JPH09191577A - Self-excited reactive power compensation device - Google Patents

Self-excited reactive power compensation device

Info

Publication number
JPH09191577A
JPH09191577A JP8000924A JP92496A JPH09191577A JP H09191577 A JPH09191577 A JP H09191577A JP 8000924 A JP8000924 A JP 8000924A JP 92496 A JP92496 A JP 92496A JP H09191577 A JPH09191577 A JP H09191577A
Authority
JP
Japan
Prior art keywords
charging
capacity
transformer
self
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8000924A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshida
武司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP8000924A priority Critical patent/JPH09191577A/en
Publication of JPH09191577A publication Critical patent/JPH09191577A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-excited reactive power compensation device which can surely charge the DC capacitor of a small-capacity inverter circuit without increasing the power capacity of an auxiliary power source with relatively simple constitution. SOLUTION: This device has a first and a second transformers 11, 12 connected in series to a system bus through a circuit breaker 2, a large-capacity inverter 9 for outputting a compensation voltage equal to the system voltage through the first transformer, a small-capacity inverter 10 for outputting a compensation voltage for suppressing the load variation of the system bus through the second transformer 12, a first and a second DC capacitors 7, 8 connected to the large-capacity and the small-capacity inverters and a first and a second charging circuits 5, 6 for charging the first and the second capacitors. A tertiary winding is provided in the first transformer 11 and the output of the tertiary winding is adopted as the charging power source of the second charging circuit, thereby reducing the capacity of an auxiliary power source 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は電力系統の電圧変
動の抑制やフリッカ対策などに使用される自励式無効電
力補償装置に関し、特に容量の異なる複数のインバータ
を連系用の変圧器を介して系統母線に接続した自励式無
効電力補償装置における直流電源回路の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited reactive power compensator used for suppressing voltage fluctuations in a power system and as a countermeasure against flicker. The present invention relates to improvement of a DC power supply circuit in a self-excited var compensator connected to a system bus.

【0002】[0002]

【従来の技術】一般に自励式無効電力補償装置は、電力
系統の電圧変動の抑制やフリッカ対策などに使用されて
いる。基本的には1台のインバータの出力電流を制御し
て電力系統の無効電力の補償が行なわれているが、イン
バータの内部損失電力が増大することがある。
2. Description of the Related Art Generally, a self-excited reactive power compensator is used to suppress voltage fluctuations in a power system and to prevent flicker. Basically, the output current of one inverter is controlled to compensate the reactive power of the power system, but the internal loss power of the inverter may increase.

【0003】そこで、インバータの内部損失電力を低減
させるために、容量の異なる複数のインバータを連系用
の変圧器を介して電力系統に接続した自励式無効電力補
償装置(以下、自励式SVCという)が提案されてい
る。
Therefore, in order to reduce the internal loss power of the inverter, a self-excited reactive power compensator (hereinafter referred to as self-excited SVC) in which a plurality of inverters having different capacities are connected to a power system through a transformer for interconnection. ) Is proposed.

