JPH09192790A - Belt type continuous casting method - Google Patents

Belt type continuous casting method

Info

Publication number
JPH09192790A
JPH09192790A JP750396A JP750396A JPH09192790A JP H09192790 A JPH09192790 A JP H09192790A JP 750396 A JP750396 A JP 750396A JP 750396 A JP750396 A JP 750396A JP H09192790 A JPH09192790 A JP H09192790A
Authority
JP
Japan
Prior art keywords
casting
mold
belt
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP750396A
Other languages
Japanese (ja)
Inventor
Kiyonobu Sakaguchi
清信 坂口
Hitoshi Matsuzaki
均 松崎
Katsuyuki Yoshikawa
克之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP750396A priority Critical patent/JPH09192790A/en
Publication of JPH09192790A publication Critical patent/JPH09192790A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cast slab having good surface characteristic by immediately forming thick solidified shell at the upstream side of a mold even if the casting speed is quickened, in a belt type continuous casting method continuously producing the thin sheet-like cast slab by supplying molten metal into the mold formed with pair of the casting belts. SOLUTION: The inner part of the mold formed with the pair of casting belts 2 rotated with pulleys 1 at the front and the rear parts, is divided into a first cooling zone C1 at the upstream side and a second cooling zone C2 at the downstream side in succession to the first cooling zone and sherbet-like refrigerant mixing water and granular ice is injected from each refrigerant injecting nozzle 3 in the first cooling zone C1 to cool the casting belts 2 near the outlet of an immersion nozzle 5a in the mold. By this method, the cooling of the belts at the upstream part in the mold is strengthened by melting-latent heat of the solid phase and the cold heat of the liquid phase in the refrigerant, and the thick solidified shell without distubance, erosion and detachment by the flowing of the molten metal from the immersion nozzle can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄板状の鋳片を連
続鋳造するベルト式連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a belt-type continuous casting method for continuously casting thin plate-shaped slabs.

【0002】[0002]

【従来の技術】対の鋳造ベルトで形成された鋳型によっ
て薄スラブ等の鋳片を鋳造するベルト式連続鋳造におい
て、鋳片の表面性状を良好に保つことは必須事項といえ
る。また、鋳片の表面性状に大きな影響を与える因子と
して、鋳型領域内における鋳造ベルトの冷却条件があ
り、従来より種々の冷却方法が開発されている。そし
て、その冷却方法としては、鋳造ベルトの背面側に配し
た冷媒噴射ノズルおよびフィンロールにて冷却する一般
的な方法(以下、噴射ノズル方式という)、また、例え
ば特公昭57-61502号公報に示されているように、鋳造ベ
ルト背面に高速冷却液膜を形成して冷却する方法(以
下、液膜方式という)、また、例えば特公昭58-37056号
公報に示されているように、鋳造ベルトの背面側に配し
た冷却パットにて冷却する方法(以下、冷却パット方式
という)などが挙げられる。
2. Description of the Related Art In continuous belt type casting in which a slab such as a thin slab is cast by a mold formed by a pair of casting belts, it is essential to keep the surface quality of the slab good. Further, as a factor that greatly affects the surface property of the cast slab, there is a cooling condition of the casting belt in the mold region, and various cooling methods have been developed conventionally. And as the cooling method, a general method of cooling with a refrigerant injection nozzle and a fin roll arranged on the back side of the casting belt (hereinafter referred to as an injection nozzle method), for example, Japanese Patent Publication No. 57-61502. As shown, a method of forming a high-speed cooling liquid film on the back surface of the casting belt to cool it (hereinafter referred to as a liquid film method), or, for example, as shown in Japanese Patent Publication No. 58-37056 Examples include a method of cooling with a cooling pad arranged on the back side of the belt (hereinafter referred to as a cooling pad system).

【0003】〔図5〕は、上述の噴射ノズル方式を採用
した従来の横型連続鋳造機の概要構成を模式的に示す断
面図である。〔図5〕に示す横型連続鋳造機では、前後
のプーリー(1) で回動させられる対の鋳造ベルト(2) に
よって形成された鋳型内に、タンディシュ(5) の浸漬ノ
ズル(5a)から溶融金属(M) を供給する一方、それら鋳造
ベルト(2) の裏面側に列設した冷媒噴射ノズル(3) およ
びフィンロール(4) によって鋳造領域での鋳造ベルト
(2) を冷却することで、溶融金属(M) を移動過程で順次
凝固させて薄板状の鋳片(S) を連続的に作り出す。この
連続鋳造機では、冷却水等の液体冷媒が各冷媒噴射ノズ
ル(3) から鋳造ベルト(2) の背面に吹き付けられ、また
フィンロール(4) は外周のフィンによって鋳造ベルト
(2) をバックアップする一方で冷媒の流路を確保する。
FIG. 5 is a sectional view schematically showing a schematic configuration of a conventional horizontal continuous casting machine adopting the above-mentioned injection nozzle system. In the horizontal continuous casting machine shown in [Fig. 5], melting is performed from the immersion nozzle (5a) of the tundish (5) in the mold formed by the pair of casting belts (2) that are rotated by the front and rear pulleys (1). While supplying metal (M), the casting belt in the casting area is provided by the refrigerant injection nozzles (3) and fin rolls (4) that are lined up on the back side of the casting belt (2).
By cooling (2), the molten metal (M) is sequentially solidified in the moving process to continuously produce thin plate-shaped slabs (S). In this continuous casting machine, liquid refrigerant such as cooling water is sprayed from each refrigerant injection nozzle (3) onto the back surface of the casting belt (2), and the fin roll (4) is cast by the fins on the outer circumference.
Secure the flow path for the refrigerant while backing up (2).

