JPH09190825A - Solid electrolyte fuel cell and unit cell used to its fuel cell - Google Patents

Solid electrolyte fuel cell and unit cell used to its fuel cell

Info

Publication number
JPH09190825A
JPH09190825A JP8020385A JP2038596A JPH09190825A JP H09190825 A JPH09190825 A JP H09190825A JP 8020385 A JP8020385 A JP 8020385A JP 2038596 A JP2038596 A JP 2038596A JP H09190825 A JPH09190825 A JP H09190825A
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
solid electrolyte
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020385A
Other languages
Japanese (ja)
Inventor
Yasunobu Mizutani
安伸 水谷
Masayuki Kawai
雅之 河合
Kazuhiro Nomura
和弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP8020385A priority Critical patent/JPH09190825A/en
Publication of JPH09190825A publication Critical patent/JPH09190825A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To reduce the resistance of a solid electrolyte plate in the peripheral direction, and to improve the conductivity in the surface direction, by applying a coat of the material having the conductivity higher than the conductivity of the material of the air electrode, on the surface of each unit cell, in a solid electrolyte fuel cell of a laminated structure. SOLUTION: In this solid electrolyte fuel cell, plural unit cells 18 are provided in the laminated form through separators. A unit cell 18 consists of four layers structure of a solid electrolyte plate 12, a fuel electrode 14, an air electrode 16, and a conductive function membrane 14. The air electrode 16 is formed of a lanthanum manganite system material or the like, and the conductive function membrane 17 at the upper side is formed of a lanthanum cobaltite system material or the like having the conductivity higher than the conductivity of the material of the air electrode. The thicknesses of the layers are preferable to make the solid electrolyte plate 12 about 300μm, and the fuel electrode 14, the air electrode 16, and the conductive function membrane 17, all 50μm. Consequently, the freedom of the material design is made wider.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質板の片
面に燃料極が、また反対面に空気極が設けられる単電池
が積層構造をなす固体電解質型燃料電池(SOFC)及
びそれに用いられる単電池に関し、さらに詳しくは固体
電解質型燃料電池における単電池の空気極の特性の改良
技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell (SOFC) having a laminated structure in which a single cell having a fuel electrode on one side of a solid electrolyte plate and an air electrode on the opposite side has a laminated structure, and a single cell used for the same. More specifically, the present invention relates to a technique for improving the characteristics of the air electrode of a single cell in a solid oxide fuel cell.

【0002】[0002]

【従来の技術】燃料電池としては、電解質の種類によっ
てリン酸型、溶融炭酸塩型、固体電解質型などが従来よ
り良く知られている。その中で固体電解質型燃料電池
(SOFC)は、電解質としてリン酸水溶液や溶融炭酸
塩のような液体状材料の代わりにイオン導電性を有する
固体材料を用いたものである。
2. Description of the Related Art As a fuel cell, a phosphoric acid type, a molten carbonate type, a solid electrolyte type and the like are well known depending on the type of electrolyte. Among them, a solid oxide fuel cell (SOFC) uses a solid material having ionic conductivity as an electrolyte instead of a liquid material such as phosphoric acid aqueous solution or molten carbonate.

【0003】そしてこの固体電解質型燃料電池(SOF
C)は、リン酸型、溶融炭酸塩型など他の燃料電池に比
べて発電効率がよく、排熱温度も高いため効率的な利用
が可能な発電システムを構築できるということで近年特
に注目を浴びている。
This solid oxide fuel cell (SOF
C) is particularly noteworthy in recent years because it has a higher power generation efficiency than other fuel cells such as phosphoric acid type and molten carbonate type and has a high exhaust heat temperature, so that a power generation system that can be used efficiently can be constructed. Taking a bath.

【0004】その形態としては、平板型のものと円筒型
のものとに大きく分類される。それらのうち、平板型の
ものに分類される従来の自立膜平板型の固体電解質型燃
料電池(SOFC)の単電池は、電解質板の両面に空気
極および燃料極の薄膜をコーティングした3層構造とな
っている。
The form thereof is roughly classified into a flat type and a cylindrical type. Among them, the conventional self-supporting membrane flat plate type solid oxide fuel cell (SOFC) unit cell, which is classified as a flat plate type, has a three-layer structure in which both sides of an electrolyte plate are coated with thin films of an air electrode and a fuel electrode. Has become.