【0004】この自励式SVCは、例えば図2に示すよ
うに構成されており、系統電源1と変動負荷(図示せ
ず)との間の系統母線に連系用の遮断器2を介して設置
されている。この自励式SVC3には補機電源4が接続
されている。この自励式SVC3は、例えば方形波用の
充電スイッチ5a,方形波用の充電変圧器5b,方形波
用の整流器5cを含む第1の充電回路5と、PWM用の
充電スイッチ6a,PWM用の充電変圧器6b,PWM
用の整流器6cを含む第2の充電回路6と、第1の充電
回路5の出力側に接続された第1の直流コンデンサ7
と、第2の充電回路6の出力側に接続された第2の直流
コンデンサ8と、第1の直流コンデンサ7を直流電源と
する大容量インバータ9と、第2の直流コンデンサ8を
直流電源とする小容量インバータ10と、系統母線に直
列接続され、かつ大容量インバータ9及び小容量インバ
ータ10の出力側に接続された第1,第2の変圧器1
1,12とから構成されている。尚、大容量インバータ
9及び小容量インバータ10におけるスイッチング素子
としては、GTO(ゲートターンオフサイリスタ)半導
体素子が用いられる。
This self-excited SVC is constructed, for example, as shown in FIG. 2, and is installed on a system bus between a system power supply 1 and a variable load (not shown) via a circuit breaker 2 for interconnection. Has been done. An auxiliary power source 4 is connected to the self-excited SVC 3. This self-excited SVC 3 includes, for example, a first charging circuit 5 including a charging switch 5a for square wave, a charging transformer 5b for square wave, and a rectifier 5c for square wave, a charging switch 6a for PWM, and a charging switch 6a for PWM. Charge transformer 6b, PWM
Second charging circuit 6 including a rectifier 6c for use with a first DC capacitor 7 connected to the output side of the first charging circuit 5
A second DC capacitor 8 connected to the output side of the second charging circuit 6, a large-capacity inverter 9 using the first DC capacitor 7 as a DC power source, and a second DC capacitor 8 as a DC power source. Small-capacity inverter 10 and a first and second transformer 1 connected in series to the system bus and connected to the output sides of the large-capacity inverter 9 and the small-capacity inverter 10.
It is composed of 1 and 12. A GTO (gate turn-off thyristor) semiconductor element is used as a switching element in the large capacity inverter 9 and the small capacity inverter 10.

【0005】上述の大容量インバータ9は、第1の直流
コンデンサ7の直流電圧E1 を交流に変換して第1の変
圧器11の一次側に、系統母線の系統電圧と同等のイン
バータ電圧(補償電圧)を発生させるように制御され
る、例えば大容量低速スイッチング矩形波(方形波)イ
ンバータである。一方、小容量インバータ10は、第2
の直流コンデンサ8の直流電圧E2 を交流に変換して第
2の変圧器12の一次側に、系統母線の負荷変動を抑制
する補償電圧を発生させるように制御される、例えば小
容量高速スイッチングPWMインバータである。
The large-capacity inverter 9 described above uses the DC voltage E 1 of the first DC capacitor 7. Is converted into an alternating current to generate an inverter voltage (compensation voltage) equivalent to the system voltage of the system bus on the primary side of the first transformer 11, for example, a large-capacity low-speed switching rectangular wave (square wave). ) It is an inverter. On the other hand, the small capacity inverter 10 has a second
DC voltage E 2 of the DC capacitor 8 of Is converted into alternating current and is controlled so as to generate a compensation voltage for suppressing load fluctuation of the system bus on the primary side of the second transformer 12, for example, a small-capacity high-speed switching PWM inverter.

【0006】この自励式SVC3は、次のように動作す
る。まず、連系用の遮断器2の開放状態において、充電
スイッチ5a,6aを閉成すると、第1,第2の充電回
路5,6に低圧(例えば200Vないし400V)の補
機電源4が接続され、整流器5c,6cにて直流に変換
される。これによって、第1,第2の直流コンデンサ
7,8は直流電圧E1 ,E2 に充電され、初期充電が完
了する。この状態において、遮断器2を閉成して系統母
線(系統電源1)に連系すると共に、第1の充電回路5
の充電スイッチ5aを開放する。系統母線に負荷変動に
伴い無効電力が生ずると、大容量インバータ9及び小容
量インバータ10から補償電圧を第1,第2の変圧器1
1,12を介して系統母線に供給することによって無効
電力の補償が行なわれる。具体的にはインバータ電圧の
位相を系統電圧に対して進ませたり(有効電力の流
出),遅らせたり(有効電力の流入)することにより、
有効電力が制御される。
The self-excited SVC 3 operates as follows. First, when the charging switches 5a and 6a are closed in the open state of the circuit breaker 2 for interconnection, a low-voltage (for example, 200V to 400V) auxiliary power supply 4 is connected to the first and second charging circuits 5 and 6. And converted to direct current by the rectifiers 5c and 6c. As a result, the first and second DC capacitors 7 and 8 receive the DC voltage E 1 , E 2 Is fully charged and the initial charging is completed. In this state, the circuit breaker 2 is closed to be connected to the system bus (system power supply 1) and the first charging circuit 5
The charging switch 5a is opened. When reactive power is generated in the system bus due to load fluctuation, the compensation voltage is supplied from the large capacity inverter 9 and the small capacity inverter 10 to the first and second transformers 1.
The reactive power is compensated by supplying the power to the system bus via 1, 12. Specifically, the phase of the inverter voltage is advanced (active power outflow) or delayed (active power inflow) with respect to the system voltage,
Active power is controlled.

