JPH09191118A - Fabrication of solar cell - Google Patents

Fabrication of solar cell

Info

Publication number
JPH09191118A
JPH09191118A JP8003002A JP300296A JPH09191118A JP H09191118 A JPH09191118 A JP H09191118A JP 8003002 A JP8003002 A JP 8003002A JP 300296 A JP300296 A JP 300296A JP H09191118 A JPH09191118 A JP H09191118A
Authority
JP
Japan
Prior art keywords
layer
solar cell
silicon substrate
forming
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8003002A
Other languages
Japanese (ja)
Inventor
Teruhiko Hirasawa
照彦 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8003002A priority Critical patent/JPH09191118A/en
Publication of JPH09191118A publication Critical patent/JPH09191118A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To simplify the fabrication process of solar cell by forming a coating layer of organic Ti compound containing phosphor on the surface of a substrate and an Al layer on the rear and performing thermal drive-in diffusion on the opposite sides thereby forming an antireflection film of TiO2 and a field layer simultaneously on the surface and rear of substrate, respectively. SOLUTION: A coating layer 3 of organic Ti compound containing phosphor is formed on the surface of an Si substrate 1 and then it is heated and dried. An Al layer 6 is formed on the rear by vacuum deposition. The substrate 1 is then set in a near infrared lamp heating furnace and a heat cycle is started to perform drive-in diffusion simultaneously on the opposite sides thus forming a bond (n+) and an antireflection film 4 of TiO2 on the surface while a field layer (p+) 5 on the rear, respectively. Subsequently, the surface is coated with a silver paste 9 containing n-type dopant while a silver paste 10 containing no dopant is printed on the rear and dried. Finally, it is fired and surface and rear electrodes 7, 8 are formed along with a heavily doped diffusion layer (n+1) 20 and then both electrodes 7, 8 coated with solder thus obtaining a solar cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、簡略な製造工程に
よる、低コストで高効率的な太陽電池の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low cost and highly efficient method for manufacturing a solar cell by a simple manufacturing process.

【0002】[0002]