【0004】〔図6〕は、上述の液膜方式を採用した従
来(特公昭57-61502号)の横型連続鋳造機の概要構成を
模式的に示す断面図である。〔図6〕に示す横型連続鋳
造機では、鋳造ベルト(12)を回動させる2つのプーリー
(11)の内の上流側のプーリー(11)の外周に複数の深い溝
が形成されると共に、その溝内に湾曲した冷却管(13)が
巻き付けられて収容されている。また、各冷却管(13)の
基端にはヘッダーパイプ(14)が接続される一方、鋳型内
を指向する先端には、 (a)図のイ部拡大図である (b)図
に示すように、爪状延長部(13a) が設けられている。ま
た、鋳型内での各鋳造ベルト(12)の背面側には冷媒散布
兼スクープ部材(15)が列設されている。この連続鋳造機
では、ヘッダーパイプ(14)を介して冷却管(13)内に供給
された液体冷媒は、該冷却管(13)の爪状延長部(13a) か
ら鋳造ベルト(12)の背面に散布されて鋭い冷却液膜を形
成し、この冷却液膜により、タンデッシュ(17)の浸漬ノ
ズル(17a) から供給された溶融金属(M) と接する部位の
近傍でベルト冷却が開始される。更に、液体冷媒が各冷
媒散布兼スクープ部材(15)のノズル(15a) から鋳造ベル
ト(12)の背面に放出され、それら冷媒散布兼スクープ部
材(15)の作用によって、各鋳造ベルト(12)の背面に該鋳
造ベルト(12)に沿って移動する冷却液膜が形成され、こ
の冷却液膜により鋳型内でのベルト冷却が行われる。な
お、余分な液体冷媒は冷媒散布兼スクープ部材(15)の前
部の螺旋状の溝(16)の曲面を駆け上がり、その中央部か
ら排出される。この溝(16)の作用は米国特許第 3,041,6
86号に詳細に示されている。
FIG. 6 is a sectional view schematically showing a schematic configuration of a conventional horizontal continuous casting machine (Japanese Patent Publication No. 57-61502) adopting the above liquid film method. The horizontal continuous casting machine shown in FIG. 6 has two pulleys for rotating the casting belt (12).
A plurality of deep grooves are formed on the outer circumference of the upstream pulley (11) of the (11), and a curved cooling pipe (13) is wound and accommodated in the grooves. Further, while the header pipe (14) is connected to the base end of each cooling pipe (13), the tip directed in the mold is an enlarged view of a part (a) in FIG. Thus, a claw-shaped extension (13a) is provided. Refrigerant spraying and scooping members (15) are arranged in rows on the back side of each casting belt (12) in the mold. In this continuous casting machine, the liquid refrigerant supplied into the cooling pipe (13) through the header pipe (14) flows from the claw-shaped extension (13a) of the cooling pipe (13) to the rear surface of the casting belt (12). To form a sharp cooling liquid film, and the cooling liquid film starts the belt cooling in the vicinity of the portion in contact with the molten metal (M) supplied from the immersion nozzle (17a) of the tundish (17). Further, liquid refrigerant is discharged from the nozzle (15a) of each refrigerant spraying / scooping member (15) to the back surface of the casting belt (12), and by the action of the refrigerant spraying / scooping member (15), each casting belt (12). A cooling liquid film that moves along the casting belt (12) is formed on the back surface of the mold, and the cooling liquid film cools the belt in the mold. Excess liquid refrigerant runs up the curved surface of the spiral groove (16) in the front part of the refrigerant scatter / scoop member (15) and is discharged from the central part thereof. The effect of this groove (16) is U.S. Pat.
It is shown in detail in No. 86.

【0005】〔図7〕は、上述の冷却パット方式を採用
した従来(特公昭57-61502号)の横型連続鋳造機の概要
構成を模式的に示す断面図である。〔図7〕に示す横型
連続鋳造機では、前後のプーリー(21)で回動させる対の
鋳造ベルト(22)によって形成された鋳型内に、タンデッ
シュ(24)の浸漬ノズル(24a) から溶融金属(M) を供給し
て連続鋳造するのであるが、それら鋳造ベルト(22)の背
面側に、 (a)図の部分平面である (b)図に示すように、
平坦な六角形の頭部を有すると共に、その頭部の中央に
冷媒流出ノズル(23a) を設けた複数の支持部材(23)(一
般に冷却パットと称される)を、各々独立して鋳造ベル
ト(22)方向に移動可能に互いに隣接させて配設し、各支
持部材(23)から流出させた液体冷媒により鋳型内でのベ
ルト冷却を行う。また、支持部材(23)から流出した液体
冷媒は鋳造ベルト(22)の背面に接して抜熱した後、各支
持部材(23)間を通って排出される。
FIG. 7 is a sectional view schematically showing a schematic configuration of a conventional horizontal continuous casting machine (Japanese Patent Publication No. 57-61502) that employs the cooling pad system described above. In the horizontal continuous casting machine shown in FIG. 7, the molten metal is fed from the immersion nozzle (24a) of the tundish (24) into the mold formed by the pair of casting belts (22) rotated by the front and rear pulleys (21). (M) is supplied and continuously cast, but on the back side of the casting belts (22), as shown in (b), which is a partial plane of (a).
A plurality of support members (23) (generally referred to as cooling pads) having a flat hexagonal head and a refrigerant outflow nozzle (23a) provided at the center of the head are independently cast belts. The belts are arranged in the mold so as to be movable in the (22) direction and are adjacent to each other, and the belt is cooled in the mold by the liquid refrigerant flowing out from each of the support members (23). Further, the liquid refrigerant flowing out from the support members (23) comes into contact with the back surface of the casting belt (22) to remove heat, and then is discharged between the support members (23).