【0007】[0007]

【発明が解決しようとする課題】ところで、自励式SV
C3の初期充電に必要とする補機電源4の電力容量は、
運転中(系統連系中)に比べて少なくて済むが、運転中
には初期充電の5〜10倍程度を要する。即ち、運転
中、第1の直流コンデンサ7は系統電源1から補充充電
されるのに対し、第2の直流コンデンサ8は系統連系後
も補機電源4によって補充充電されるためであり、従っ
て、補機電源4は、運転中においては第2の直流コンデ
ンサ8が確実に補充充電され得る程度の電力容量が要求
されることになる。
By the way, the self-excited SV
The power capacity of the auxiliary power supply 4 required for the initial charging of C3 is
It is less than that during operation (during system interconnection), but about 5 to 10 times the initial charge is required during operation. That is, during operation, the first DC capacitor 7 is replenished and charged from the system power supply 1, while the second DC capacitor 8 is replenished and charged by the auxiliary power supply 4 even after the system interconnection. Therefore, the auxiliary power supply 4 is required to have a power capacity enough to reliably replenish and charge the second DC capacitor 8 during operation.

【0008】通常、補機電源4は、自励式SVC3の設
置需要家から供給されるものであるが、それの容量が大
容量なると、ランニングコストが高くなるし、その容量
が過大の場合には、需要家から供給を受けることができ
なくなる可能性も生ずる。このような場合には他の高圧
回路から低圧に降圧する受電設備が必要になり、設置ス
ペース,コスト共に過大なものになるという問題があ
る。
Normally, the auxiliary power supply 4 is supplied from a customer who installs the self-excited SVC 3. However, if the capacity of the auxiliary power supply 4 becomes large, the running cost becomes high, and if the capacity is excessively large. However, there is a possibility that customers will not be able to receive supply. In such a case, there is a problem in that a power receiving facility for reducing the voltage to a low voltage from another high voltage circuit is required, resulting in an excessive installation space and cost.

【0009】それ故に、本発明の目的は、比較的簡単な
構成によって補機電源の電力容量を増加させることな
く、小容量インバータ回路の直流コンデンサを確実に充
電できる自励式無効電力補償装置を提供することにあ
る。
Therefore, an object of the present invention is to provide a self-excited reactive power compensator capable of reliably charging the DC capacitor of the small capacity inverter circuit without increasing the power capacity of the auxiliary power source with a relatively simple structure. To do.

【0010】[0010]

【課題を解決するための手段】従って、本発明は、上述
の目的を達成するために、系統母線に遮断器を介して直
列接続した第1,第2の変圧器と、系統電圧と同等の補
償電圧を第1の変圧器を介して出力する大容量インバー
タと、系統母線の負荷変動を抑制する補償電圧を第2の
変圧器を介して出力する小容量インバータと、大容量及
び小容量インバータに接続した第1,第2の直流コンデ
ンサと、第1,第2の直流コンデンサを充電する第1,
第2の充電回路とを具備し、前記第1の変圧器に三次巻
線を設け、この三次巻線の出力を第2の充電回路の充電
電源としたものである。
Therefore, in order to achieve the above-mentioned object, the present invention provides a first and a second transformer connected in series to a system bus via a circuit breaker and a system voltage equivalent to the system voltage. A large-capacity inverter that outputs a compensation voltage via a first transformer, a small-capacity inverter that outputs a compensation voltage that suppresses load fluctuations on the system busbar via a second transformer, and a large-capacity and small-capacity inverter Connected to the first and second DC capacitors, and the first and second DC capacitors to charge the first and second DC capacitors
A second charging circuit is provided, a tertiary winding is provided on the first transformer, and an output of the tertiary winding is used as a charging power source for the second charging circuit.