【0005】この従来の固体電解質型燃料電池(SOF
C)が、特開平7−6774号公報に示されている。こ
れについて、図5に示す自立膜平板型の固体電解質型燃
料電池(SOFC)の単電池の構造を参照して説明す
る。同図に示す単電池9は、燃料ガスが接する燃料極8
と空気が接する空気極6との間に固体電解質板7を挟ん
でいる。
This conventional solid oxide fuel cell (SOF
C) is disclosed in JP-A-7-6774. This will be described with reference to the structure of a unit cell of a self-supporting membrane flat plate type solid oxide fuel cell (SOFC) shown in FIG. The unit cell 9 shown in the figure has a fuel electrode 8 in contact with fuel gas.
The solid electrolyte plate 7 is sandwiched between the solid electrolyte plate 7 and the air electrode 6 in contact with the air.

【0006】また、自立膜平板型の固体電解質型燃料電
池(SOFC)は、燃料極8の外側および空気極6の外
側にそれぞれ図示せぬセパレータを設けた構造の単セル
が多数層にわたって積層状に設けられてなる。そしてこ
のように構成された固体電解質型燃料電池(SOFC)
においては、燃料極8に燃料ガス(水素、一酸化炭素)
が接触し、空気極6には酸化ガス(空気、もしくは酸
素)が接触する。そして空気極6で生成した酸素イオン
(O2-)が電解質を移動して燃料極8に到達し、燃料極
8ではO2-が水素(H2)と反応して電子を放出する。
これにより、電気が作り出され、電気の流れが生ずるも
のである。
In addition, in the self-supporting membrane flat plate type solid oxide fuel cell (SOFC), a single cell having a structure in which separators (not shown) are provided outside the fuel electrode 8 and outside the air electrode 6 is laminated in multiple layers. It is provided in. And a solid oxide fuel cell (SOFC) constructed in this way
In the fuel electrode 8, fuel gas (hydrogen, carbon monoxide)
And the oxidizing gas (air or oxygen) comes into contact with the air electrode 6. Then, oxygen ions (O 2− ) generated in the air electrode 6 move in the electrolyte and reach the fuel electrode 8, and in the fuel electrode 8, O 2− reacts with hydrogen (H 2 ) to release an electron.
As a result, electricity is generated and electricity flows.

【0007】この固体電解質型燃料電池(SOFC)に
おいて、空気極6、電解質板7、燃料極8、各々の、電
気的特性、特に導電率が電池の性能に大きく影響する。
電解質板7は、ジルコニアによって形成されており、十
分な強度を保持するため、その厚さは約300μm程度
とされている。空気極6は、ランタンマンガナイト系の
材料によって形成されており、その厚さは、ガスを透過
させる必要性から50μm程度とされている。燃料極8
は、Ni−YSZ(ニッケル−イットリア安定化ジルコ
ニア)サーメット材料によって形成されており、空気極
6と同様に、ガスを透過させる必要性から、その厚さ
は、約50μmにされている。
In this solid oxide fuel cell (SOFC), the electrical characteristics of the air electrode 6, the electrolyte plate 7 and the fuel electrode 8, particularly the electrical conductivity, greatly affect the performance of the cell.
The electrolyte plate 7 is made of zirconia and has a thickness of about 300 μm in order to maintain sufficient strength. The air electrode 6 is formed of a lanthanum manganite-based material, and the thickness thereof is set to about 50 μm in order to allow gas to pass therethrough. Fuel pole 8
Is formed of a Ni-YSZ (nickel-yttria-stabilized zirconia) cermet material, and its thickness is set to about 50 μm because it is necessary to allow gas to pass therethrough, like the air electrode 6.

【0008】ところで、従来の自立膜平板型の固体電解
質型燃料電池(SOFC)では、その大きさが十分小さ
い場合、電解質板7の面に垂直な方向(図5の矢印Dに
示す方向、以下、垂直方向Dとする)の抵抗のみが問題
であったが、この抵抗値は比較的低い。そのため、電解
質材料以外の材料の導電率は電池性能に大きく影響する
ことはない。
By the way, in the conventional self-supporting membrane flat plate type solid oxide fuel cell (SOFC), when the size is sufficiently small, the direction perpendicular to the surface of the electrolyte plate 7 (direction shown by arrow D in FIG. , The vertical direction D) was a problem, but this resistance value is relatively low. Therefore, the conductivity of materials other than the electrolyte material does not significantly affect the battery performance.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、電池が
大型化すると、電解質板7の面に平行な方向(図5の矢
印Cに示す方向、以下、面方向Cとする)にも電流が流
れることとなり、面方向Cに示す方向の抵抗が電池性能
に大きく影響する。具体的には、燃料極8のNi−YS
Zの導電率は200S/cm程度であるのに対して、空
気極6のランタンマンガナイトの導電率が20S/cm
程度と低い。 すなわち、空気極6の材料の薄膜部分の
抵抗が原因で、電池の大型化に伴う電池性能の低下を招
いていた。
However, when the battery is upsized, current also flows in a direction parallel to the surface of the electrolyte plate 7 (direction indicated by arrow C in FIG. 5, hereinafter referred to as surface direction C). Therefore, the resistance in the direction indicated by the surface direction C greatly affects the battery performance. Specifically, the Ni-YS of the fuel electrode 8
The conductivity of Z is about 200 S / cm, whereas the conductivity of the lanthanum manganite of the air electrode 6 is 20 S / cm.
The degree is low. That is, due to the resistance of the thin film portion of the material of the air electrode 6, the battery performance is deteriorated as the battery becomes larger.