【従来の技術】図2(A) 〜(H) は従来の太陽電池の製造
方法を示したものである。これを説明すると、 (A):p 型シリコン基板(電気抵抗1Ω・cm、厚さ350
μm )11を準備し、スライス時の表面歪み層に除去及び
テキスチャー加工の目的で、NaOH等のアルカリ溶液によ
る異方性エッチングを行い、その後NH4OH/H2O2/H2O溶液
等でシリコン基板11を洗浄、スピン乾燥を行う。 (B):熱処理炉にシリコン基板11をセットし、POCl3
拡散(850 ℃、30分)により接合(n+)12の形成を行
う。 (C):表面にスクリーン印刷でレジスト19をマスキング
する。 (D):裏面に形成された不要な接合層(n+)12をHF/HNO
3 溶液もしくはNaOH溶液を使用して除去する。 (E):レジスト19を有機溶剤で剥離し、シリコン基板1
の洗浄、スピン乾燥を行う。 (F):表面に常圧CVD でTiO2反射防止膜14を形成する。 (G):裏面にスクリーン印刷でアルミニウムペースト16
を全面に印刷、乾燥させた後、ベルト炉にて焼成(750
℃、5分)し裏面電界層(p+)15を形成する。 (H):両面にスクリーン印刷で銀ペーストを印刷、ベル
ト炉で焼成して電極17、18を形成する。なお、表面銀電
極はTiO2反射防止膜14をファイヤースルーすることで電
気的接触が得られるように焼成条件(650 ℃、10分)を
最適化する。ついで電極部の抵抗低減及び太陽電池間の
接続を目的として、両面銀電極上にSn/Pb/Agの半田コー
ティングを行う。
2. Description of the Related Art FIGS. 2A to 2H show a conventional method for manufacturing a solar cell. To explain this, (A): p-type silicon substrate (electrical resistance 1 Ω · cm, thickness 350
μm) 11 is prepared, anisotropic etching is performed with an alkaline solution such as NaOH for the purpose of removing the surface strained layer at the time of slicing and texture processing, and then NH 4 OH / H 2 O 2 / H 2 O solution etc. The silicon substrate 11 is washed and spin-dried. (B): The silicon substrate 11 is set in a heat treatment furnace, and a bond (n +) 12 is formed by POCl 3 thermal diffusion (850 ° C., 30 minutes). (C): Mask the resist 19 by screen printing on the surface. (D): Unnecessary bonding layer (n +) 12 formed on the back surface is HF / HNO
Remove using 3 solution or NaOH solution. (E): The resist 19 is removed with an organic solvent, and the silicon substrate 1
Wash and spin dry. (F): TiO 2 antireflection film 14 is formed on the surface by atmospheric pressure CVD. (G): Aluminum paste 16 by screen printing on the back side
Is printed on the entire surface and dried, then baked in a belt furnace (750
Then, the back surface electric field layer (p +) 15 is formed. (H): Silver paste is printed on both sides by screen printing and baked in a belt furnace to form electrodes 17 and 18. The surface silver electrode is optimized for firing conditions (650 ° C., 10 minutes) so that electrical contact can be obtained by fire-through the TiO 2 antireflection film 14. Next, Sn / Pb / Ag solder coating is applied to the double-sided silver electrodes for the purpose of reducing the resistance of the electrode parts and connecting the solar cells.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図2に
示す従来の太陽電池の製造方法は、以下に示す問題点に
より、簡略な工程で低コストかつ高効率の太陽電池を製
造することは困難である。その理由は、 (1)裏面に形成された接合層(n+)を除去するために
レジスト処理工程が必要であり、製造コストの増加及び
生産性低下の原因となっている。 (2)接合(n+)、反射防止膜、裏面電界層(p+)の形
成の熱処理工程が個別のバッチ処理であり、工程数が多
く、(1)と同様に十分なコスト低減及び生産性の向上
が難しい。 (3)裏面電界層(p+)形成は、アルミニウムペースト
を厚くかつ全面に印刷、焼成しないと裏面再結合速度の
低下の効果が得られないが、シリコン基板が現状の850
μm までの基板厚より薄型化した場合には、反りや破損
による製造歩留りの低下が予想される。このため、従来
のアルミニウムペースト印刷、焼成法による裏面電界層
(p+)形成に替わる形成方法が望まれている。 (4)高効率太陽電池の実現には、裏面電界層(p+)形
成による裏面再結合速度の低減のみならず、表面電極下
部での再結合速度の低減が重要であることが、計算によ
り予測されている。このためには、表面電極下部も裏面
電界層(p+)と同様に高濃度拡散層(n++)の形成が必要
となるが、市販品の接合(n+)形成は表面が均一濃度プ
ロファイルであるため、十分な再結合速度の低減が得ら
れないという問題があった。一方、電極下部のみに選択
的に高濃度拡散層(n++)を形成させる結合には太陽電池
の効率向上は認められるものの、フォトリソグラフィ工
程や熱拡散処理工程の回数が増加する等極めて高コスト
な製造方法となる問題がある。
However, in the conventional method for manufacturing a solar cell shown in FIG. 2, it is difficult to manufacture a low-cost and high-efficiency solar cell by a simple process due to the following problems. is there. The reasons are: (1) A resist treatment step is required to remove the bonding layer (n +) formed on the back surface, which causes an increase in manufacturing cost and a decrease in productivity. (2) The heat treatment process for forming the junction (n +), the antireflection film, and the back surface electric field layer (p +) is a separate batch process, and the number of processes is large. As with (1), sufficient cost reduction and productivity can be achieved. Hard to improve. (3) The back surface field layer (p +) can be formed by printing the aluminum paste thickly on the entire surface and firing it without firing to reduce the back surface recombination rate.
When the substrate thickness is made thinner than μm, the manufacturing yield is expected to decrease due to warpage and damage. For this reason, there is a demand for a forming method which replaces the conventional back surface field layer (p +) formation by aluminum paste printing and firing. (4) Calculations predict that in order to realize a high-efficiency solar cell, it is important not only to reduce the back surface recombination rate by forming the back surface electric field layer (p +) but also to reduce the recombination rate below the front surface electrode. Has been done. For this purpose, it is necessary to form a high-concentration diffusion layer (n ++) in the lower part of the front surface electrode as well as the back surface electric field layer (p +), but in the case of commercially available joint (n +) formation, the surface has a uniform concentration profile. However, there is a problem that a sufficient reduction of the recombination rate cannot be obtained. On the other hand, although the improvement of the efficiency of the solar cell is recognized in the bond in which the high-concentration diffusion layer (n ++) is selectively formed only in the lower part of the electrode, the number of photolithography processes and thermal diffusion treatment processes is increased, which is extremely expensive. There is a problem with the manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明は上記の問題点を
解決した太陽電池の製造方法に関するもので、これは、
太陽電池の製造方法において、(1)p 型シリコン基板
の表面にりん・ドーパントを含んだ有機チタン化合物塗
布層を形成し、裏面にアルミニウム層を形成した後、近
赤外ランプ加熱炉で該シリコン基板の両面をドライブイ
ン拡散させて、該シリコン基板の表面にn+接合層とTiO2
反射防止膜を、裏面に電界層(p+)を同時に形成する工
程、及び/又は(2)p 型シリコン基板の表面のTiO2
射防止膜側に電極下部における選択拡散用のSb合金ドー
パントを含んだ銀ペースト塗布層を形成し、裏面の電界
層(p+)側に銀ペースト塗布層を形成した後、該シリコ
ン基板を近赤外ランプ加熱炉で焼成して、両面に銀電極
を同時に形成する工程、を含むことを特徴とする太陽電
池の製造方法を要旨とするものである。
The present invention relates to a method of manufacturing a solar cell which solves the above-mentioned problems.
In the method of manufacturing a solar cell, (1) an organotitanium compound coating layer containing phosphorus / dopant is formed on the surface of a p-type silicon substrate, an aluminum layer is formed on the back surface, and the silicon is then heated in a near infrared lamp heating furnace. Drive-in diffusion is performed on both sides of the substrate to form an n + bonding layer and TiO 2 on the surface of the silicon substrate.
A step of simultaneously forming an electric field layer (p +) on the back surface of the antireflection film, and / or (2) including a Sb alloy dopant for selective diffusion under the electrode on the TiO 2 antireflection film side of the surface of the p-type silicon substrate. After forming a silver paste coating layer and a silver paste coating layer on the back surface side of the electric field layer (p +), the silicon substrate is baked in a near infrared lamp heating furnace to simultaneously form silver electrodes on both sides. The gist of the invention is a method of manufacturing a solar cell, which includes the steps of:

【0005】本発明は、上記問題点に鑑みて、太陽電池
の製造工程において、(1)レジスト処理工程を省略
し、かつ、(2)接合(n+)、反射防止膜、裏面電界層
(p+)を一回の熱処理で同時形成し、更に、(3)表面
銀電極形成時に電極下部に高濃度拡散層(n++)を同時形
成することで、表面での再結合速度の低減が図られ、製
造工程の簡略な、低コストかつ高効率の太陽電池の製造
方法を提供するものである。
In view of the above problems, the present invention eliminates (1) the resist treatment step in the solar cell manufacturing process, and (2) the junction (n +), the antireflection film, and the back surface electric field layer (p +). ) Are simultaneously formed by one heat treatment, and (3) a high-concentration diffusion layer (n ++) is simultaneously formed under the electrode when the surface silver electrode is formed, thereby reducing the recombination rate on the surface. It is intended to provide a method for manufacturing a solar cell which has a simple manufacturing process, is low in cost, and has high efficiency.

【0006】[0006]

【発明の実施の形態】以下本発明の太陽電池の製造方法
の(1)及び(2)工程について説明する。(1)工程
のシリコン基板表面に接合層(n+)とTiO2反射防止膜
を、また裏面に電界層(p+)を同時形成する工程につい
ては、p 型シリコン基板は厚さ0.1 〜0.4mm で電気抵抗
が1〜10Ω・cmのものが良く、公知の方法で表面をテキ
スチャー処理されたものが良い。りん・ドーパントを含
んだ有機チタン化合物塗布層は、スピンコート法等の方
法により塗布され、厚さは0.1 〜0.2 μmが良く、りん
・ドーパントとしてはP2O5、SiP2O7、CeP5O14 等が例示
され、有機チタン化合物としては公知のものでよく、例
えば特開昭60−140880号公報に開示の有機チタン化合物
あるいは有機チタン化合物と有機錫化合物との組成物な
どが例示される。本発明においてはりん・ドーパントを
有機チタン化合物溶液に含有させて塗布剤としたものが
好ましく、溶媒としては各種アルコール、エステル、ケ
トン等の有機溶剤が例示され、溶液粘度はスピンコート
法に適した10〜30cPが良い。裏面のアルミニウム層は真
空蒸着もしくはスパッタ法により形成され、厚さは0.5
〜3μmが良い。ドライブイン拡散の方法は近赤外ラン
プ加熱炉を用いN2/O2(3%)の雰囲気中で下記の条件
で熱サイクルを行い、両面同時ドライブイン拡散を行
う。熱サイクル条件は、昇温速度10〜50℃/sec で温度
850〜950 ℃まで昇温し、その温度で1〜2分キープし
た後、冷却速度0.5 〜2℃/sec で800 ℃まで冷却し自
然冷却を行う。
BEST MODE FOR CARRYING OUT THE INVENTION The steps (1) and (2) of the method for manufacturing a solar cell of the present invention will be described below. Regarding the process of forming the bonding layer (n +) and the TiO 2 antireflection film on the front surface of the silicon substrate in the step (1) and the electric field layer (p +) on the rear surface at the same time, the p-type silicon substrate has a thickness of 0.1 to 0.4 mm. The one having an electric resistance of 1 to 10 Ω · cm is preferable, and the one whose surface is textured by a known method is preferable. The organotitanium compound coating layer containing phosphorus / dopant is applied by a method such as spin coating, and the thickness is preferably 0.1 to 0.2 μm. As phosphorus / dopant, P 2 O 5 , SiP 2 O 7 , CeP 5 O 14 and the like are exemplified, and a known organic titanium compound may be used, and examples thereof include an organic titanium compound disclosed in JP-A-60-140880 or a composition of an organic titanium compound and an organic tin compound. . In the present invention, it is preferable to use an organic titanium compound solution containing a phosphorus / dopant as a coating agent, and examples of the solvent include organic solvents such as various alcohols, esters and ketones, and the solution viscosity is suitable for spin coating. 10 to 30 cP is good. The aluminum layer on the back side is formed by vacuum evaporation or sputtering and has a thickness of 0.5.
~ 3 μm is good. The method of drive-in diffusion is performed to a heat cycle in an atmosphere under the following conditions of N 2 / O 2 (3% ) using near-infrared lamp heating furnace, performing duplex simultaneous drive-in diffusion. Thermal cycle conditions are temperature rising rate of 10 to 50 ℃ / sec.
The temperature is raised to 850 to 950 ° C, kept at that temperature for 1 to 2 minutes, and then cooled to 800 ° C at a cooling rate of 0.5 to 2 ° C / sec to perform natural cooling.

