JPH09187876A - Resin joint for microwave fusion and fusing method - Google Patents

Resin joint for microwave fusion and fusing method

Info

Publication number
JPH09187876A
JPH09187876A JP134496A JP134496A JPH09187876A JP H09187876 A JPH09187876 A JP H09187876A JP 134496 A JP134496 A JP 134496A JP 134496 A JP134496 A JP 134496A JP H09187876 A JPH09187876 A JP H09187876A
Authority
JP
Japan
Prior art keywords
fusion
layer
resin
microwave
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP134496A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
和芳 山本
Masatoshi Murashima
正敏 村島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP134496A priority Critical patent/JPH09187876A/en
Publication of JPH09187876A publication Critical patent/JPH09187876A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like
    • B29C65/5021Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin joint for microwave fusion in which the heat exchange effectiveness is high and high quantity of heat is obtained and fusion is enabled without affecting the deterioration state of resin and fusion strength is high and to provide a fusing method in which the resin joint for microwave fusion is used. SOLUTION: A fusion layer having a thickness of 0.01-3mm, a middle adhesive layer having a thickness of 0.005-1mm and a heat generating layer having a thickness of 0.01-5mm are laminated in order thereof. The fusion layer consists of polyolefin resin which incorporates the polymer and the copolymer of monoolefin as a main body. The middle adhesive layer consists of 0-99wt.% polyolefin resin and 1-100wt.% at least one kind selected from among unsaturated carboxylic acid (anhydride), modified polyolefin resin and ionomer resin. In the heat generating layer, fine particles of conductive aniline-based polymer are dispersed at 5-100 pts.wt. for 100 pts.wt. polyolefin resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波融着用
樹脂継手及び融着方法に関し、更に詳しくは、特にポリ
オレフィン樹脂製上下水道用管、ガス配管用管、その他
のポリオレフィン樹脂製被着体の接合等に好適に使用さ
れるマイクロ波融着用樹脂継手及び融着方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin joint for microwave fusion and a fusion bonding method, and more particularly to a polyolefin resin water and sewer pipe, a gas pipe, and other polyolefin resin adherends. TECHNICAL FIELD The present invention relates to a resin joint for microwave fusion and a fusion bonding method which are preferably used for joining and the like.

【0002】[0002]

【従来の技術】マイクロ波による誘電加熱を利用した樹
脂の融着法は、例えば、特開昭62−39221号公報
に開示されているように、被接着体であるポリオレフィ
ン樹脂成型品の接続部の間にポリオレフィン樹脂にカー
ボンブラックを混練した融着材を鋏み、該融着材鋏着部
に高周波を印加することによってポリオレフィン樹脂製
被着体を融着する方法、及び、特公平5−11022号
公報、特開平3−186690号公報に開示されている
ように、誘電損失の値の大きい塩化ビニル樹脂、ポリア
ミド樹脂、エチレン−酢酸ビニル共重合体、ポリエステ
ル樹脂、フェノール樹脂等からなる発熱材料を融着界面
に介在させてさせて融着する方法等がある。又、特表平
5−504153号公報に開示されているように、ポリ
アニリン等の導電性高分子にマイクロ波を照射すること
によって、該導電性高分子を誘電加熱して樹脂の融着を
行う方法等がある。
2. Description of the Related Art A resin fusion method utilizing dielectric heating by microwaves is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-39221, and a connecting portion of a polyolefin resin molded article which is an adherend. And a method for fusing a polyolefin resin adherend by scissoring a fusion material obtained by kneading a carbon black with a polyolefin resin and applying a high frequency to the fusion material scissors portion, and JP-B-5-11022. As disclosed in Japanese Patent Laid-Open No. 3-186690 and Japanese Patent Laid-Open No. 3-186690, a heat generating material made of a vinyl chloride resin, a polyamide resin, an ethylene-vinyl acetate copolymer, a polyester resin, a phenol resin or the like having a large dielectric loss value is used. There is a method of interposing it on the fusion interface and fusing. Further, as disclosed in JP-A-5-504153, by irradiating a conductive polymer such as polyaniline with microwaves, the conductive polymer is dielectrically heated to fuse the resin. There are ways.

【0003】しかしながら、カーボンブラックを用いた
融着材はカーボンブラック自身が高温に発熱するため、
樹脂の劣化を引き起こしたり、発熱温度の制御が困難で
ある等の問題がある。又、誘電損失の大きい樹脂を用い
る場合は、温度上昇に長時間を要する等の問題がある。
又、ポリアニリンを用いた場合、ポリアニリンが自身の
発熱により自己劣化したり、ポリアニリンの介在により
融着面の剥離強度が低下する等の問題が生じる。
However, in the fusing material using carbon black, since the carbon black itself generates heat at a high temperature,
There are problems such as deterioration of the resin and difficulty in controlling the heat generation temperature. Further, when a resin having a large dielectric loss is used, there is a problem that it takes a long time to raise the temperature.
Further, when polyaniline is used, there are problems that the polyaniline is self-deteriorated by its own heat generation and that the peel strength of the fusion-bonded surface is lowered due to the presence of polyaniline.