【0011】又、本発明の第2の発明は、前記第1,第
2の直流コンデンサを初期充電する際には、遮断器を開
放状態において、第1の充電回路に補機電源を接続し、
それぞれの直流コンデンサが充電後は、遮断器を閉成し
て系統母線に連系し、第1の充電回路から補機電源を開
放すると共に、系統から第1の変圧器を介してそれぞれ
の直流コンデンサを補充充電するものであり、第3の発
明は、前記充電回路は整流器と、充電変圧器とを含むこ
とを特徴とする。
According to a second aspect of the present invention, when initially charging the first and second DC capacitors, an auxiliary power source is connected to the first charging circuit with the breaker opened. ,
After each DC capacitor is charged, the circuit breaker is closed to connect to the system bus, the auxiliary power source is released from the first charging circuit, and each DC is connected from the system through the first transformer. According to a third aspect of the present invention, the charging circuit includes a rectifier and a charging transformer.

【0012】[0012]

【発明の実施の形態】次に、本発明の1実施例について
図1を参照して説明する。尚、図2に示す従来例と同一
部分には同一参照符号を付し、その詳細な説明は省略す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, one embodiment of the present invention will be described with reference to FIG. The same parts as those of the conventional example shown in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0013】同図において、本発明の特徴部分は、第1
の変圧器11に三次巻線11aを設け、この三次巻線1
1aの出力を第2の充電回路6の充電電源としたことで
ある。
In FIG. 1, the characteristic part of the present invention is the first
The transformer 11 is provided with a tertiary winding 11a.
The output of 1a is used as the charging power source of the second charging circuit 6.

【0014】この装置は次のように動作する。初期充電
においては、まず、連系用の遮断器2を開放状態におい
て、第1の充電回路5の充電スイッチ5aを閉成する。
これによって、第1の充電回路5には補機電源4が接続
される。補機電源4の交流は充電変圧器5bを介して整
流器5cに与えられ、直流に変換されると共に、第1の
直流コンデンサ7が充電される。同コンデンサ7の充電
電圧(直流電圧)が所定の電圧に達すると、大容量イン
バータ9が駆動される。大容量インバータ9の出力は第
1の変圧器11に与えられる。これによって、第1の変
圧器11の三次巻線11aには交流電圧が生じ、第2の
充電回路6に供給される。整流器6cで直流に変換さ
れ、第2の直流コンデンサ8が充電される。そして、同
コンデンサ8が所定の直流電圧に充電されると、小容量
インバータ10も駆動される。
This device operates as follows. In the initial charging, first, the circuit breaker 2 for interconnection is opened and the charging switch 5a of the first charging circuit 5 is closed.
As a result, the auxiliary power source 4 is connected to the first charging circuit 5. The alternating current of the auxiliary power supply 4 is given to the rectifier 5c via the charging transformer 5b, converted into direct current, and the first DC capacitor 7 is charged. When the charging voltage (DC voltage) of the capacitor 7 reaches a predetermined voltage, the large capacity inverter 9 is driven. The output of the large-capacity inverter 9 is given to the first transformer 11. As a result, an AC voltage is generated in the tertiary winding 11a of the first transformer 11 and is supplied to the second charging circuit 6. It is converted into direct current by the rectifier 6c and the second direct current capacitor 8 is charged. Then, when the capacitor 8 is charged to a predetermined DC voltage, the small capacity inverter 10 is also driven.

【0015】初期充電が完了すると、系統電源1との同
期確認後、連系用の遮断器2が閉成されると共に、第1
の充電回路5の充電スイッチ5aが開放される。運転
中、第1の直流コンデンサ7は系統電源1から第1の変
圧器11を介して補充充電され、第2のコンデンサ8は
第1の変圧器11の三次巻線11aを介して補充充電さ
れる。
When the initial charging is completed, after confirming the synchronization with the system power supply 1, the circuit breaker 2 for interconnection is closed and the first
The charging switch 5a of the charging circuit 5 is opened. During operation, the first DC capacitor 7 is replenished and charged from the system power supply 1 through the first transformer 11, and the second capacitor 8 is replenished and charged through the tertiary winding 11a of the first transformer 11. It

【0016】尚、本発明は、何ら上記実施例にのみ制約
されることなく、例えば各インバータのスイッチング素
子はGTO以外に例えば他の自己消弧素子なども利用で
きる。又、大容量インバータ及び小容量インバータは方
形波及びPWMインバータ以外のものも利用可能であ
る。
The present invention is not limited to the above-described embodiment at all, and for example, the switching element of each inverter can use other self-extinguishing element other than GTO. Further, as the large capacity inverter and the small capacity inverter, other than the square wave and PWM inverters can be used.