【0007】(2)工程のシリコン基板表面に両面銀電
極を同時形成する工程については、電極下部における選
択拡散用のSb合金ドーパントとしてはGe-Sb、Sn-Sb、Ge-S
n-Sb等が例示される。表面側の銀ペースト層はスクリー
ン印刷等の方法で塗布され、厚さは10〜20μmが良い。
裏面側も同様にして銀ペースト層を形成する。両面の銀
ペースト層の焼成は、近赤外ランプ加熱炉を用いドライ
エアーの雰囲気中で温度600 〜700 ℃で5〜20分間行え
ば良い。
Regarding the step of simultaneously forming a double-sided silver electrode on the surface of the silicon substrate in the step (2), Ge-Sb, Sn-Sb, Ge-S are used as Sb alloy dopants for selective diffusion under the electrodes.
Examples include n-Sb. The silver paste layer on the surface side is applied by a method such as screen printing, and the thickness is preferably 10 to 20 μm.
A silver paste layer is similarly formed on the back side. The silver paste layers on both sides may be fired in a near infrared lamp heating furnace in a dry air atmosphere at a temperature of 600 to 700 ° C. for 5 to 20 minutes.

【0008】本発明によれば、表面に有機チタン化合物
塗布剤をスピン塗布、裏面にAlを真空蒸着もしくはスパ
ッタで形成した後熱処理するため、従来熱拡散法のよう
に裏面に接合層(n+)が形成される事なく、レジスト工
程が省略でき、また、表面にチタン化合物塗布膜、裏面
にアルミニウム膜が形成されているため、同時熱処理を
行っても相互のクロスコンタミネーションが防止される
という利点がある。更には、表面での接合(n+)形成剤
として、P2O5等のりん・ドーパントを有機チタン化合物
溶液に含有させた塗布剤を使用しているため、熱処理後
この塗布膜はTiO2反射防止膜として有効に作用する。
According to the present invention, the organic titanium compound coating agent is spin-coated on the front surface and Al is formed on the rear surface by vacuum deposition or sputtering, and then heat treatment is performed, so that the bonding layer (n +) is formed on the rear surface as in the conventional thermal diffusion method. The advantage is that the resist process can be omitted without the formation of the film and the titanium compound coating film on the front surface and the aluminum film on the back surface prevent mutual cross-contamination even if simultaneous heat treatment is performed. There is. Furthermore, since a coating material containing phosphorus / dopant such as P 2 O 5 in an organotitanium compound solution is used as a bonding (n +) forming agent on the surface, this coating film after heat treatment has TiO 2 reflection. Effectively acts as a preventive film.

【0009】また、裏面電界層(p+)形成に当たって
は、従来アルミニウムペースト焼成法では、アルミニウ
ムが粒子形状で存在するため、十分な電界効果を得るた
めには、アルミニウムペーストの膜厚を20〜40μm と厚
く形成する必要があり、薄型太陽電池の製造において
は、反りや破損による製造歩留りの低下が問題となって
いる。一方、アルミニウムを真空蒸着もしくはスパッタ
にて形成後アルミニウムの融点(580 ℃)以上でアロイ
処理させる方法では、アルミニウムが全面均一にAl-Si
アロイ化する事で2μm 程度の極めて薄い膜厚でも従来
焼成法と同等の裏面電界効果が得られるため、薄型シリ
コン基板に本方法を適用した場合、良好な製造歩留りが
期待できる。
In forming the back surface electric field layer (p +), aluminum is present in the form of particles in the conventional aluminum paste firing method. Therefore, in order to obtain a sufficient electric field effect, the thickness of the aluminum paste is 20 to 40 μm. Therefore, in the production of thin solar cells, the reduction in production yield due to warpage or damage is a problem. On the other hand, when aluminum is formed by vacuum vapor deposition or sputtering and then alloyed at the melting point (580 ° C) or higher of aluminum, the aluminum is Al-Si uniformly over the entire surface.
By alloying, a back surface field effect equivalent to that of the conventional firing method can be obtained even with an extremely thin film thickness of about 2 μm. Therefore, when this method is applied to a thin silicon substrate, a good manufacturing yield can be expected.