【0004】又、ポリオレフィン樹脂製管及び継手をス
リーブ法で接合する場合、電熱装置を内蔵した雄型(管
内壁加熱用)及び雌型(管外壁加熱用)からなる加熱具
を用いて加熱し、管を接合する方法がある。しかし、上
記方法は、嵩高く、管サイズ毎に複数対の加熱具を準備
しなければならず、接合に時間を要する等煩わしいもの
である。
When the polyolefin resin pipe and the joint are joined by the sleeve method, heating is carried out by using a heating tool having a male type (for heating the inner wall of the pipe) and a female type (for heating the outer wall of the pipe) having a built-in electric heating device. , There is a method of joining pipes. However, the above method is bulky and requires a plurality of pairs of heating tools for each tube size, which requires time for joining, which is troublesome.

【0005】又、電熱による加熱手段を継手に内蔵させ
たものとして、例えば、特公昭45−20399号公報
に開示されている。しかし、電熱線をコイル状に巻回し
た加熱手段を内蔵させる継手の製造工程は、複雑な多数
の工程からなり、因ってコスト高を招き、又、保管・輸
送中での圧迫や落下等の衝撃、その他によって、施工
時、通電すると短絡したり、電熱線の近傍の継手樹脂が
熱劣化したり、融着に長時間を要する等の問題点を有す
る。
[0005] Further, an electric heating means incorporated in a joint is disclosed in, for example, Japanese Patent Publication No. 45-20399. However, the manufacturing process of the joint that incorporates the heating means in which the heating wire is wound in a coil shape is complicated and involves a number of complicated steps, resulting in high cost, and pressure and drop during storage and transportation. There are problems such as a short circuit when energized at the time of construction, a joint resin in the vicinity of the heating wire is thermally deteriorated, and a long time is required for fusion due to the impact or the like.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記事実に
鑑みなされたものであって、熱交換率が高く、高熱量が
得られ、樹脂の劣化状態に影響されることなく融着がで
き、且つ、融着強度が高いマイクロ波融着用樹脂継手及
びこれを用いた融着方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and has a high heat exchange rate, a high amount of heat can be obtained, and fusion can be performed without being affected by the deterioration state of the resin. It is an object of the present invention to provide a resin joint for microwave fusion bonding having high fusion strength and a fusion bonding method using the same.

【0007】[0007]

【問題を解決するための手段】請求項1記載の本発明
は、モノオレフィンの重合体及び共重合体を主体とする
ポリオレフィン樹脂からなる厚さ0.01〜3mmの融
着層、上記ポリオレフィン樹脂0〜99重量%及び不飽
和カルボン酸(無水物)変性ポリオレフィン樹脂及びア
イオノマー樹脂の群から選ばれる1種以上1〜100重
量%のポリオレフィン樹脂組成物からなる厚さ0.00
5〜1mmの中間接着層及び上記ポリオレフィン樹脂1
00重量部に対し導電性のアニリン系重合体微粒子5〜
100重量部が分散されている厚さ0.01〜5mmの
発熱層が、融着層、中間接着層、発熱層の順に積層され
ていることを特徴とするマイクロ波融着用樹脂継手をそ
の要旨とするものである。
The present invention according to claim 1 is a fusion-bonding layer having a thickness of 0.01 to 3 mm, which is composed of a polyolefin resin mainly containing a polymer and a copolymer of monoolefin, and the above-mentioned polyolefin resin. A thickness of 0 to 99% by weight and a thickness of 0.001 to 1 to 100% by weight of a polyolefin resin composition selected from the group of unsaturated carboxylic acid (anhydride) modified polyolefin resin and ionomer resin.
5-1 mm intermediate adhesive layer and the above polyolefin resin 1
Conductive aniline polymer fine particles 5 to 100 parts by weight
The microwave fusion resin joint is characterized in that a heating layer having a thickness of 0.01 to 5 mm in which 100 parts by weight is dispersed is laminated in the order of a fusion layer, an intermediate adhesive layer, and a heating layer. It is what

【0008】請求項2記載の本発明は、発熱層の両面に
中間接着層及び融着層が順に積層されていることを特徴
とする請求項1記載のマイクロ波融着用樹脂継手をその
要旨とするものである。
The present invention according to claim 2 provides a microwave fusion resin joint as set forth in claim 1, characterized in that an intermediate adhesive layer and a fusion layer are sequentially laminated on both surfaces of the heat generating layer. To do.