【0010】そこで、考えられるのが、空気極6の材料
をランタンマンガナイト系のもの以外のものにするとい
うことであるが、他の化合物では、ジルコニアとの反応
性や熱膨張率の不一致等の問題があり、適用は困難であ
る。すなわち、空気極6の材料は、ランタンマンガナイ
ト系のものが最適であり、したがって、空気極6の導電
率の向上には、限界がある。
Therefore, it is conceivable to use a material other than lanthanum manganites for the material of the air electrode 6, but with other compounds, reactivity with zirconia, mismatch of thermal expansion coefficient, etc. Is difficult to apply. That is, the material of the air electrode 6 is optimally a lanthanum manganite-based material, and therefore, there is a limit to improving the conductivity of the air electrode 6.

【0011】本発明の解決しようとする課題は、電極反
応に関わる空気極の材質を変更することなく、固体電解
質板の面方向の抵抗を低減し、面方向の導電率を向上さ
せることが可能な高性能な自立膜平板型の固体電解質型
燃料電池(SOFC)及びそれに用いられる単電池を提
供することにある。
The problem to be solved by the present invention is to reduce the resistance in the plane direction of the solid electrolyte plate and improve the conductivity in the plane direction without changing the material of the air electrode involved in the electrode reaction. Another object of the present invention is to provide a high performance self-supporting membrane flat plate type solid oxide fuel cell (SOFC) and a single cell used therein.

【0012】[0012]

【課題を解決するための手段】この課題を解決するため
に、本発明の固体電解質型燃料電池は、固体電解質板の
片面に燃料極が、また反対面に空気極が設けられる単電
池が積層構造をなす固体電解質型燃料電池において、各
単電池の空気極の表面に被膜が施され、当該被膜が前記
空気極の材料の導電率よりも高い導電率を有する材料で
あることを要旨とする。
In order to solve this problem, in the solid electrolyte fuel cell of the present invention, a unit cell in which a fuel electrode is provided on one surface of a solid electrolyte plate and an air electrode is provided on the opposite surface is laminated. In the solid oxide fuel cell having a structure, a coating is applied to the surface of the air electrode of each unit cell, and the coating is a material having a conductivity higher than that of the material of the air electrode. .

【0013】その場合に、前記各単電池の空気極がラン
タンマンガナイト系の材料によって形成され、当該空気
極の被膜がランタンコバルタイト系の材料によって形成
されていることが、電解質板の面方向の抵抗を低減する
等、所望の電池性能を得る上で望ましい。
In this case, the air electrode of each of the unit cells is formed of a lanthanum manganite-based material, and the coating of the air electrode is formed of a lanthanum cobaltite-based material. It is desirable to obtain the desired battery performance, such as reducing the resistance.

【0014】また、本発明の固体電解質型燃料電池に用
いられる単電池は、固体電解質板の片面に燃料極が、ま
た反対面に空気極が設けられる単電池において、当該各
単電池の空気極の表面に被膜が施され、当該被膜が前記
空気極の材料の導電率よりも高い導電率を有する材料で
あることを要旨とする。
The unit cell used in the solid oxide fuel cell of the present invention is a unit cell in which a fuel electrode is provided on one side of a solid electrolyte plate and an air electrode is provided on the opposite side. The gist of the present invention is that a coating is applied to the surface of, and the coating is a material having a conductivity higher than that of the material of the air electrode.

【0015】その場合に、前記各単電池の空気極がラン
タンマンガナイト系の材料によって形成され、当該空気
極の被膜がランタンコバルタイト系の材料によって形成
されていることが、当該単電池を複数直列に積層する際
の接触抵抗を低減する上で望ましい。
In this case, the air electrode of each of the unit cells is formed of a lanthanum manganite type material, and the coating of the air electrode is formed of a lanthanum cobaltite type material. It is desirable to reduce the contact resistance when stacked in series.