【0010】次に、高効率太陽電池の実現に当たって
は、裏面電界層による裏面再結合速度の低減のみなら
ず、表面再結合速度の低減が重要である。このために
は、表面接合層(n+)を低濃度とする必要があるが、均
一に低濃度とした場合には、(1)電極接触抵抗損失の
増加、(2)電極下部での再結合速度の増加により、効
率向上は期待出来ない。本発明では、銀ペースト中にn
型ドーパントであるSb合金を含有させる事で、電極下部
に選択的に高濃度拡散層(n++)が形成され、表面接合層
(n+)を最適な低濃度、高シート化条件で形成した場合
にも、電極下部での再結合速度が増加する事なく、ま
た、電極下部は高濃度かつ低シート化条件で拡散が行わ
れるため、電極との接触抵抗は十分に低く抑えることが
可能となり、印刷法という簡略なプロセスにより、フォ
トリソグラフィを使用したプロセスと同様な高効率太陽
電池の製造が期待出来る。
Next, in realizing a high-efficiency solar cell, it is important not only to reduce the back surface recombination rate by the back surface field layer, but also to reduce the front surface recombination rate. For this purpose, it is necessary to make the surface bonding layer (n +) low in concentration, but if the concentration is made evenly low, (1) increase in electrode contact resistance loss, (2) recombination at the bottom of the electrode Efficiency cannot be expected to increase due to increased speed. In the present invention, in the silver paste n
A high-concentration diffusion layer (n ++) is selectively formed under the electrode by including Sb alloy that is a type dopant, and when the surface bonding layer (n +) is formed under the optimum low-concentration and high-sheet forming conditions. However, since the recombination rate at the lower part of the electrode does not increase, and because the lower part of the electrode diffuses under high-concentration and low-sheet conditions, it is possible to keep the contact resistance with the electrode low enough. By the simple process called the method, it can be expected to manufacture a high-efficiency solar cell similar to the process using photolithography.

【0011】[0011]

【実施例】【Example】

実施例、比較例 以下実施例、比較例について説明するが本発明はこれに
限定されるものではない。図1(a) 〜(f) に本発明の太
陽電池の製造工程と、作製した太陽電池の性能の一例を
示す。本発明は、(1)工程を次の通りにおこなった。 (a):p 型シリコン基板1(電気抵抗1Ω・cm、厚さ20
0 μm )を準備し、スライス時の表面歪み層の除去及び
テキスチャー加工を目的として、NaOH等のアルカリ溶液
による異方性エッチングを行い、NH4OH/H2O2/H2O溶液で
シリコン基板1を洗浄、スピン乾燥を行う。 (b):シリコン基板1の表面にP2O5を含んだ有機Ti化合
物溶液の塗布剤をスピンコート法で塗布し厚さ0.1 μm
の有機Ti化合物塗布層3を形成し、120 ℃で10分乾燥を
行う。 (c):裏面にアルミニウム層6を、真空蒸着法またはス
パッタ法で1〜2μm の厚さに形成する。 (d):近赤外ランプ加熱炉に上記シリコン基板1をセッ
トし、下記の条件で熱サイクルを行い両面同時ドライブ
イン拡散を行い、表面に結合(n+)2とTiO2反射防止膜
4を、裏面に電界層(p+)5を形成する。熱サイクル条
件は、昇温速度10〜50℃/sec で温度 850〜950 ℃に昇
温し、同温度で1〜2分キープした後、冷却速度0.5 〜
2℃/sec で800 ℃まで冷却した後、自然冷却を行う。
次いで本発明の(2)工程を次の通りおこなった。 (e):表面にn 型ドーパントであるSn-Sb 合金を含んだ
銀ペースト9をスクリーン印刷にて厚さ20μm に塗布
し、120 ℃×10分乾燥する。更に、同様に裏面側にSn-S
b 合金を含まない銀ペースト10を印刷、乾燥させる。 (f):両面に銀ペースト9、10を印刷したシリコン基板
1をベルト炉に通し、650 ℃×10分焼成を行い表面電極
7と高濃度拡散層(n++ )20及び裏面電極8を形成す
る。 次いで電極7、8にSn/Pb/Ag系の半田コーティングを行
い太陽電池を完成させる。
Examples and Comparative Examples Examples and comparative examples will be described below, but the present invention is not limited thereto. 1 (a) to 1 (f) show an example of the manufacturing process of the solar cell of the present invention and the performance of the manufactured solar cell. In the present invention, the step (1) was performed as follows. (A): p-type silicon substrate 1 (electrical resistance 1Ω · cm, thickness 20
0 μm) is prepared, anisotropic etching is carried out with an alkaline solution such as NaOH for the purpose of removing the surface strain layer at the time of slicing and texture processing, and silicon is used with NH 4 OH / H 2 O 2 / H 2 O solution. The substrate 1 is washed and spin dried. (B): An organic Ti compound solution coating agent containing P 2 O 5 was applied to the surface of the silicon substrate 1 by spin coating to a thickness of 0.1 μm.
The organic Ti compound coating layer 3 is formed and dried at 120 ° C. for 10 minutes. (C): An aluminum layer 6 is formed on the back surface by vacuum vapor deposition or sputtering to a thickness of 1 to 2 μm. (D): The above-mentioned silicon substrate 1 was set in a near-infrared lamp heating furnace, and thermal cycling was performed under the following conditions to perform both-side simultaneous drive-in diffusion to bond (n +) 2 and TiO 2 antireflection film 4 to the surface. An electric field layer (p +) 5 is formed on the back surface. The heat cycle condition is that the temperature is raised to 850 to 950 ° C at a heating rate of 10 to 50 ° C / sec, kept at the same temperature for 1 to 2 minutes, and then cooled at a rate of 0.5 to
After cooling to 800 ° C at 2 ° C / sec, perform natural cooling.
Then, the step (2) of the present invention was performed as follows. (E): A silver paste 9 containing an Sn-Sb alloy, which is an n-type dopant, is applied on the surface by screen printing to a thickness of 20 μm and dried at 120 ° C. for 10 minutes. In addition, similarly Sn-S on the back side
b Alloy-free silver paste 10 is printed and dried. (F): The silicon substrate 1 having silver pastes 9 and 10 printed on both sides is passed through a belt furnace and baked at 650 ° C. for 10 minutes to form the front electrode 7, the high-concentration diffusion layer (n ++) 20 and the back electrode 8. . Then, Sn / Pb / Ag based solder coating is applied to the electrodes 7 and 8 to complete the solar cell.