【0009】請求項3記載の本発明は、中間接着層の厚
さが、発熱層の厚さ及び融着層の厚さ以下であることを
特徴とする請求項1及び請求項2記載のマイクロ波融着
用樹脂継手をその要旨とするものである。
The present invention according to claim 3 is characterized in that the thickness of the intermediate adhesive layer is equal to or less than the thickness of the heat generating layer and the thickness of the fusion bonding layer. The gist is a resin joint for wave fusion.

【0010】請求項4記載の本発明は、請求項1乃至請
求項3記載のマイクロ波融着用樹脂積層体を熱融着性を
有する継手の接合面に、該マイクロ波融着用樹脂積層体
の融着層が最外層となる如く積層もしくは埋設してなる
ことを特徴とするマイクロ波融着用樹脂継手をその要旨
とするものである。
According to a fourth aspect of the present invention, the resin layered product for microwave fusion according to any one of claims 1 to 3 is formed on the joint surface of a joint having heat-sealing property. The gist of a resin joint for microwave fusion is characterized in that the fusion bonding layer is laminated or embedded so as to be the outermost layer.

【0011】請求項5記載の本発明は、請求項1乃至請
求項4記載のマイクロ波融着用樹脂積層体を融着層を介
して熱融着性を有する被着体の接合面に当接した後、上
記マイクロ波融着用樹脂継手の発熱層にマイクロ波を照
射することを特徴とする融着方法をその要旨とするもの
である。
According to a fifth aspect of the present invention, the resin layered product for microwave fusion according to any one of the first to fourth aspects is brought into contact with a joining surface of an adherend having heat fusion property via a fusion layer. After that, the fusion bonding method is characterized in that the heating layer of the resin joint for microwave fusion is irradiated with microwaves.

【0012】上記融着層に用いられるポリオレフィン樹
脂は、モノオレフィンの重合体及び共重合体を主体とす
る。上記モノオレフィンとしては、例えば、エチレン、
プロピレン、ブテン、4−メチルペンテン−1等が挙げ
られ、これらのモノオレフィンの重合体及び共重合体を
主体とするポリオレフィン樹脂としては、例えば、高密
度ポリエチレン、中密度ポリエチレン、低密度ポリエチ
レン、線状低密度ポリエチレン、ポリプロピレン、エチ
レン−プロピレンブロック共重合体、エチレン−プロピ
レンランダム共重合体、エチレン−プロピレン共重合体
ゴム、ポリブテン−1、ポリ4−メチルペンテン−1等
が挙げられる。
The polyolefin resin used for the fusing layer is mainly composed of a monoolefin polymer or copolymer. Examples of the monoolefin include ethylene,
Propylene, butene, 4-methylpentene-1 and the like can be mentioned, and examples of the polyolefin resin mainly composed of a polymer or copolymer of these monoolefins include high density polyethylene, medium density polyethylene, low density polyethylene, and wire. Low density polyethylene, polypropylene, ethylene-propylene block copolymer, ethylene-propylene random copolymer, ethylene-propylene copolymer rubber, polybutene-1, poly-4-methylpentene-1 and the like.

【0013】上記融着層の厚さは、0.01〜3mmで
ある。上記融着層の厚さが0.01mm未満では、接合
に際して、被着体との接合部の機械的強度が充分に得ら
れず、上記厚さが3mmを超えると、接合に際して、接
合時間が長くなったり、熱量不足により所望の温度にま
で昇温せず、被着体との接合部の機械的強度が充分に得
られない。
The fusing layer has a thickness of 0.01 to 3 mm. When the thickness of the fusion bonding layer is less than 0.01 mm, the mechanical strength of the bonded portion with the adherend cannot be sufficiently obtained at the time of bonding, and when the thickness exceeds 3 mm, the bonding time at the time of bonding It does not rise to a desired temperature due to an increase in the amount of heat or the amount of heat is insufficient, and sufficient mechanical strength cannot be obtained at the joint with the adherend.

【0014】上記中間接着層に用いられる変性ポリオレ
フィン樹脂は、不飽和カルボン酸(無水物)によって変
性されたものであり、ポリオレフィン樹脂の分子鎖中
に、上記不飽和カルボン酸(無水物)が付加されてい
る。
The modified polyolefin resin used in the intermediate adhesive layer is modified with an unsaturated carboxylic acid (anhydride), and the unsaturated carboxylic acid (anhydride) is added to the molecular chain of the polyolefin resin. Has been done.