【0017】[0017]

【発明の効果】以上のように、本発明によれば、第1の
変圧器に三次巻線を設け、この三次巻線の出力を第2の
直流コンデンサの充電電源として用いるように構成され
ているために、補機電源は初期充電の時にのみ利用され
る。従って、補機電源の容量を小さく設定できるため
に、設備の小型化,低コスト化も可能となる。
As described above, according to the present invention, the first transformer is provided with the tertiary winding, and the output of the tertiary winding is used as the charging power source for the second DC capacitor. Therefore, the auxiliary power source is used only during initial charging. Therefore, since the capacity of the auxiliary power supply can be set small, the equipment can be downsized and the cost can be reduced.

【0018】又、第2の直流コンデンサは、初期充電の
際には大容量インバータの出力に関連して第1の変圧器
の三次巻線に発生する交流電圧に基づいて充電され、系
統連系時には系統電源から第1の変圧器の三次巻線を介
して充電されるために、補機電源の容量に左右されるこ
となく、設備の設置が可能になる。
Further, the second DC capacitor is charged at the time of initial charging based on the AC voltage generated in the tertiary winding of the first transformer in relation to the output of the large capacity inverter, and the system interconnection is established. Since it is sometimes charged from the system power supply through the tertiary winding of the first transformer, the equipment can be installed without being affected by the capacity of the auxiliary power supply.

【0019】特に、第1の変圧器に新たに三次巻線を設
け、この三次巻線の出力を第2の直流コンデンサの充電
電源としている関係で、第2の充電スイッチを省略で
き、回路構成を簡素化できる。
In particular, since the third transformer is newly provided with the tertiary winding and the output of the tertiary winding is used as the charging power source for the second DC capacitor, the second charging switch can be omitted and the circuit configuration can be improved. Can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す電気回路図。FIG. 1 is an electric circuit diagram showing one embodiment of the present invention.

【図2】従来例の電気回路図。FIG. 2 is an electric circuit diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 系統電源 2 遮断器 3 自励式SVC 4 補機電源 5 第1の充電回路 5a 充電スイッチ 6 第2の充電回路 7 第1の直流コンデンサ 8 第2の直流コンデンサ 9 大容量インバータ 10 小容量インバータ 11 第1の変圧器 11a 三次巻線 12 第2の変圧器 1 System Power Supply 2 Circuit Breaker 3 Self-Exciting SVC 4 Auxiliary Machine Power Supply 5 First Charging Circuit 5a Charging Switch 6 Second Charging Circuit 7 First DC Capacitor 8 Second DC Capacitor 9 Large Capacity Inverter 10 Small Capacity Inverter 11 1st transformer 11a Tertiary winding 12 2nd transformer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 系統母線に遮断器を介して直列接続した
第1,第2の変圧器と、系統電圧と同等の補償電圧を第
1の変圧器を介して出力する大容量インバータと、系統
母線の負荷変動を抑制する補償電圧を第2の変圧器を介
して出力する小容量インバータと、大容量及び小容量イ
ンバータに接続した第1,第2の直流コンデンサと、第
1,第2の直流コンデンサを充電する第1,第2の充電
回路とを具備し、前記第1の変圧器に三次巻線を設け、
この三次巻線の出力を第2の充電回路の充電電源とした
ことを特徴とする自励式無効電力補償装置。
1. A first and a second transformer connected in series to a system bus via a circuit breaker, a large-capacity inverter for outputting a compensation voltage equivalent to the system voltage via a first transformer, and a system. A small-capacity inverter that outputs a compensation voltage that suppresses load fluctuations of the busbar through a second transformer; first and second DC capacitors that are connected to the large-capacity and small-capacity inverters; A first and a second charging circuit for charging a DC capacitor, wherein a tertiary winding is provided on the first transformer,
A self-excited var compensator, wherein the output of the tertiary winding is used as a charging power source for the second charging circuit.
【請求項2】 前記第1,第2の直流コンデンサを初期
充電する際には、遮断器を開放状態において、第1の充
電回路に補機電源を接続し、それぞれの直流コンデンサ
が充電後は、第1の充電回路から補機電源を開放するこ
とを特徴とする請求項1記載の自励式無効電力補償装
置。
2. When initially charging the first and second DC capacitors, with the breaker opened, an auxiliary power source is connected to the first charging circuit, and after charging the respective DC capacitors, 2. The self-excited reactive power compensator according to claim 1, wherein the auxiliary power supply is released from the first charging circuit.
【請求項3】 前記充電回路は整流器と、充電変圧器と
を含むことを特徴とする請求項1記載の自励式無効電力
補償装置。
3. The self-excited reactive power compensator according to claim 1, wherein the charging circuit includes a rectifier and a charging transformer.
JP8000924A 1996-01-08 1996-01-08 Self-excited reactive power compensation device Withdrawn JPH09191577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000924A JPH09191577A (en) 1996-01-08 1996-01-08 Self-excited reactive power compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000924A JPH09191577A (en) 1996-01-08 1996-01-08 Self-excited reactive power compensation device