【0006】[0006]

【発明が解決しようとする課題】上記従来の冷却方式を
採る連続鋳造では、鋳造速度が比較的小さければ、良好
な表面性状をもつ鋳片を得ることは可能である。しかし
ながら鋳造速度が大きくなると、それら連続鋳造では良
好な表面性状の鋳片が得られ難くなる。〔図4〕は、
〔図6〕に示した液膜方式の横型連続鋳造機を用いて、
鋳造速度3.0m/mmで鋳造した鋳片と、鋳造速度 8.0m/mm
で鋳造した鋳片の表面粗度を比較したもので、 (a)図は
鋳造速度 3.0m/mmでの鋳片、 (b)図は鋳造速度 8.0m/mm
での鋳片それぞれの長手方向の表面粗度プロフィールで
ある。なお、この鋳造実験では、合金種1100のAl合金か
らなる幅1500mm、厚さ25mmの鋳片を鋳造し、また鋳造ベ
ルトには厚さ 0.5mmの軟鋼製のものを用いた。〔図4〕
に示すように、鋳造速度 8.0m/mmで得られた鋳片の方が
明らかに表面性状が悪化している。
In continuous casting employing the above-mentioned conventional cooling system, it is possible to obtain a slab having good surface properties if the casting speed is relatively low. However, if the casting speed becomes high, it becomes difficult to obtain a slab having good surface properties by continuous casting. [Figure 4]
Using the liquid film type horizontal continuous casting machine shown in FIG.
A slab cast at a casting speed of 3.0 m / mm and a casting speed of 8.0 m / mm
The surface roughness of the slabs cast in (1) is compared with that of (a) at a casting speed of 3.0 m / mm, and (b) at a casting speed of 8.0 m / mm.
2 is a surface roughness profile in the longitudinal direction of each of the cast pieces in FIG. In this casting experiment, a slab of 1500 mm wide and 25 mm thick made of an Al alloy of alloy type 1100 was cast, and a casting belt made of mild steel having a thickness of 0.5 mm was used. [Fig. 4]
As shown in, the surface quality of the slab obtained at the casting speed of 8.0 m / mm is obviously worse.

【0007】この原因は次のように考えられる。すなわ
ち、鋳造速度が大きくなれば、鋳型内での溶湯プール(M
P)が深くなり、凝固シェルの厚みが薄くなる。そして、
この薄い凝固シェルが、浸漬ノズル(17a) から該鋳型内
に供給される溶融金属(M) の流れの乱れによって掻き乱
され、あるいは溶損や剥離を生じるために、得られた鋳
片の表面性状が悪化するのである。一方、浸漬ノズルか
ら供給される溶融金属の流れが乱れるのは、該浸漬ノズ
ルの開口断面積と鋳型の断面積の違いが原因と考えられ
る。すなわち、先端部が鋳型内に挿入される浸漬ノズル
の開口断面積の方が、該鋳型の断面積よりも小さくなる
ため、常に同じ流量の溶融金属が鋳型内に供給されてい
ると、当然のこととして、該浸漬ノズル出口を通過する
ときの溶融金属の線流速の方が、鋳型内通過時の線流速
よりも大きくなり、この線流速の違いによって、溶融金
属の流れに乱れが発生する。
The cause is considered as follows. That is, as the casting speed increases, the molten metal pool (M
P) becomes deeper and the solidified shell becomes thinner. And
This thin solidified shell is agitated by the turbulence of the flow of molten metal (M) supplied into the mold from the immersion nozzle (17a), or causes melting loss or peeling, resulting in the surface of the obtained slab. The property deteriorates. On the other hand, it is considered that the flow of the molten metal supplied from the immersion nozzle is disturbed due to the difference between the sectional area of the opening of the immersion nozzle and the sectional area of the mold. That is, since the opening cross-sectional area of the immersion nozzle whose tip is inserted into the mold is smaller than the cross-sectional area of the mold, it is natural that the same flow rate of molten metal is constantly supplied to the mold. As a result, the linear flow velocity of the molten metal when passing through the outlet of the immersion nozzle becomes higher than the linear flow velocity when passing through the mold, and the difference in the linear flow velocity causes turbulence in the flow of the molten metal.