【0015】上記不飽和カルボン酸(無水物)として
は、特に限定されるものではないが、例えば、アクリル
酸、メタアクリル酸、マレイン酸、無水マレイン酸、フ
マール酸、イタコン酸、無水イタコン酸、メサコン酸、
シトラコン酸、クロトン酸、イソクロトン酸、アンゲリ
カ酸、ソルビン酸、酢酸ビニル、ハイミック酸、無水ハ
イミック酸等が挙げられる。
The unsaturated carboxylic acid (anhydride) is not particularly limited, but for example, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, Mesaconic acid,
Examples thereof include citraconic acid, crotonic acid, isocrotonic acid, angelic acid, sorbic acid, vinyl acetate, hymic acid, and hymic acid anhydride.

【0016】上記不飽和カルボン酸(無水物)の付加量
は、得られる変性ポリオレフィン樹脂中、好ましくは
0.01〜10重量%である。上記不飽和カルボン酸
(無水物)の付加量が0.01重量%未満であると発熱
層との接着力が低下して得られるマイクロ波融着用樹脂
積層体の機械的強度が低下し、上記付加量が10重量%
を超えて多くなると、樹脂マトリックスが柔らかくなっ
て得られるマイクロ波融着用樹脂継手の機械的強度が低
下する。
The amount of the unsaturated carboxylic acid (anhydride) added is preferably 0.01 to 10% by weight in the resulting modified polyolefin resin. When the amount of the unsaturated carboxylic acid (anhydride) added is less than 0.01% by weight, the adhesive strength with the heat generating layer is reduced and the mechanical strength of the obtained microwave fusion resin laminate is reduced, Addition amount is 10% by weight
If the amount exceeds the above range, the resin matrix becomes soft and the mechanical strength of the obtained microwave fusion resin joint decreases.

【0017】上記不飽和カルボン酸(無水物)をポリオ
レフィン樹脂に付加させる方法は、特に限定されるもの
ではないが、例えば、有機過酸化物の存在下、無極性有
機溶媒中で加熱して行う溶液法、無極性有機溶媒中で高
温高圧下で行う懸濁法、溶融状態で混練しながら行う溶
融法等が挙げられる。
The method of adding the unsaturated carboxylic acid (anhydride) to the polyolefin resin is not particularly limited, but for example, heating is performed in a nonpolar organic solvent in the presence of an organic peroxide. Examples thereof include a solution method, a suspension method performed in a nonpolar organic solvent at high temperature and high pressure, and a melting method performed while kneading in a molten state.

【0018】上記有機過酸化物としては、例えば、t−
ブチルパーオキシアセテート、t−ブチルパーオキシベ
ンゾエート、t−ブチルパーオキシイソプロピルカーボ
ネート、ジクミルパーオキサイド、ジ−t−ブチルパー
オキフタレート、2,5−ジメチル−2,5−ジ(ベン
ゾイルパーオキシ)ヘキセン−3、t−ブチルパーオキ
シラウレート、t−ブチルパーオキシマレイックアシッ
ド、メチルエチルケトンパーオキサイド等が挙げられ
る。
Examples of the organic peroxide include t-
Butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyisopropyl carbonate, dicumyl peroxide, di-t-butyl peroxyphthalate, 2,5-dimethyl-2,5-di (benzoylperoxy) Hexene-3, t-butylperoxylaurate, t-butylperoxymaleic acid, methyl ethyl ketone peroxide and the like can be mentioned.

【0019】上記中間接着層に用いられるアイオノマー
樹脂としては、α−オレフィンとα,β−不飽和カルボ
ン酸との共重合体が、ナトリウム、亜鉛等の一価又は二
価金属イオンにより部分中和され、更に第三の単量体と
して不飽和カルボン酸エステル、例えば、アクリル酸又
はメタクリル酸のアルキルエステル、酢酸ビニル等の共
重合可能な化合物が付加されたものであり、具体的に
は、エチレン−メタクリル酸−メタクリル酸金属塩−メ
タクリル酸メチル、エチレン−メタクリル酸−メタクリ
ル酸金属塩、エチレン−メタクリル酸−メタクリル酸金
属塩−アクリル酸イソブチルが挙げられる。
As the ionomer resin used in the intermediate adhesive layer, a copolymer of α-olefin and α, β-unsaturated carboxylic acid is partially neutralized with a monovalent or divalent metal ion such as sodium or zinc. Further, an unsaturated carboxylic acid ester as the third monomer, for example, an alkyl ester of acrylic acid or methacrylic acid, a copolymerizable compound such as vinyl acetate is added, and specifically, ethylene is used. -Methacrylic acid-methacrylic acid metal salt-methyl methacrylate, ethylene-methacrylic acid-methacrylic acid metal salt, ethylene-methacrylic acid-methacrylic acid metal salt-isobutyl acrylate.

【0020】上記アイオノマー樹脂としては、例えば、
三井・デュポンポリケミカル社製、商品名「ハイミラ
ン」等の市販品がある。
Examples of the above-mentioned ionomer resin include:
There are commercial products such as "HIMIRAN" manufactured by Mitsui DuPont Polychemical Co., Ltd.

