022-01-27 Institut Franco-Allemand De Recherches De Saint-Louis Method for densifying a metal part having a complex shape by isostatic pressing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047840A (en) * 2000-03-03 2010-03-04 Boehler Uddeholm Ag Material produced by powder metallurgy with improved isotropy of the mechanical property
JP2009179817A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Method for producing carbide tool
JP2010138472A (en) * 2008-12-15 2010-06-24 Mitsubishi Heavy Ind Ltd Method for producing cemented carbide tool
US9199309B2 (en) 2011-11-08 2015-12-01 Rolls-Royce Plc Hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
US9248502B2 (en) 2011-11-08 2016-02-02 Rolls-Royce Plc Hot isostatic pressing tool and a method of manufacturing an article from powder material by hot isostatic pressing
JP2014001451A (en) * 2012-05-30 2014-01-09 Rolls Royce Plc Apparatus and method of manufacturing article from powder material
CN106424733A (en) * 2016-12-13 2017-02-22 广东汉唐量子光电科技有限公司 CoCrMo alloy dental crown 3D printing and electrolytic polishing combined machining system
WO2022017760A1 (en) * 2020-07-21 2022-01-27 Institut Franco-Allemand De Recherches De Saint-Louis Method for densifying a metal part having a complex shape by isostatic pressing
FR3112707A1 (en) * 2020-07-21 2022-01-28 Institut Franco-Allemand De Recherches De Saint-Louis Densification process of a metal part with a complex shape by isostatic compression.

Similar Documents

Publication Publication Date Title
EP0995525B1 (en) Process for producing sintered product
US7381446B2 (en) Sprayed preforms to forming structural members
JP5680859B2 (en) Method for manufacturing a nozzle for a fuel valve of a diesel engine and nozzle
CN107760897A (en) To hydrogenate method of the titanium sponge as raw material manufacture titanium and titanium alloy and its parts
EP2278045A1 (en) methods for rejuvenating tantalum sputtering targets and rejuvenated tantalum sputtering targets
JP7116495B2 (en) High carbon cobalt alloy
CN111386164B (en) High-hardness 3D printing steel product
WO2006130153A2 (en) Method and composition for making a wire
JPH09194905A (en) Production of cutting tool and so on
EP0963267A1 (en) Net shaped dies and molds and method for producing the same
EP1077099A2 (en) Method of producing metal sintered compacts
EP1172164B1 (en) Method of producing watchband parts
CN105880605A (en) Production process for large-sized hard alloy valve ball with diameter larger than 80mm
JPH0892607A (en) Production of composite hard material
EP0163718A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method
CZ19962U1 (en) Fluid-tight sintered metal component
TW201522659A (en) Alloy powder and laser additive manufacturing process applying the same
JP2810706B2 (en) Mold manufacturing method
JPS5837362B2 (en) Manufacturing method for glass molding molds
JPH11315305A (en) Manufacture of sintered body
JPH03232904A (en) Extruded green compact of alloy powder and sintered product thereof
KR20010047963A (en) A Making Method of Sintering Alloy Dipersed TiC within Steel Matrix by Canning-Hot Isotatic Pressing
JPS5853684B2 (en) Method for manufacturing sintered products made of different powder materials
JPH09225580A (en) Manufacture of porous metallic mold
JPH11300459A (en) Sleeve for die casting machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401