【0008】ここで、溶融金属の流れの乱れを解消、も
しくは弱めるには、浸漬ノズルの肉厚を薄くして、その
開口断面積を鋳型の断面積に近づけれはよいことになる
が、その肉厚が薄くなればなるほど強度が低下するた
め、操業時に破損する恐れも生じ、反面、それを防ぐに
は非常に高い強度と耐熱性を有する材料を用いる必要が
あり、製造コストの増大と適用性の面から、その薄肉化
には限界が生じる。また、これらのことは、浸漬ノズル
を用いる限り、前述の噴射ノズル方式や冷却パット方式
を採用した連続鋳造機においても同様に生じ、これがベ
ルト式連続鋳造における鋳造速度を低く律速し、生産性
向上の阻害要因となっていた。
Here, in order to eliminate or weaken the turbulence of the flow of the molten metal, it is better to reduce the wall thickness of the immersion nozzle so that the opening cross-sectional area approaches the cross-sectional area of the mold. The thinner the wall, the lower the strength, so there is a risk of damage during operation.On the other hand, to prevent this, it is necessary to use a material with extremely high strength and heat resistance, which increases manufacturing costs and applications. From the aspect of sex, there is a limit to thinning. Also, as long as the dipping nozzle is used, these things also occur in the continuous casting machine adopting the above-mentioned injection nozzle method and cooling pad method, which limits the casting speed in the belt type continuous casting to a lower rate and improves the productivity. Had been a hindrance factor.

【0009】本発明は上記従来技術の問題点を解消する
ためになされたもので、鋳造速度をより大きくし、かつ
浸漬ノズルからの溶融金属の流れに多少の乱れが生じて
も、鋳型内に供給される溶融金属の流れにより掻き乱さ
れたり溶損や剥離することのない厚い凝固シェルを形成
させることができ、よって良好な表面性状の鋳片を高い
生産性のもとで得ることができるベルト式連続鋳造方法
の提供を目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art. The casting speed is increased, and even if the flow of molten metal from the immersion nozzle is slightly disturbed, It is possible to form a thick solidified shell that is not agitated by the flow of the supplied molten metal and is not melted or peeled off. Therefore, it is possible to obtain a slab with good surface properties with high productivity. An object is to provide a belt type continuous casting method.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、本
発明に係るベルト式連続鋳造方法は、対向して平行に配
され、かつ相互の対向面が同方向に移動するようにエン
ドレスに回動する対の鋳造ベルトと、この対の鋳造ベル
トの対向部両側に配されて該鋳造ベルトと同調して移動
する対のサイドダムとによって形成される鋳型内に、そ
の上流側端部に挿入された浸漬ノズルを介して溶融金属
を供給し、移動する対の鋳造ベルトの対向面と接触させ
る一方、それら鋳造ベルトを背面側から冷却して、該溶
融金属を移動過程で順次凝固させて薄板状の鋳片を連続
的に作り出すベルト式連続鋳造方法において、前記鋳型
内の浸漬ノズル出口付近の鋳造ベルト背面に固相と液相
が混在する固液共存の冷媒を吹き付け、該冷媒中の固相
の溶解潜熱と液相の冷熱とによって、鋳型内上流部の鋳
造ベルトを冷却することを特徴とする。
In order to achieve the above object, the present invention has the following arrangement. That is, the belt-type continuous casting method according to the present invention is a pair of casting belts that are arranged parallel to each other and that rotate endlessly so that mutually facing surfaces move in the same direction, and this pair of casting belts. The molten metal is supplied into the mold formed by the pair of side dams arranged on both sides of the facing part and moving in synchronization with the casting belt, and the molten metal is supplied through the immersion nozzle inserted in the upstream end of the mold and moved. The belt-type continuous casting method in which thin casting slabs are continuously produced by cooling the casting belts from the back side while contacting the facing surfaces of the pair of casting belts, and sequentially solidifying the molten metal in the moving process. In the mold, the solid-liquid coexisting refrigerant in which the solid phase and the liquid phase coexist on the back surface of the casting belt near the exit of the immersion nozzle in the mold, and the latent heat of dissolution of the solid phase in the refrigerant and the cold heat of the liquid phase cause Upstream casting Characterized by cooling the door.