【0021】上記中間接着層に用いられる変性ポリオレ
フィン樹脂及びアイオノマー樹脂の群から選ばれる1種
以上の含有比率は、1〜100重量%である。上記変性
ポリオレフィン樹脂及びアイオノマー樹脂の群から選ば
れる1種以上の含有比率が1重量%未満であると発熱層
との界面接着力が低下するため得られるマイクロ波融着
用樹脂継手及びこれを用いた各種マイクロ波融着用樹脂
継手、被着体同士の融着部分の機械的強度が低下する。
The content ratio of at least one selected from the group of the modified polyolefin resin and the ionomer resin used in the intermediate adhesive layer is 1 to 100% by weight. If the content ratio of at least one selected from the group of the modified polyolefin resin and the ionomer resin is less than 1% by weight, the interfacial adhesion with the heat generating layer is reduced, and the obtained resin joint for microwave fusion and the same are used. The mechanical strength of various microwave fusion resin joints and the fused portion between adherends decreases.

【0022】上記中間接着層の厚さは、0.005〜1
mmである。上記中間接着層の厚さが0.005mm未
満では上記融着層と発熱層との界面接着を充分保持でき
ず、上記厚さが1mmを超えると、接合に際して被着体
との接合部の機械的強度が低下する。
The thickness of the intermediate adhesive layer is 0.005-1.
mm. If the thickness of the intermediate adhesive layer is less than 0.005 mm, the interfacial adhesion between the fusion layer and the heat generating layer cannot be sufficiently maintained, and if the thickness exceeds 1 mm, the machine of the joint portion with the adherend at the time of joining Strength decreases.

【0023】上記発熱層に用いられるアニリン系重合体
微粒子は、導電性であれば特に限定されるものではない
が、導電性が0.1S/cm以上のアニリン系重合体か
らなる微粒子が好適に用いられる。又、上記アニリン系
重合体微粒子は、例えば、アニリン誘導体モノマー及び
酸を、水等の溶媒に溶解させ、この溶液に酸化剤を加え
攪拌することによって酸化重合させる等の方法により製
造することができる。
The aniline polymer fine particles used in the heat generating layer are not particularly limited as long as they are electrically conductive, but fine particles made of an aniline polymer having an electrical conductivity of 0.1 S / cm or more are preferable. Used. The aniline-based polymer fine particles can be produced, for example, by a method in which an aniline derivative monomer and an acid are dissolved in a solvent such as water, and an oxidant is added to this solution and stirred to cause oxidative polymerization. .

【0024】上記アニリン誘導体モノマーとしては、例
えば、アニリン、N−メチルアニリン、N−エチルアニ
リン、o−トルイジン、m−トルイジン、2−エチルア
ニリン、3−エチルアニリン、2,3−ジメチルアニリ
ン、2,5−ジメチルアニリン、2,6−ジメチルアニ
リン、2,6−ジエチルアニリン、2−メトキシアニリ
ン、3−メトキシアニリン、2,5−ジメトキシアニリ
ン、3,5−ジメトキシアニリン、o−フェニレンジア
ミン、m−フェニレンジアミン、2−アミノビフェニ
ル、N,N−ジフェニル−p−フェニレンジアミン等が
挙げられる。上記アニリン誘導体モノマーの上記溶媒に
対する濃度は、0.1〜1mol/lが好ましい。
Examples of the aniline derivative monomer include aniline, N-methylaniline, N-ethylaniline, o-toluidine, m-toluidine, 2-ethylaniline, 3-ethylaniline, 2,3-dimethylaniline, 2 , 5-dimethylaniline, 2,6-dimethylaniline, 2,6-diethylaniline, 2-methoxyaniline, 3-methoxyaniline, 2,5-dimethoxyaniline, 3,5-dimethoxyaniline, o-phenylenediamine, m -Phenylenediamine, 2-aminobiphenyl, N, N-diphenyl-p-phenylenediamine and the like can be mentioned. The concentration of the aniline derivative monomer in the solvent is preferably 0.1 to 1 mol / l.

【0025】上記酸としては、例えば、塩酸、硫酸、硝
酸、リン酸等の無機プロトン酸;硫酸エステル、リン酸
エステル等の無機酸エステル;p−トルエンスルホン
酸、カルボン酸等の有機酸;ポリスチレンスルホン酸等
の高分子酸が挙げられる。上記酸の濃度は、0.1N〜
1Nが好ましい。
Examples of the acid include inorganic protonic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; inorganic acid esters such as sulfuric acid ester and phosphoric acid ester; organic acids such as p-toluenesulfonic acid and carboxylic acid; polystyrene. Polymeric acids such as sulfonic acid may be mentioned. The concentration of the acid is 0.1 N
1N is preferred.