Publications (1)

Publication Number Publication Date
JPH09191577A true JPH09191577A (en) 1997-07-22

Family

ID=11487247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000924A Withdrawn JPH09191577A (en) 1996-01-08 1996-01-08 Self-excited reactive power compensation device

Country Status (1)

Country Link
JP (1) JPH09191577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976849A (en) * 2010-09-30 2011-02-16 山东计保电气有限公司 Method and device for intelligently switching on and off transformer set
CN102946095A (en) * 2012-11-27 2013-02-27 东南大学 Method and device for suppressing overvoltage of power distribution network caused by distributed power generation
WO2019049325A1 (en) * 2017-09-08 2019-03-14 株式会社東芝 Power conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976849A (en) * 2010-09-30 2011-02-16 山东计保电气有限公司 Method and device for intelligently switching on and off transformer set
CN102946095A (en) * 2012-11-27 2013-02-27 东南大学 Method and device for suppressing overvoltage of power distribution network caused by distributed power generation
WO2019049325A1 (en) * 2017-09-08 2019-03-14 株式会社東芝 Power conversion device
JP6538990B1 (en) * 2017-09-08 2019-07-03 株式会社東芝 Power converter

Similar Documents

Publication Publication Date Title
US6175166B1 (en) System for mitigating voltage disturbances and interruptions for power distribution applications
US10516365B1 (en) DC voltage control in renewable energy based multilevel power converter
US4489371A (en) Synthesized sine-wave static generator
JP2645045B2 (en) Power converter
Huang et al. 500kVA hybrid solid state transformer (HSST): architecture, functionality and control
JP2000228826A (en) Power supply device according to quality
WO2019007479A1 (en) Power converter voltage balancing
JP3226246B2 (en) High voltage self-excited converter for grid interconnection
JPH07274529A (en) Power converter
US7105948B2 (en) Apparatus for the voltage maintenance of an electrical AC voltage supply network and method for operating such an apparatus
EP0982843B1 (en) Power converter
JPH09191577A (en) Self-excited reactive power compensation device
JP2002345258A (en) Inverter device
JP2003087976A (en) Uninterruptible power supply
Koyama et al. System fault test of SiC device applied 6.6 kV transformerless D-STATCOM
JPH07115773A (en) Uninterruptibe power source
Nasiri et al. Reduced parts three-phase series-parallel UPS system with active filter capabilities
JP2001197685A (en) Uninterruptible power supply system
JPH0429084B2 (en)
Chakraborty et al. Transformer Isolated Fault Tolerant Three Phase Active Front End Converter for EV Charging
JPS61121726A (en) Uninterruptible feed system
KR20180135723A (en) Electric power recovery method of load bank for output power test of diesel generator
JP4042092B2 (en) Power conversion system
Maharjan et al. Discussions on Fault-Tolerant Operation of Modular Multilevel Converters Using Mechanical Bypass Switches
JPH0962388A (en) Self-exciting type reactive power compensation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401