【0011】前述のように、浸漬ノズルで鋳型内に溶融
金属を供給して鋳片を連続鋳造するベルト式連続鋳造に
おいて、鋳造速度が大きくなれば、鋳型内での溶湯プー
ルが深くなり、凝固シェルの厚みが薄くなるが、その浸
漬ノズルの出口付近の鋳型内上流部のベルト冷却を強め
ることができれば、該浸漬ノズルから鋳型内に流入した
溶融金属は、直ちに厚い凝固シェルを形成するようにな
り、これにより、浸漬ノズルからの溶融金属の流れが多
少乱れていても鋳造ベルトとの接触面に形成された凝固
シェルが掻き乱されたり、あるいは溶損や剥離すること
を抑止することができる。また、このことにより鋳造速
度を大きくしても、鋳片の表面性状の悪化を防止するこ
とができる。しかし、ベルト冷却に冷却水等の液体冷媒
を用いる従来技術では、ベルト冷却効果は用いる液体冷
媒の冷熱のみに依存するため、その液体冷媒の鋳造ベル
ト面に対する接触形態および供給量を最適条件として
も、同一の液体冷媒による抜熱量にある限界が生じるた
め、浸漬ノズルの出口付近の鋳型内上流部におけるベル
ト冷却を、より強化することは非常に困難である。ここ
で、本発明方法では、鋳型内の浸漬ノズル出口付近の鋳
造ベルト背面に固相と液相が混在する固液共存の冷媒を
吹き付け、該冷媒中の固相の溶解潜熱と液相の冷熱とに
よって、鋳型内上流部の鋳造ベルトを冷却するので、つ
まり従来技術のように液体冷媒の冷熱のみでなく、大き
な冷熱勾配が得られる冷媒中の固相の溶解潜熱を利用す
るので、浸漬ノズルの出口付近の鋳型内上流部のベルト
冷却を効果的に強めて、溶融金属の流れの乱れにより掻
き乱されたり溶損や剥離することのない厚い凝固シェル
を形成させることができ、また、これにより鋳造速度を
大きくしても良好な表面性状の鋳片を得ることができ
る。
As described above, in belt type continuous casting in which molten metal is supplied into the mold by the dipping nozzle to continuously cast slabs, the higher the casting speed, the deeper the molten metal pool in the mold and solidification. Although the thickness of the shell becomes thin, if the belt cooling in the upstream part of the mold near the exit of the immersion nozzle can be strengthened, the molten metal flowing into the mold from the immersion nozzle immediately forms a thick solidified shell. As a result, even if the flow of the molten metal from the immersion nozzle is slightly disturbed, it is possible to prevent the solidified shell formed on the contact surface with the casting belt from being disturbed or from being melted or peeled off. . Further, this makes it possible to prevent deterioration of the surface properties of the slab even if the casting speed is increased. However, in the conventional technique that uses a liquid coolant such as cooling water for cooling the belt, the belt cooling effect depends only on the cold heat of the liquid coolant used, and therefore, the contact form and the supply amount of the liquid coolant with respect to the casting belt surface may be optimal conditions. Since there is a limit in the amount of heat removed by the same liquid refrigerant, it is very difficult to further strengthen the belt cooling in the upstream portion in the mold near the outlet of the immersion nozzle. Here, in the method of the present invention, a solid-liquid coexisting refrigerant in which a solid phase and a liquid phase coexist on the back surface of the casting belt near the exit of the immersion nozzle in the mold, the latent heat of dissolution of the solid phase in the refrigerant and the cold heat of the liquid phase. By cooling the casting belt in the upstream part of the mold, that is, not only the cold heat of the liquid refrigerant as in the prior art, but also the latent heat of fusion of the solid phase in the refrigerant to obtain a large cooling gradient is used. It is possible to effectively enhance the cooling of the belt in the upstream part of the mold near the outlet of, and to form a thick solidified shell that is not agitated by the turbulence of the flow of the molten metal and does not melt or separate. As a result, a slab having good surface properties can be obtained even if the casting speed is increased.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。〔図1〕は本発明の第1実施例の
横型連続鋳造機の概要構成を模式的に示す正断面図であ
る。なお、本実施例の連続鋳造機は、〔図5〕に示した
横型連続鋳造機と同様の噴射ノズル方式を採用するもの
であるので、ここでは〔図5〕と等価な各部には同符号
を付してその説明を省略し、差異点のみを要約して説明
するものとする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front sectional view schematically showing a schematic configuration of a horizontal continuous casting machine according to a first embodiment of the present invention. Since the continuous casting machine of this embodiment employs the same injection nozzle system as the horizontal continuous casting machine shown in FIG. 5, the same reference numerals are used for the parts equivalent to those in FIG. The description will be omitted, and only the differences will be summarized and described.

【0013】〔図1〕に示す本実施例の連続鋳造機で
は、前後のプーリー(1) で回動させられる対の鋳造ベル
ト(2) と、図示省略の対のサイドダムとによって形成さ
れた鋳型内を、浸漬ノズル(5a)の出口付近である上流側
の第1冷却領域(C1)と、続く下流側の第2冷却領域(C2)
とに分けると共に、その第1冷却領域(C1)に所属する各
冷媒噴射ノズル(3) は、ここでは図示を省略したが、第
2冷却領域(C2)に所属する各冷媒噴射ノズル(3) に対す
る冷媒供給系とは独立した別の冷媒供給系に接続させて
おり、この構成のもとで、第1冷却領域(C1)の各冷媒噴
射ノズル(3) には水と粒状氷とが混在するシャーベット
状の冷媒を送給し、第2冷却領域(C2)の各冷媒噴射ノズ
ル(3) には冷却水を送給するものとされている。
In the continuous casting machine of this embodiment shown in FIG. 1, a mold formed by a pair of casting belts (2) rotated by front and rear pulleys (1) and a pair of side dams (not shown). Inside, the first cooling area (C 1 ) on the upstream side, which is near the outlet of the immersion nozzle (5a), and the second cooling area (C 2 ) on the subsequent downstream side.
The refrigerant injection nozzles (3) belonging to the first cooling area (C 1 ) are not shown here, but the refrigerant injection nozzles (3) belonging to the second cooling area (C 2 ) It is connected to another refrigerant supply system independent of the refrigerant supply system for 3), and under this configuration, water and granular ice are supplied to each refrigerant injection nozzle (3) in the first cooling area (C 1 ). It is supposed that a sherbet-like refrigerant in which is mixed is sent, and cooling water is sent to each refrigerant injection nozzle (3) in the second cooling region (C 2 ).