【0016】[0016]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面を参照して詳細に説明する。図1は、固体電解質
型燃料電池(SOFC)10の構造を示したものであ
る。同図に示すように、固体電解質型燃料電池(SOF
C)10は、複数の単電池18,18…がランタンクロ
マイト系セラミック材料によるセパレータ20,20…
を介して積層状に設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the structure of a solid oxide fuel cell (SOFC) 10. As shown in the figure, the solid oxide fuel cell (SOF
C) 10 has a plurality of cells 18, 18 ... Separator 20, 20 ... Made of lanthanum chromite ceramic material.
Are provided in a laminated manner.

【0017】この各単電池18間に介設されるセパレー
タ20は、その本体の四隅角部に燃料ガス管の挿通孔2
8a、28cと、空気管の挿通孔28b、28dとがそ
れぞれ対角線の位置関係で設けられている。この図では
セパレータ20が単電池18の空気極16と対向する側
の面を示している。
The separator 20 provided between the unit cells 18 has a fuel gas pipe insertion hole 2 at the four corners of the main body.
8a and 28c and air tube insertion holes 28b and 28d are provided in a diagonal positional relationship. In this figure, the surface of the separator 20 facing the air electrode 16 of the unit cell 18 is shown.

【0018】また、空気管の挿通孔28b、28dに連
通してその空気管を通って供給される空気を単電池18
の空気極16に接するように導入する空気入口と、その
空気極16に導入された空気を排出させる空気出口とが
それぞれ設けられている。そして空気入口と空気出口と
の間には前述のように多本数の空気流路溝26,26…
が設けられ、これにより空気管より空気入口へ導入され
た空気がそれらの空気流路溝26を貫流しながら単電池
18の空気極16に接触し、空気出口を通って空気管よ
り排出される。
Further, the air which is communicated with the insertion holes 28b and 28d of the air pipe and is supplied through the air pipe is supplied to the unit cell 18.
The air inlet for introducing the air into the air electrode 16 and the air outlet for discharging the air introduced into the air electrode 16 are respectively provided. As described above, a large number of air flow channel grooves 26, 26 ... Are provided between the air inlet and the air outlet.
By this, the air introduced from the air pipe to the air inlet contacts the air electrode 16 of the unit cell 18 while flowing through the air flow passage grooves 26, and is discharged from the air pipe through the air outlet. .

【0019】またこのセパレータ20の裏面側、すなわ
ち単電池18の燃料極14と対向する側の面にも、この
空気極16の対向面と同様に燃料ガス管を通って供給さ
れる燃料ガスを、単電池18の燃料極14に接するよう
に導入する燃料ガス入口と、その燃料極14に導入され
た燃料ガスを排出させる燃料ガス出口とが設けられてい
る。
The fuel gas supplied through the fuel gas pipe is also applied to the back surface of the separator 20, that is, the surface of the unit cell 18 facing the fuel electrode 14, similarly to the facing surface of the air electrode 16. A fuel gas inlet introduced so as to be in contact with the fuel electrode 14 of the unit cell 18 and a fuel gas outlet for discharging the fuel gas introduced into the fuel electrode 14 are provided.

【0020】そして、やはりこのセパレータ20の燃料
ガス入口と燃料ガス出口との間にも前述のように燃料ガ
ス流路溝が設けられ、燃料ガス入口へ導入された燃料ガ
スがこの燃料ガス流路溝を貫流する間に単電池18の燃
料極14に接し、燃料ガス出口を通って燃料ガス管より
排出される。
The fuel gas passage groove is also provided between the fuel gas inlet and the fuel gas outlet of the separator 20 as described above, and the fuel gas introduced into the fuel gas inlet is the fuel gas passage. While flowing through the groove, it contacts the fuel electrode 14 of the unit cell 18, passes through the fuel gas outlet, and is discharged from the fuel gas pipe.

【0021】この固体電解質型燃料電池(SOFC)1
0の発電メカニズムは次の通りである。すなわち、セパ
レータ20の空気流路溝26を流れる空気が単電池18
の空気極16に接触することによりその空気極16で酸
素イオン(O2-)が生成され、この酸素イオン(O2-
が固体電解質板12を移動して反対側面の燃料極14に
到達し、燃料極14側では、やはり、セパレータ20の
燃料ガス流路溝を通って燃料ガスが流れているので空気
極16側より移動してきた酸素イオン(O2-)がその燃
料ガス中の水素(H2 )と反応して水蒸気(H2O)と
なり電子を放出し、これにより発電状態が得られる。
This solid oxide fuel cell (SOFC) 1
The zero power generation mechanism is as follows. In other words, the air flowing through the air flow channel 26 of the separator 20 is the cell 18
Oxygen ions in the air electrode 16 by contact with the air electrode 16 (O 2-) is produced, the oxygen ions (O 2-)
Moves through the solid electrolyte plate 12 and reaches the fuel electrode 14 on the opposite side. At the fuel electrode 14 side, the fuel gas still flows through the fuel gas flow passage groove of the separator 20, so that the air electrode 16 side The moving oxygen ions (O 2− ) react with hydrogen (H 2 ) in the fuel gas to become water vapor (H 2 O) and emit electrons, whereby a power generation state is obtained.