【0012】ソーラーシミュレーター(条件AM1.5、25
℃)で、図1の方法で作製した本発明の太陽電池の短絡
電流、解放電圧、曲線因子および変換効率を測定したと
ころ、表1に示す結果が得られた。また比較例として図
2に示す従来法で作製した太陽電池についても同様に測
定して結果を表1に併記した。
Solar simulator (conditions AM1.5, 25
When the short circuit current, release voltage, fill factor and conversion efficiency of the solar cell of the present invention produced by the method of FIG. As a comparative example, a solar cell manufactured by the conventional method shown in FIG. 2 was measured in the same manner, and the results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】本発明によれば、接合(n+)、反射防止
膜、裏面電界層(p+)形成を各々片側のみに同時形成出
来るため、従来のように反対側の面を除去するためのレ
ジスト処理工程が不要となり、また、製造プロセスが大
幅に短縮出来るため、製造コストの低減及び生産性の向
上を図る事が可能となる。また、表面銀電極焼成時に電
極下部に高濃度拡散層(n++)を同時形成する事で、フォ
トリソグラフィ工程を使用した高コスト製造プロセスで
製造したものと同等の表面再結合速度の低減が図られ、
その結果、従来の製造方法に比べて、低コストで簡略な
製造方法により、高効率太陽電池を製造する事が可能と
なる。
According to the present invention, since the junction (n +), the antireflection film, and the back surface electric field layer (p +) can be simultaneously formed on only one side, the opposite surface can be removed as in the conventional case. Since the resist processing step is unnecessary and the manufacturing process can be significantly shortened, it is possible to reduce the manufacturing cost and improve the productivity. Also, by simultaneously forming a high-concentration diffusion layer (n ++) under the surface silver electrode during firing, it is possible to reduce the surface recombination rate equivalent to that produced by a high-cost manufacturing process using a photolithography process. ,
As a result, it is possible to manufacture a high-efficiency solar cell by a low cost and simple manufacturing method as compared with the conventional manufacturing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) 〜(f) は本発明による太陽電池の製造方法
における一連の製造工程の一例を示したものである。
1A to 1F show an example of a series of manufacturing steps in a method for manufacturing a solar cell according to the present invention.

【図2】(A) 〜(H) は従来の太陽電池の製造方法におけ
る一連の製造工程を示したものである。
2 (A) to (H) show a series of manufacturing steps in a conventional method for manufacturing a solar cell.

【符号の説明】[Explanation of symbols]