【0014】本実施では、上記連続鋳造機により、合金
種1100のAl合金からなる幅1500mm、厚さ25mmのAl薄スラ
ブを鋳造速度 8.0m/mmで連続鋳造した。また鋳造ベルト
(2)には厚さ 0.5mmの軟鋼製のものを用いた。そして、
この連続鋳造では、鋳型内の第1冷却領域(C1)での鋳造
ベルト(2) 背面に水と粒状氷とが混在するシャーベット
状の冷媒を吹き付けて、該鋳型内の浸漬ノズル(5a)の出
口付近のベルト冷却を行い、第2冷却領域(C2)での鋳造
ベルト(2) の背面には冷却水を吹き付けて続く下流側の
ベルト冷却を行った。得られた鋳片(S) の長手方向の表
面粗度プロフィールを〔図3〕に示す。〔図3〕に示す
ように、本実施例の鋳片は、〔図4〕の (b)図に示した
前述の同じ鋳造速度の鋳造で得られた鋳片と比較して、
その表面性状が格段に改善されていることが分かる。
In the present embodiment, an Al thin slab made of an Al alloy of alloy type 1100 and having a width of 1500 mm and a thickness of 25 mm was continuously cast at a casting speed of 8.0 m / mm by the above continuous casting machine. Also casting belt
For (2), a 0.5 mm thick mild steel product was used. And
In this continuous casting, a sherbet-like refrigerant in which water and granular ice are mixed is sprayed on the back surface of the casting belt (2) in the first cooling region (C 1 ) in the mold, and the immersion nozzle (5a) in the mold The belt was cooled in the vicinity of the outlet, and the cooling water was sprayed on the back surface of the casting belt (2) in the second cooling region (C 2 ) to cool the belt on the downstream side. The surface roughness profile in the longitudinal direction of the obtained cast slab (S) is shown in FIG. As shown in [FIG. 3], the slab of the present embodiment is compared with the slab obtained by casting at the same casting speed as shown in (b) of FIG.
It can be seen that the surface quality is remarkably improved.

【0015】なお、上記実施例では横型の連続鋳造機を
用いたが、これは一例であって、本発明は、〔図2〕に
示すように垂直方向に鋳造する縦型連続鋳造機に適用し
て同様の効果が得られることは言うまでもない。〔図
2〕は、本発明の第2実施例の縦型連続鋳造機の概要構
成を模式的に示す正断面図である。なお、本実施例の連
続鋳造機は、鋳造方向が異なる点を除いて、〔図1〕に
示した横型連続鋳造機と同じであるので、ここでは〔図
1〕と等価な各部に同符号を付してその説明を省略し、
差異点のみを要約して説明するものとする。
Although a horizontal continuous casting machine is used in the above embodiment, this is an example, and the present invention is applied to a vertical continuous casting machine for vertical casting as shown in FIG. Needless to say, the same effect can be obtained. [FIG. 2] is a front sectional view schematically showing a schematic configuration of a vertical continuous casting machine according to a second embodiment of the present invention. The continuous casting machine of this embodiment is the same as the horizontal continuous casting machine shown in FIG. 1 except that the casting direction is different. To omit the explanation,
Only the differences shall be summarized and explained.

【0016】〔図2〕に示す本実施例の縦型連続鋳造機
では、対向して垂直方向に平行に配され、かつ相互の対
向面が同垂直下方向に移動するように、上下のプーリー
(1)で回動させられる対の鋳造ベルト(2) と、図示省略
の対のサイドダムとによって形成された鋳型内に、その
上方に配置されたタンディシュ(6) の浸漬ノズル(6a)か
ら溶融金属(M) を供給し、下方に向けて移動する対の鋳
造ベルト(2) それぞれの対向面と接触させて、該溶融金
属(M) を移動過程で順次凝固させて薄板状の鋳片(S) を
連続的に作り出す。また、前記第1実施例と同様に、鋳
型内を上流側の第1冷却領域(C1)と続く下流側の第2冷
却領域(C2)とに分け、該鋳型内の浸漬ノズル(7a)の出口
付近の上流側の第1冷却領域(C1)では水と粒状氷とが混
在するシャーベット状の冷媒により、続く下流側の第2
冷却領域(C2)では冷却水によってベルト冷却を行う。
In the vertical continuous casting machine of this embodiment shown in FIG. 2, the upper and lower pulleys are arranged so as to face each other and are parallel to each other in the vertical direction, and the mutually facing surfaces move in the same vertical downward direction.
Melt from the immersion nozzle (6a) of the tundish (6) placed in the mold formed by the pair of casting belts (2) rotated by (1) and the pair of side dams (not shown). A pair of casting belts (2) that feed metal (M) and move downward are brought into contact with the respective facing surfaces, and the molten metal (M) is sequentially solidified in the moving process to form a thin plate-shaped slab ( S) is produced continuously. Further, similar to the first embodiment, the inside of the mold is divided into an upstream first cooling region (C 1 ) and a downstream second cooling region (C 2 ), and the immersion nozzle (7a In the first cooling region (C 1 ) on the upstream side near the outlet of ( 1 ), a sherbet-like refrigerant in which water and granular ice are mixed causes
In the cooling area (C 2 ), the belt is cooled by cooling water.