【0022】次に、図2の自立膜平板型の固体電解質型
燃料電池(SOFC)の固体電解質板の断面構造図を参
照して、単電池18の構造について詳述する。同図に示
すように、この固体電解質型燃料電池(SOFC)10
の単電池18では、例えばイットリア安定化ジルコニア
か、あるいはスカンジア安定化ジルコニア系セラミック
材料による固体電解質板12の片面にNi−YSZ(ニ
ッケル−イットリア安定化ジルコニア)サーメット材料
による燃料極14が設けられている。
Next, the structure of the unit cell 18 will be described in detail with reference to the sectional structure view of the solid electrolyte plate of the self-supporting membrane flat plate type solid oxide fuel cell (SOFC) of FIG. As shown in the figure, this solid oxide fuel cell (SOFC) 10
In the unit cell 18 of No. 1, the fuel electrode 14 made of Ni-YSZ (nickel-yttria stabilized zirconia) cermet material is provided on one surface of the solid electrolyte plate 12 made of, for example, yttria-stabilized zirconia or scandia-stabilized zirconia-based ceramic material. There is.

【0023】反対側面にはランタンマンガナイト材料に
よる空気極16が設けられ、その空気極16の上側に
は、ランタンコバルタイト材料による導電機能性薄膜1
7が設けられている。すなわち、単電池18は、固体電
解質板12、燃料極14、空気極16及び導電機能性薄
膜17の4層構造から成るものである。それぞれの層の
厚さは、固体電解質12が約300μm、燃料極14、
空気極16及び導電機能性薄膜17がいずれも約50μ
mとなっている。
An air electrode 16 made of a lanthanum manganite material is provided on the opposite side, and an electrically conductive functional thin film 1 made of a lanthanum cobaltite material is provided above the air electrode 16.
7 are provided. That is, the unit cell 18 has a four-layer structure including the solid electrolyte plate 12, the fuel electrode 14, the air electrode 16, and the conductive functional thin film 17. The thickness of each layer is about 300 μm for the solid electrolyte 12, the fuel electrode 14,
Air electrode 16 and conductive functional thin film 17 are both about 50μ
m.

【0024】1.導電特性について 次に、導電特性について説明する。空気極16のランタ
ンマンガナイト材料の導電率は、20S/cmであり、
導電機能性薄膜17のランタンコバルタイト材料の導電
率は、100S/cm以上である。すなわち、導電機能
性薄膜17の導電率は、空気極16の導電率よりも非常
に高くなっている。
1. Conductivity Characteristics Next, the conductivity characteristics will be described. The conductivity of the lanthanum manganite material of the air electrode 16 is 20 S / cm,
The conductivity of the lanthanum cobaltite material of the conductive functional thin film 17 is 100 S / cm or more. That is, the conductivity of the conductive functional thin film 17 is much higher than the conductivity of the air electrode 16.

【0025】したがって、本発明に係る単電池18が図
5に示す従来の単電池9よりも、約50μm、その厚さ
が厚くなっても、図2に示す単電池18の垂直方向Bの
抵抗値への影響は、ほとんどない(単電池18の厚さは
約450μm、単電池9の厚さは約400μmであ
る)。
Therefore, even if the unit cell 18 according to the present invention is about 50 μm thicker than the conventional unit cell 9 shown in FIG. 5, the resistance of the unit cell 18 shown in FIG. There is almost no influence on the value (the thickness of the unit cell 18 is about 450 μm, and the thickness of the unit cell 9 is about 400 μm).

【0026】また、導電機能性薄膜17の導電率が、空
気極16の導電率よりも非常に高くなっていることか
ら、単電池18の面方向Aの抵抗値は、従来の単電池9
に比べて低減されている。
Since the conductivity of the conductive functional thin film 17 is much higher than that of the air electrode 16, the resistance value of the unit cell 18 in the surface direction A is the same as that of the conventional unit cell 9.
Has been reduced compared to.

【0027】ここで、図3のランタンコバルタイトのコ
ーティング厚さと電池抵抗の関係を参照して、さらに説
明する。同図において、横軸は、ランタンコバルタイト
のコーティングの厚さを示し、縦軸は、単電池18の抵
抗値を示している。より、具体的には、溝幅3mmで5
cm×5cm大のセパレータ20について単電池18の
面方向Aおよび垂直方向Bの抵抗を試算したものであ
る。
Further description will be given with reference to the relationship between the coating thickness of lanthanum cobaltite and the battery resistance in FIG. In the same figure, the horizontal axis represents the thickness of the lanthanum cobaltite coating, and the vertical axis represents the resistance value of the unit cell 18. More specifically, with a groove width of 3 mm, 5
This is a trial calculation of the resistance in the plane direction A and the vertical direction B of the unit cell 18 for the separator 20 having a size of cm × 5 cm.