【0026】上記酸化剤としては、例えば、過硫酸塩、
過酸化水素、過マンガン酸塩、重クロム酸塩等の過酸化
物;二酸化鉛、二酸化マンガン、塩化鉄等のルイス酸等
が挙げられる。上記酸化剤の濃度は、上記溶媒に対して
0.1〜1mol/lが好ましい。
Examples of the oxidizing agent include persulfate,
Examples thereof include peroxides such as hydrogen peroxide, permanganate, and dichromate; Lewis acids such as lead dioxide, manganese dioxide, and iron chloride. The concentration of the oxidizing agent is preferably 0.1 to 1 mol / l with respect to the solvent.

【0027】上記導電性のアニリン系重合体微粒子は、
叙上の方法で作製することができるが、アライドシグナ
ル社製、商品名「Versicon」等の市販されてい
るものも使用できる。
The above conductive aniline polymer fine particles are
It can be prepared by the above method, but a commercially available product such as "Versicon" manufactured by Allied Signal Co. can also be used.

【0028】上記導電性のアニリン系重合体微粒子の含
有量は、ポリオレフィン樹脂100重量部に対し5〜1
00重量部である。上記含有量が5重量部未満では発熱
量が不充分となり、上記含有量が100重量部を超える
と上記マイクロ波融着用樹脂組成物の強度が低下する。
The content of the conductive aniline polymer fine particles is 5 to 1 with respect to 100 parts by weight of the polyolefin resin.
00 parts by weight. If the content is less than 5 parts by weight, the amount of heat generated becomes insufficient, and if the content exceeds 100 parts by weight, the strength of the microwave fusion resin composition decreases.

【0029】上記ポリオレフィン樹脂中に分散される上
記導電性のアニリン系重合体微粒子は、その粒子径が
0.1〜100μmの範囲にあるものを使用することが
望ましく、上記粒子径が0.1μm未満であると、ポリ
オレフィン樹脂中への分散が難しくなり、過度の混練は
熱可塑性樹脂の劣化をきたす。又、上記粒子径が100
μmを超えるとマイクロ波加熱時の発熱量が充分に得ら
れず融着強度を低下させる。
The conductive aniline polymer fine particles dispersed in the polyolefin resin preferably have a particle diameter in the range of 0.1 to 100 μm, and the particle diameter is 0.1 μm. If it is less than the above range, it becomes difficult to disperse it in the polyolefin resin, and excessive kneading causes deterioration of the thermoplastic resin. Also, the particle size is 100
If the thickness exceeds μm, a sufficient amount of heat generated during microwave heating cannot be obtained and the fusion strength is reduced.

【0030】上記導電性のアニリン系重合体微粒子の分
散粒径の測定は、粒径を正確に測定できる方法であれば
特に限定されるものではないが、例えば、予めRuO4
で染色したマイクロ波融着用樹脂組成物を走査型電子顕
微鏡の反射電子で観察すれば、比較的容易に測定するこ
とができる。
The dispersed particle size of the conductive aniline polymer fine particles is not particularly limited as long as the particle size can be accurately measured. For example, RuO 4 is previously prepared.
When the resin composition for microwave fusion dyed with is observed by backscattered electrons of a scanning electron microscope, it can be measured relatively easily.

【0031】上記ポリオレフィン樹脂中に導電性のアニ
リン系重合体微粒子を分散させる際に、チタネート系カ
ップリング剤、アルミニウム系カップリング剤及びシラ
ン化合物等の分散剤が用いられてもよい。
A dispersant such as a titanate coupling agent, an aluminum coupling agent and a silane compound may be used when dispersing the conductive aniline polymer fine particles in the polyolefin resin.

【0032】上記分散剤は、例えば、チタネート系カッ
プリング剤として、イソプロピルトリイソステアロイル
チタネート、イソプロピルトリス(ジオクチルパイロホ
スフェート)チタネート、イソプロピルトリ(N−アミ
ノエチル−アミノエチル)チタネート、テトラオクチル
ビス(ジトリデシルホスファイト)チタネート、テトラ
(2,2−ジアリルオキシメチル−1−ブチル)ビス
(ジトリデシル)ホスファイトチタネート、ビス(ジオ
クチルパイロホスフェート)オキシアセテートチタネー
ト、ビス(ジオクチルパイロホスフェート)エチレンチ
タネート、イソプロピルトリオクタノイルチタネート、
イソプロピルジメタクリルイソステアロイルチタネー
ト、イソプロピルトリドデシルベンゼンスルホニルチタ
ネート、イソプロピルイソステアロイルジアクリルチタ
ネート、イソプロピルトリクミルフェニルチタネート、
テトライソプロピルビス(ジオクチルホスファイト)チ
タネート等が挙げられる。又、上記アルミニウム系カッ
プリング剤として、アセトアルコキシアルミニウムジイ
ソプロピレート等が挙げられる。
The above-mentioned dispersant is, for example, a titanate coupling agent such as isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditrityl). Decylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltriocta Noil titanate,
Isopropyl dimethacryl isostearoyl titanate, isopropyl tridodecylbenzene sulfonyl titanate, isopropyl isostearoyl diacrylic titanate, isopropyl tricumyl phenyl titanate,
Tetraisopropyl bis (dioctyl phosphite) titanate and the like can be mentioned. Examples of the aluminum-based coupling agent include acetoalkoxy aluminum diisopropylate.