【0017】上記2実施例の連続鋳造機では、鋳型内の
浸漬ノズル出口付近の鋳造ベルト背面に固相と液相が混
在する固液共存の冷媒を吹き付け、該冷媒中の固相の溶
解潜熱と液相の冷熱とによって、鋳型内上流部の鋳造ベ
ルトを冷却するので、つまり従来技術のように液体冷媒
の冷熱のみでなく、大きな冷熱勾配が得られる冷媒中の
固相の溶解潜熱を利用するので、浸漬ノズルの出口付近
の鋳型内上流部のベルト冷却を効果的に強めて、該浸漬
ノズルから供給されるの溶融金属の流れの乱れにより掻
き乱されたり溶損や剥離することのない厚い凝固シェル
を形成させることができ、また〔図3〕に示したよう
に、鋳造速度を大きくしても良好な表面性状の鋳片を得
ることができる。
In the continuous casting machine of the above-mentioned two embodiments, a solid-liquid coexisting refrigerant in which a solid phase and a liquid phase coexist is blown to the back surface of the casting belt near the exit of the dipping nozzle in the mold, and the latent heat of fusion of the solid phase in the refrigerant is blown. And the cooling heat of the liquid phase cool the casting belt in the upstream part of the mold, that is, not only the cooling heat of the liquid refrigerant as in the prior art, but also the latent heat of fusion of the solid phase in the refrigerant that gives a large cooling gradient is used. Therefore, the belt cooling in the upstream part of the mold near the outlet of the immersion nozzle is effectively strengthened, and it is not disturbed by the disturbance of the flow of the molten metal supplied from the immersion nozzle or melted or peeled off. It is possible to form a thick solidified shell, and as shown in FIG. 3, it is possible to obtain a slab having good surface properties even if the casting speed is increased.

【0018】なお、以上に述べた2実施例の連続鋳造機
では、噴射ノズル方式によりベルト冷却するものとした
が、本発明は、これに限定されるものではなく、固相と
液相が混在する固液共存の冷媒によって、鋳型内の浸漬
ノズル出口付近でのベルト冷却を強化する本発明の要旨
を逸脱しない限り、ベルト冷却の機構として前述の液膜
方式および冷却パット方式が採用されたベルト式連続鋳
造装置に適用されて同様の優れた効果が得られることは
言うまでもない。
In the continuous casting machine of the two embodiments described above, the belt was cooled by the injection nozzle system, but the present invention is not limited to this, and the solid phase and the liquid phase are mixed. By the solid-liquid coexisting refrigerant to strengthen the belt cooling in the vicinity of the immersion nozzle outlet in the mold, unless departing from the gist of the present invention, the belt using the liquid film method and the cooling pad method as a belt cooling mechanism. It is needless to say that the same excellent effect can be obtained by being applied to a continuous casting machine.

【0019】[0019]

【発明の効果】以上に述べたように、本発明に係るベル
ト式連続鋳造方法によれば、浸漬ノズル出口付近の鋳型
内上流側のベルト冷却を効果的に強めることができ、こ
れにより鋳造速度をより大きくし、かつ浸漬ノズルから
の溶融金属の流れに多少の乱れが生じても、鋳型内に供
給される溶融金属の流れにより掻き乱されたり溶損や剥
離することのない厚い凝固シェルを形成させることがで
き、よって良好な表面性状の鋳片を高い生産性のもとで
得ることができる。
As described above, according to the belt type continuous casting method of the present invention, it is possible to effectively enhance the belt cooling on the upstream side in the mold near the outlet of the immersion nozzle, which results in the casting speed. And a thick solidified shell that is not disturbed by the flow of the molten metal supplied into the mold or melted or peeled off even if some disturbance occurs in the flow of the molten metal from the immersion nozzle. It is possible to form a slab, and thus a slab having good surface properties can be obtained with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の横型連続鋳造機の概要構
成を模式的に示す正断面図である。
FIG. 1 is a front sectional view schematically showing a schematic configuration of a horizontal continuous casting machine according to a first embodiment of the present invention.

【図2】本発明の第2実施例の縦型連続鋳造機の概要構
成を模式的に示す正断面図である。
FIG. 2 is a front sectional view schematically showing a schematic configuration of a vertical continuous casting machine according to a second embodiment of the present invention.

【図3】本発明の実施例の連続鋳造による鋳片の表面粗
度プロフィールである。
FIG. 3 is a surface roughness profile of a slab produced by continuous casting according to an example of the present invention.

【図4】従来の連続鋳造による鋳片の表面粗度プロフィ
ールである。
FIG. 4 is a surface roughness profile of a slab obtained by conventional continuous casting.

【図5】従来の連続鋳造機の概要構成を模式的に示す正
断面面である。
FIG. 5 is a front cross-sectional view schematically showing a schematic configuration of a conventional continuous casting machine.

【図6】従来の別の連続鋳造機の概要構成を模式的に示
す正断面面である。
FIG. 6 is a front sectional view schematically showing a schematic configuration of another conventional continuous casting machine.