【0028】この図に示すように、垂直方向Bの抵抗値
はランタンコバルタイト(導電性機能膜17)の厚さに
かかわらず、一定である。一方、面方向Aの抵抗値は、
ランタンコバルタイト(導電機能性薄膜17)の厚さが
増すにつれて減少している。そこで、ランタンコバルタ
イト(導電機能性薄膜17)を約50μmの厚さでコー
ティングすれば、面方向Aの抵抗値が空気層16のみの
場合(同図では、ランタンコバルタイトのコーティング
厚さが0である抵抗値)の約半分に低減することができ
る。
As shown in this figure, the resistance value in the vertical direction B is constant regardless of the thickness of the lanthanum cobaltite (conductive functional film 17). On the other hand, the resistance value in the surface direction A is
It decreases as the thickness of lanthanum cobaltite (conductive functional thin film 17) increases. Therefore, by coating lanthanum cobaltite (conductive functional thin film 17) with a thickness of about 50 μm, when the resistance value in the surface direction A is only the air layer 16 (in the figure, the coating thickness of lanthanum cobaltite is 0). The resistance value can be reduced to about half.

【0029】図4は、電解質板として11ScSZを使
用し、運転温度を1000℃に設定した条件での、電極
部の寸法が5cm×5cm大の固体電解質型燃料電池
(SOFC)の最終的な発電結果を示している。同図に
示すように、従来の3層構造の固体電解質型燃料電池
(SOFC)は、最大出力が16Wであったが、ランタ
ンコバルタイトを導電機能性薄膜17としてコーティン
グして4層構造にすることにより、最大出力が33W以
上になった。
FIG. 4 shows the final power generation of a solid oxide fuel cell (SOFC) in which the size of the electrode part is 5 cm × 5 cm under the condition that 11ScSZ is used as the electrolyte plate and the operating temperature is set to 1000 ° C. The results are shown. As shown in the figure, the conventional solid oxide fuel cell (SOFC) having a three-layer structure has a maximum output of 16 W, but lanthanum cobaltite is coated as the conductive functional thin film 17 to form a four-layer structure. As a result, the maximum output became 33 W or more.

【0030】このように、導電機能性薄膜17をコーテ
ィングすると、接触面の材料抵抗が低くなる。そのた
め、単電池18を複数直列に積層しても、電池性能の低
下が防止することができる。また、従来のものに比べ
て、電池性能そのものは、格段に向上させることが可能
になる。
As described above, when the conductive functional thin film 17 is coated, the material resistance of the contact surface becomes low. Therefore, even if a plurality of unit cells 18 are stacked in series, deterioration of battery performance can be prevented. Further, the battery performance itself can be remarkably improved as compared with the conventional one.

【0031】2.その他の特性について 次に、導電特性以外の点について説明を加える。ランタ
ンコバルタイトは、ジルコニアとの反応性や熱膨張係数
の不一致の点で、ランタンマンガナイトよりも劣る。し
かしながら、本発明における固体電解質型燃料電池(S
OFC)10においては、ランタンコバルタイト材料か
ら成る導電機能性薄膜17は、導電機能のみを分担する
ため、固体電解質板12との反応等の問題は生じないよ
うになっている。
2. Regarding Other Properties Next, points other than the conductive properties will be described. Lanthanum cobaltite is inferior to lanthanum manganite in terms of reactivity with zirconia and mismatch of thermal expansion coefficient. However, the solid oxide fuel cell (S
In the OFC) 10, the conductive functional thin film 17 made of the lanthanum cobaltite material is responsible for only the conductive function, so that problems such as reaction with the solid electrolyte plate 12 do not occur.

【0032】すなわち、空気極16の導電率は、電池性
能に影響しなくなるため、空気極16の材料設計(材料
組成や膜厚、気孔率等)の自由度が広がる。
That is, since the conductivity of the air electrode 16 does not affect the battery performance, the degree of freedom in designing the material of the air electrode 16 (material composition, film thickness, porosity, etc.) is increased.