【0033】又、上記シラン化合物として、クロロシラ
ン類、アルコキシシラン類、シランカップリング剤、変
性シリコーンオイル類の群から選ばれる1種もしくは2
種以上が使用されるが、クロロシラン類としては、例え
ば、メチルトリクロロシラン、メチルジクロロシラン、
ジメチルジクロロシラン、トリメチルクロロシラン、フ
ェニルトリクロロシラン、ジフェニルジクロロシラン等
が挙げられ、アルコキシシラン類としては、例えば、テ
トラメトキシシラン、メチルトリメトキシシラン、ジメ
チルジメトキシシラン、フェニルトリメトキシシラン、
ジフェニルジメトキシシラン、テトラエトキシシラン、
メチルトリエトキシシラン、ジメチルジエトキシシラ
ン、フェニルトリエトキシシラン、ジフェニルジエトキ
シシラン、イソブチルトリメトキシシラン、デシルトリ
メトキシシラン等が挙げられ、特に、アルコキシシラン
類が好適に用いられる。
As the silane compound, one or two selected from the group consisting of chlorosilanes, alkoxysilanes, silane coupling agents and modified silicone oils.
Although more than one species are used, examples of chlorosilanes include methyltrichlorosilane, methyldichlorosilane,
Examples thereof include dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, and diphenyldichlorosilane. Examples of alkoxysilanes include tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and the like.
Diphenyldimethoxysilane, tetraethoxysilane,
Examples thereof include methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane, and the like, and alkoxysilanes are particularly preferably used.

【0034】上記シランカップリング剤としては、例え
ば、ビニルトリクロロシラン、ビニルトリメトキシシラ
ン、ビニルトリエトキシシラン、ビニルトリス(β−メ
トキシエトキシ)シラン、β−(3,4−エポキシシク
ロヘキシル)エチルトリメトキシシラン、γ−メタクリ
ロキシプロピルメチルジエトキシシラン、N−β−(ア
ミルエチル)−γ−アミノプロピルトリメトキシシラ
ン、γ−アミノプロピルトリメトキシシラン、γ−アミ
ノプロピルトリエトキシシラン、N−フェニル−γ−ア
ミノプロピルトリメトキシシラン、γ−クロロプロピル
トリメトキシシラン、γ−メルカプトプロピルトリメト
キシシラン等が挙げられる。
Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. , Γ-methacryloxypropylmethyldiethoxysilane, N-β- (amylethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-amino Examples include propyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like.

【0035】上記変性シリコーンオイル類としては、例
えば、アミノ変性シリコーンオイル、エポキシ変性シリ
コーンオイル、カルボキシル変性シリコーンオイル、カ
ルビノール変性シリコーンオイル、メタクリル変性シリ
コーンオイル、メルカプト変性シリコーンオイル、フェ
ノール変性シリコーンオイル、ポリエーテル変性シリコ
ーンオイル、メチルスチリル変性シリコーンオイル、ア
ルキル変性シリコーンオイル、高級脂肪酸エステル変性
シリコーンオイル、シリコーン改質剤等が挙げられる。
上記分散剤は、1種もしくは2種以上が併用されてもよ
い。
Examples of the modified silicone oils include amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carbinol-modified silicone oil, methacryl-modified silicone oil, mercapto-modified silicone oil, phenol-modified silicone oil and poly. Examples thereof include ether-modified silicone oil, methylstyryl-modified silicone oil, alkyl-modified silicone oil, higher fatty acid ester-modified silicone oil, and silicone modifier.
The above dispersants may be used alone or in combination of two or more.