1、11…シリコン基板 2、12…結合(n+) 3…有機チタン化合物塗布層 4、14…TiO2反射防止膜 5、15…電界層(p+) 6、16…アルミニウム層 7、17…表面電極 8、18…裏面電極 9…Sb合金含有銀ペースト 10…銀ペースト 19…レジスト 20…高濃度拡散層(n++ )1, 11 ... Silicon substrate 2, 12 ... Bonding (n +) 3 ... Organic titanium compound coating layer 4, 14 ... TiO 2 antireflection film 5, 15 ... Electric field layer (p +) 6, 16 ... Aluminum layer 7, 17 ... Surface Electrodes 8, 18 ... Back electrode 9 ... Sb alloy-containing silver paste 10 ... Silver paste 19 ... Resist 20 ... High concentration diffusion layer (n ++)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】太陽電池の製造方法において、 (1)p 型シリコン基板の表面にりん・ドーパントを含
んだ有機チタン化合物塗布層を形成し、裏面にアルミニ
ウム層を形成した後、近赤外ランプ加熱炉で該シリコン
基板の両面をドライブイン拡散させて、該シリコン基板
の表面にn+接合層とTiO2反射防止膜を、裏面に電界層
(p+)を同時に形成する工程、及び/又は(2)p 型シ
リコン基板の表面のTiO2反射防止膜側に電極下部におけ
る選択拡散用のSb合金ドーパントを含んだ銀ペースト塗
布層を形成し、裏面の電界層(p+)側に銀ペースト塗布
層を形成した後、該シリコン基板を近赤外ランプ加熱炉
で焼成して、両面に銀電極を同時に形成する工程、を含
むことを特徴とする太陽電池の製造方法。
1. A method of manufacturing a solar cell, comprising: (1) forming a coating layer of an organotitanium compound containing phosphorus / dopant on the surface of a p-type silicon substrate, forming an aluminum layer on the back surface thereof, and then forming a near infrared lamp. Drive-in diffusing both surfaces of the silicon substrate in a heating furnace to simultaneously form an n + junction layer and a TiO 2 antireflection film on the front surface of the silicon substrate, and an electric field layer (p +) on the back surface, and / or (2 ) A silver paste coating layer containing Sb alloy dopant for selective diffusion in the lower part of the electrode is formed on the TiO 2 antireflection film side of the surface of the p-type silicon substrate, and a silver paste coating layer is formed on the electric field layer (p +) side of the back surface. After the formation, a step of firing the silicon substrate in a near-infrared lamp heating furnace to simultaneously form silver electrodes on both sides, a method of manufacturing a solar cell.
JP8003002A 1996-01-11 1996-01-11 Fabrication of solar cell Pending JPH09191118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8003002A JPH09191118A (en) 1996-01-11 1996-01-11 Fabrication of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8003002A JPH09191118A (en) 1996-01-11 1996-01-11 Fabrication of solar cell

Publications (1)

Publication Number Publication Date
JPH09191118A true JPH09191118A (en) 1997-07-22

Family

ID=11545165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8003002A Pending JPH09191118A (en) 1996-01-11 1996-01-11 Fabrication of solar cell

Country Status (1)

Country Link
JP (1) JPH09191118A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041221A1 (en) * 1999-11-23 2001-06-07 Ebara Solar, Inc. Method and apparatus for self-doping contacts to a semiconductor
WO2002103810A1 (en) * 2001-06-19 2002-12-27 Bp Solar Limited Process for manufacturing a solar cell
WO2002061854A3 (en) * 2001-02-02 2003-12-11 Shell Solar Gmbh Method for structuring an oxide layer applied to a substrate material
CN100344000C (en) * 2002-10-22 2007-10-17 上海交大泰阳绿色能源有限公司 Sintering process for silver grating line to pass through TiOx layer and make ohmic contact with Si
WO2008060874A1 (en) * 2006-11-10 2008-05-22 Evergreen Solar, Inc. Substrate with two sided doping and method of producing the same
JPWO2006059382A1 (en) * 2004-12-01 2008-06-05 三益半導体工業株式会社 Surface treatment equipment for square wafers for solar cells
JP2008244166A (en) * 2007-03-27 2008-10-09 Kyocera Corp Method for manufacturing solar cell
CN101794827A (en) * 2010-03-12 2010-08-04 河南阿格斯新能源有限公司 Amorphous silicon film solar cell film system, and film solar cell and manufacturing method thereof
KR100989322B1 (en) * 2009-02-05 2010-10-25 에스에스씨피 주식회사 Manufacturing Method of Solar Cell's Substrate Having Selective Emitter Structure And Solar Cell
KR101030043B1 (en) * 2004-10-27 2011-04-20 삼성에스디아이 주식회사 Solar cell and fabrication method thereof
WO2011097056A3 (en) * 2010-02-08 2012-05-03 Suniva, Inc. Solar cells and methods of fabrication thereof
WO2012077597A1 (en) * 2010-12-06 2012-06-14 シャープ株式会社 Method for manufacturing back contact solar cell, and back contact solar cell
CN103192619A (en) * 2012-01-09 2013-07-10 昆山允升吉光电科技有限公司 Printing method for solar cells
KR101305055B1 (en) * 2009-02-27 2013-09-11 한양대학교 산학협력단 Backside electrode part for solar cell and method for preparing the same
US8778231B2 (en) 2010-12-16 2014-07-15 E I Du Pont De Nemours And Company Aluminum pastes comprising boron nitride and their use in manufacturing solar cells
KR101528382B1 (en) * 2007-10-17 2015-06-12 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 Dielectric coating for single sided back contact solar cells