【0033】尚、本発明は、上記した実施の形態に何ら
限定されるものではなく、本発明の趣旨を逸脱しない範
囲で種々の改変が可能である。例えば、一般的には、空
気極16の気孔率は少ないことが望ましいが、ランタン
コバルタイトを導電機能性薄膜17として用いることに
より、空気極16の導電率が電池性能に影響しなくなる
ため、材料設計をする場合に、空気極16の気孔率が少
々大きくなっても良い。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, it is generally desirable that the air electrode 16 has a low porosity, but by using lanthanum cobaltite as the conductive functional thin film 17, the conductivity of the air electrode 16 does not affect the battery performance, so When designing, the porosity of the air electrode 16 may be slightly increased.

【0034】[0034]

【発明の効果】本発明の固体電解質型燃料電池(SOF
C)は、各単電池の空気極の表面に被膜が施され、当該
被膜が前記空気極の材料の導電率よりも高い導電率を有
する材料であるため、電解質板の面方向の抵抗を低減す
ることができる。したがって、電池の大型化に伴う電池
性能の低下を防止することができる。
The solid oxide fuel cell (SOF) of the present invention
In C), a coating is applied to the surface of the air electrode of each unit cell, and since the coating has a higher conductivity than that of the material of the air electrode, the resistance in the surface direction of the electrolyte plate is reduced. can do. Therefore, it is possible to prevent a decrease in battery performance due to an increase in size of the battery.

【0035】また、固体電解質型燃料電池(SOFC)
の各単電池の空気極がランタンマンガナイト系の材料に
よって形成され、空気極の被膜がランタンコバルタイト
系の材料によって形成されているため、空気極の導電率
は電池性能に影響しなくなるため、空気極の材料設計
(材料塑性や膜厚、気孔率など)の自由度が広くなる。
Solid oxide fuel cell (SOFC)
Since the air electrode of each unit cell is formed of a lanthanum manganite-based material, and the air electrode coating is formed of a lanthanum cobaltite-based material, the conductivity of the air electrode does not affect the battery performance, The degree of freedom in material design (material plasticity, film thickness, porosity, etc.) of the air electrode is widened.

【0036】また、固体電解質型燃料電池(SOFC)
に用いられる単電池は、その空気極の表面に被膜が施さ
れ、当該被膜が前記空気極の材料(ランタンマンガナイ
ト)の導電率よりも高い導電率を有する材料(ランタン
コバルタイト)であるから、複数直列に積層する際の接
触面の材料抵抗、すなわち、接触抵抗を低減することが
できる。
Solid oxide fuel cell (SOFC)
The unit cell used in the above has a coating on the surface of its air electrode, and the coating is a material (lanthanum cobaltite) having a higher conductivity than that of the material of the air electrode (lanthanum manganite). It is possible to reduce the material resistance of the contact surface, that is, the contact resistance when a plurality of layers are stacked in series.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る自立膜平板型の固体
電解質型燃料電池(SOFC)の積層構造を示す斜視図
である。
FIG. 1 is a perspective view showing a stacked structure of a self-supporting membrane flat plate type solid oxide fuel cell (SOFC) according to an embodiment of the present invention.

【図2】図1に示した自立膜平板型の固体電解質型燃料
電池(SOFC)の固体電解質板の断面構造図である。
FIG. 2 is a sectional structural view of a solid electrolyte plate of the self-supporting membrane flat plate type solid oxide fuel cell (SOFC) shown in FIG.

【図3】ランタンコバルタイトのコーティング厚さと単
電池18の抵抗との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the coating thickness of lanthanum cobaltite and the resistance of the unit cell 18.

【図4】従来の3層構造電池と本発明の一実施形態に係
る4層構造電池の発電性能を示す図である。
FIG. 4 is a diagram showing power generation performance of a conventional three-layer structure battery and a four-layer structure battery according to an embodiment of the present invention.

【図5】従来の自立膜平板型の固体電解質型燃料電池
(SOFC)の固体電解質板の断面構造図である。
FIG. 5 is a cross-sectional structural view of a solid electrolyte plate of a conventional free-standing membrane flat plate solid oxide fuel cell (SOFC).

【符号の説明】[Explanation of symbols]