【図7】従来のまた別の連続鋳造機の概要構成を模式的
に示す正断面面である。
FIG. 7 is a front sectional view schematically showing a schematic configuration of another conventional continuous casting machine.

【符号の説明】[Explanation of symbols]

(1) --プーリー (2) --鋳造ベルト (3) --冷媒噴射ノズル (4) --フィンロール (5) --タンディシュ (5a)--浸漬ノズル (C1)--第1冷却領域 (C2)--第2冷却領域 (M) --溶融金属 (MP)--溶湯プール (S) --Al薄スラブ(1) --Pulley (2) --Casting belt (3) --Refrigerant injection nozzle (4) --Fin roll (5) --Tandish (5a) --Immersion nozzle (C 1 )-First cooling Area (C 2 )-Second cooling area (M) --Molten metal (MP) --Molten pool (S) --Al thin slab

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対向して平行に配され、かつ相互の対向
面が同方向に移動するようにエンドレスに回動する対の
鋳造ベルトと、この対の鋳造ベルトの対向部両側に配さ
れて該鋳造ベルトと同調して移動する対のサイドダムと
によって形成される鋳型内に、その上流側端部に挿入さ
れた浸漬ノズルを介して溶融金属を供給し、移動する対
の鋳造ベルトの対向面と接触させる一方、それら鋳造ベ
ルトを背面側から冷却して、該溶融金属を移動過程で順
次凝固させて薄板状の鋳片を連続的に作り出すベルト式
連続鋳造方法において、前記鋳型内の浸漬ノズル出口付
近の鋳造ベルト背面に固相と液相が混在する固液共存の
冷媒を吹き付け、該冷媒中の固相の溶解潜熱と液相の冷
熱とによって、鋳型内上流部の鋳造ベルトを冷却するこ
とを特徴とするベルト式連続鋳造方法。
1. A pair of casting belts, which are opposed to each other in parallel and rotate endlessly so that mutually opposing surfaces move in the same direction. The molten metal is supplied into a mold formed by the casting belt and a pair of side dams that move in synchronism with each other through an immersion nozzle inserted in an upstream end portion of the casting belt. In the belt-type continuous casting method, the casting belt is cooled from the back side while being brought into contact with the molten metal, and the molten metal is sequentially solidified in a moving process to continuously produce thin plate-shaped slabs. A solid-liquid coexisting refrigerant in which a solid phase and a liquid phase coexist is sprayed on the back surface of the casting belt near the outlet, and the latent heat of dissolution of the solid phase in the refrigerant and the cold heat of the liquid phase cool the casting belt in the upstream part of the mold. Bell characterized by Type continuous casting method.
JP750396A 1996-01-19 1996-01-19 Belt type continuous casting method Withdrawn JPH09192790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP750396A JPH09192790A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP750396A JPH09192790A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Publications (1)

Publication Number Publication Date
JPH09192790A true JPH09192790A (en) 1997-07-29

Family

ID=11667593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP750396A Withdrawn JPH09192790A (en) 1996-01-19 1996-01-19 Belt type continuous casting method

Country Status (1)

Country Link
JP (1) JPH09192790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234359A (en) * 2014-07-11 2016-01-13 安徽均益金属科技有限公司 Metal casting crystallizer with rapid cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234359A (en) * 2014-07-11 2016-01-13 安徽均益金属科技有限公司 Metal casting crystallizer with rapid cooling device

Similar Documents

Publication Publication Date Title
US5515908A (en) Method and apparatus for twin belt casting of strip
CN100528405C (en) Method of and molten metal feeder for continuous casting
US7380583B2 (en) Belt casting of non-ferrous and light metals and apparatus therefor
US5363902A (en) Contained quench system for controlled cooling of continuous web
JPH09192790A (en) Belt type continuous casting method
JPH0255642A (en) Method and device for continuously casting strip steel
AU692236B2 (en) Method and apparatus for twin belt casting
KR200296394Y1 (en) Apparatus for sealing edge dam in strip casting process
JPH0641019B2 (en) Method and apparatus for direct casting of crystalline strip in a non-oxidizing atmosphere
JPH03264143A (en) Continuous casting method and mold thereof
JPS61176449A (en) Method and device for synchronous continuous casting
JPS6087956A (en) Continuous casting method of metal
JPS6027448A (en) Continuous casting method of steel plate
JPH01271042A (en) Method for continuously casting double-layer cast slab
JPH0677790B2 (en) Method and apparatus for continuously casting metal
KR20020051310A (en) Method For Continuous Casting A Strip
JPH06182502A (en) Single gelt type band metal continuous casting apparatus
JPH08117931A (en) Dummy bar head for continuous casting of broad thin slab
JPH02263542A (en) Method for continuously casting cast strip composed of single crystal
JPS59185554A (en) Continuous casting machine for thin billet
JPH0924444A (en) Method for supplying molten metal at the time of continuously casting wide and thin cast slab
JPS6127148A (en) Method and device for horizontal and continuous casting
JPS60108145A (en) Method for cooling belt in belt type continuous casting machine
JPH01215443A (en) Continuous casting method by belt caster
JPH071088A (en) Belt for belt type continuous casting machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401