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041221A1 (en) * 1999-11-23 2001-06-07 Ebara Solar, Inc. Method and apparatus for self-doping contacts to a semiconductor
US6632730B1 (en) 1999-11-23 2003-10-14 Ebara Solar, Inc. Method for self-doping contacts to a semiconductor
US6703295B2 (en) 1999-11-23 2004-03-09 Ebara Corporation Method and apparatus for self-doping contacts to a semiconductor
WO2002061854A3 (en) * 2001-02-02 2003-12-11 Shell Solar Gmbh Method for structuring an oxide layer applied to a substrate material
WO2002103810A1 (en) * 2001-06-19 2002-12-27 Bp Solar Limited Process for manufacturing a solar cell
US7071018B2 (en) 2001-06-19 2006-07-04 Bp Solar Limited Process for manufacturing a solar cell
CN100344000C (en) * 2002-10-22 2007-10-17 上海交大泰阳绿色能源有限公司 Sintering process for silver grating line to pass through TiOx layer and make ohmic contact with Si
KR101030043B1 (en) * 2004-10-27 2011-04-20 삼성에스디아이 주식회사 Solar cell and fabrication method thereof
JP4510833B2 (en) * 2004-12-01 2010-07-28 三益半導体工業株式会社 Surface treatment equipment for square wafers for solar cells
JPWO2006059382A1 (en) * 2004-12-01 2008-06-05 三益半導体工業株式会社 Surface treatment equipment for square wafers for solar cells
WO2008060874A1 (en) * 2006-11-10 2008-05-22 Evergreen Solar, Inc. Substrate with two sided doping and method of producing the same
JP2008244166A (en) * 2007-03-27 2008-10-09 Kyocera Corp Method for manufacturing solar cell
KR101528382B1 (en) * 2007-10-17 2015-06-12 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 Dielectric coating for single sided back contact solar cells
KR100989322B1 (en) * 2009-02-05 2010-10-25 에스에스씨피 주식회사 Manufacturing Method of Solar Cell's Substrate Having Selective Emitter Structure And Solar Cell
KR101305055B1 (en) * 2009-02-27 2013-09-11 한양대학교 산학협력단 Backside electrode part for solar cell and method for preparing the same
CN103026505A (en) * 2010-02-08 2013-04-03 桑艾维公司 Solar cells and methods of fabrication thereof
WO2011097056A3 (en) * 2010-02-08 2012-05-03 Suniva, Inc. Solar cells and methods of fabrication thereof
KR101457427B1 (en) * 2010-02-08 2014-11-04 수니바 인코포레이티드 Solar cells and methods of fabrication thereof
CN101794827A (en) * 2010-03-12 2010-08-04 河南阿格斯新能源有限公司 Amorphous silicon film solar cell film system, and film solar cell and manufacturing method thereof
WO2012077597A1 (en) * 2010-12-06 2012-06-14 シャープ株式会社 Method for manufacturing back contact solar cell, and back contact solar cell
US8778231B2 (en) 2010-12-16 2014-07-15 E I Du Pont De Nemours And Company Aluminum pastes comprising boron nitride and their use in manufacturing solar cells
CN103192619A (en) * 2012-01-09 2013-07-10 昆山允升吉光电科技有限公司 Printing method for solar cells

Similar Documents

Publication Publication Date Title
JP3910072B2 (en) Paste composition and solar cell using the same
TWI407496B (en) A method for forming a semiconductor substrate and an electrode, and a method for manufacturing the solar cell
JP5440433B2 (en) Solar cell manufacturing method and film forming apparatus
JPH09191118A (en) Fabrication of solar cell
JP2004266023A (en) Solar battery and method of manufacturing the same
JP4373774B2 (en) Method for manufacturing solar cell element
JP6107830B2 (en) Method for manufacturing solar battery cell
JP5991945B2 (en) Solar cell and solar cell module
EP3101696B1 (en) Solar cell and solar cell manufacturing method
JP6644884B2 (en) Solar cell, solar cell manufacturing system, and solar cell manufacturing method
JP2008166344A (en) Conductive paste for photoelectric converting element, photoelectric converting element, and method for manufacturing photoelectric converting element
JP2794141B2 (en) Method for manufacturing photoelectric conversion device
JP2000277768A (en) Method of forming solar battery
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JP4467466B2 (en) Manufacturing method of solar cell module
JP4272405B2 (en) Method for manufacturing solar cell element
JP3974860B2 (en) Solar cell element
JP2004235272A (en) Solar cell element and its fabricating process
JP6114205B2 (en) Manufacturing method of solar cell
JP4203247B2 (en) Method for forming solar cell element
JP5316491B2 (en) Manufacturing method of solar cell
JP6741626B2 (en) High efficiency back electrode type solar cell and manufacturing method thereof
JPH023310B2 (en)
JP2003303980A (en) Solar cell and method for manufacturing the same
JP6875252B2 (en) Method of drying polyimide paste and method of manufacturing high photoelectric conversion efficiency solar cell