10 固体電解質型燃料電池(SOFC) 12 固体電解質板 14 燃料極 16 空気極 17 導電機能性薄膜 18 単電池 20 セパレータ 10 Solid Electrolyte Fuel Cell (SOFC) 12 Solid Electrolyte Plate 14 Fuel Electrode 16 Air Electrode 17 Conductive Functional Thin Film 18 Single Cell 20 Separator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板の片面に燃料極が、また反
対面に空気極が設けられる単電池が積層構造をなす固体
電解質型燃料電池において、 当該各単電池の空気極の表面に被膜が施され、当該被膜
が前記空気極の材料の導電率よりも高い導電率を有する
材料であることを特徴とする固体電解質型燃料電池。
1. A solid electrolyte type fuel cell having a laminated structure of unit cells having a fuel electrode on one side of a solid electrolyte plate and an air electrode on the other side, and a coating is formed on the surface of the air electrode of each unit cell. A solid oxide fuel cell, wherein the coating is a material having a conductivity higher than that of the material of the air electrode.
【請求項2】 前記各単電池の空気極がランタンマンガ
ナイト系の材料によって形成され、当該空気極の被膜が
ランタンコバルタイト系の材料によって形成されている
ことを特徴とする請求項1に記載の固体電解質型燃料電
池。
2. The air electrode of each unit cell is formed of a lanthanum manganite-based material, and the coating of the air electrode is formed of a lanthanum cobaltite-based material. Solid oxide fuel cell.
【請求項3】 固体電解質型燃料電池に用いられる単電
池であって、固体電解質板の片面に燃料極が、また反対
面に空気極が設けられる単電池において、 当該各単電池の空気極の表面に被膜が施され、当該被膜
が前記空気極の材料の導電率よりも高い導電率を有する
材料であることを特徴とする単電池。
3. A unit cell used for a solid oxide fuel cell, wherein a fuel electrode is provided on one surface of a solid electrolyte plate and an air electrode is provided on the other surface of the solid electrolyte plate. A unit cell having a coating on its surface, the coating being a material having a higher conductivity than that of the material of the air electrode.
【請求項4】 固体電解質型燃料電池に用いられる単電
池であって、前記各単電池の空気極がランタンマンガナ
イト系の材料によって形成され、当該空気極の被膜がラ
ンタンコバルタイト系の材料によって形成されているこ
とを特徴とする請求項3に記載の単電池。
4. A unit cell used for a solid oxide fuel cell, wherein the air electrode of each unit cell is formed of a lanthanum manganite-based material, and the coating of the air electrode is formed of a lanthanum cobaltite-based material. The unit cell according to claim 3, wherein the unit cell is formed.
JP8020385A 1996-01-10 1996-01-10 Solid electrolyte fuel cell and unit cell used to its fuel cell Pending JPH09190825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020385A JPH09190825A (en) 1996-01-10 1996-01-10 Solid electrolyte fuel cell and unit cell used to its fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020385A JPH09190825A (en) 1996-01-10 1996-01-10 Solid electrolyte fuel cell and unit cell used to its fuel cell

Publications (1)

Publication Number Publication Date
JPH09190825A true JPH09190825A (en) 1997-07-22

Family

ID=12025574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020385A Pending JPH09190825A (en) 1996-01-10 1996-01-10 Solid electrolyte fuel cell and unit cell used to its fuel cell

Country Status (1)

Country Link
JP (1) JPH09190825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1383195A3 (en) * 2002-07-19 2005-08-31 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2005276540A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
WO2009069685A1 (en) 2007-11-27 2009-06-04 Honda Motor Co., Ltd. Free-standing membrane electrolyte electrode assembly
JP2011150959A (en) * 2010-01-25 2011-08-04 Ngk Insulators Ltd Cell of solid oxide fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1383195A3 (en) * 2002-07-19 2005-08-31 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
US7108938B2 (en) 2002-07-19 2006-09-19 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2005276540A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Electrolyte/electrode assembly and its manufacturing method
WO2009069685A1 (en) 2007-11-27 2009-06-04 Honda Motor Co., Ltd. Free-standing membrane electrolyte electrode assembly
US8399146B2 (en) 2007-11-27 2013-03-19 Honda Motor Co., Ltd. Free-standing membrane electrolyte electrode assembly
JP2011150959A (en) * 2010-01-25 2011-08-04 Ngk Insulators Ltd Cell of solid oxide fuel cell

Similar Documents

Publication Publication Date Title
EP1517392B1 (en) Solid high polymer type cell assembly
JP4923319B2 (en) Fuel cell
CN101496193A (en) Metal oxide based hydrophilic coatings for PEM fuel cell bipolar plates
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JP2004087457A (en) Fuel cell and fuel cell system
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP4512911B2 (en) Solid oxide fuel cell
JP3244308B2 (en) Solid oxide fuel cell system
JPH09190825A (en) Solid electrolyte fuel cell and unit cell used to its fuel cell
JP2003338299A (en) Fuel battery
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH10189024A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JPH03238758A (en) Fuel cell of solid electrolyte type
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH0462757A (en) Solid electrolyte type fuel cell
JP2019053926A (en) Fuel cell stack
JP2004055196A (en) Oxidant gas feeding mechanism for fuel cell
JP4228895B2 (en) Solid oxide fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
JP2002075410A (en) Collector for solid-oxide fuel cell and solid-oxide fuel cell using same
JP3123785B2 (en) Fuel cell
JP2002358989A (en) Gas preheating device for fuel cell