【0036】上記チタネート系カップリング剤及び/又
はアルミニウム系カップリング剤及び/又はシラン化合
物の配合量は、ポリオレフィン樹脂100重量部に対し
0.01〜20重量部である。上記配合量が0.01重
量部未満では、所期の目的を充分に果たし得ないし、
又、上記配合量が20重量部を超えると、ポリオレフィ
ン樹脂成形体からなる被着体を相互に接続する場合、接
続部の接続強度が低下する。
The titanate coupling agent and / or the aluminum coupling agent and / or the silane compound is blended in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the polyolefin resin. If the blending amount is less than 0.01 parts by weight, the intended purpose cannot be sufficiently achieved,
On the other hand, if the blending amount exceeds 20 parts by weight, when the adherends made of the polyolefin resin molded body are connected to each other, the connecting strength of the connecting portion is lowered.

【0037】上記発熱層の厚さは、0.01〜5mmで
ある。上記発熱層の厚さが0.01mm未満では発熱量
が不充分となり、上記厚さが5mmを超えると、接合に
際して被着体の接合部の融着強度が低下する。
The heating layer has a thickness of 0.01 to 5 mm. If the thickness of the heat generating layer is less than 0.01 mm, the amount of heat generated becomes insufficient, and if the thickness exceeds 5 mm, the fusion strength of the bonded portion of the adherend is lowered during bonding.

【0038】請求項2記載の本発明のマイクロ波融着用
樹脂継手は、上記発熱層の両面に中間接着層及び融着層
が順に積層されているが、請求項1記載の本発明のマイ
クロ波融着用樹脂継手の如く上記発熱層の片面に中間接
着層及び融着層が順に積層されているマイクロ波融着用
樹脂継手であっても、例えば、該マイクロ波融着用樹脂
継手を管継手用インサート金型のコア部に円筒状に巻き
付けて装着した後、前記ポリオレフィン樹脂を用い、射
出成形機にてマイクロ波融着管継手を作製する場合に
は、充分な加熱と圧力下に上記発熱層が上記マイクロ波
融着管継手内壁に一体的に積層もしくは埋設されるもの
であるので、上記マイクロ波融着管継手内壁とマイクロ
波融着用樹脂継手の発熱層との界面における接着強度を
問題にすることはない。勿論、上記発熱層、中間接着層
及び融着層が、その配合組成を変えた複数層に分かれて
いてもよく、又、発熱層、中間接着層及び融着層が順に
積層された積層体の発熱層側に第2の中間接着層のみ、
もしくは融着層のみを更に積層したマイクロ波融着用樹
脂継手であってもよい。
In the microwave fusion resin joint of the present invention according to claim 2, an intermediate adhesive layer and a fusion layer are laminated in this order on both surfaces of the heat generating layer, but the microwave of the present invention according to claim 1 Even in the case of a microwave fusion resin joint in which an intermediate adhesive layer and a fusion layer are sequentially laminated on one surface of the heat generation layer like a fusion resin joint, for example, the microwave fusion resin joint is used as a pipe joint insert. After being wound around the core part of the mold in a cylindrical shape and mounted, when the above-mentioned polyolefin resin is used to produce a microwave fusion tube fitting by an injection molding machine, the above-mentioned heating layer is formed under sufficient heating and pressure. Since it is integrally laminated or embedded in the inner wall of the microwave fusion pipe joint, the problem is the adhesive strength at the interface between the inner wall of the microwave fusion pipe joint and the heating layer of the microwave fusion resin joint. Kotohana . Of course, the heat generating layer, the intermediate adhesive layer, and the fusing layer may be divided into a plurality of layers having different compounding compositions, and a laminated body in which the heat generating layer, the intermediate adhesive layer, and the fusing layer are laminated in order. Only the second intermediate adhesive layer on the heating layer side,
Alternatively, it may be a resin joint for microwave fusion in which only a fusion layer is further laminated.

【0039】上記発熱層、中間接着層及び融着層が4層
以上からなるマイクロ波融着用樹脂継手である場合、上
記発熱層、中間接着層及び融着層の各1層が発熱層、中
間接着層及び融着層の順に積層され、被着体の一面に当
接する最外層が融着層であればよい。
In the case of a microwave fusion resin joint having four or more heat generating layers, an intermediate adhesive layer, and a fusing layer, each one of the heat generating layer, the intermediate adhesive layer, and the fusing layer is a heat generating layer and an intermediate layer. The adhesive layer and the fusion bonding layer may be laminated in this order, and the outermost layer that contacts one surface of the adherend may be the fusion bonding layer.

【0040】請求項3記載の本発明のマイクロ波融着用
樹脂継手にあって、中間接着層の厚さは、発熱層及び融
着層の厚さ以下である。上記中間接着層の厚さが、上記
発熱層及び融着層の厚さよりも大であると、接合に際
し、被着体の融着部における層別の機械的強度のバラン
スを崩し、該融着部における機械的強度が低下する。
In the microwave fusion resin joint of the present invention according to claim 3, the thickness of the intermediate adhesive layer is not more than the thickness of the heat generating layer and the fusion layer. When the thickness of the intermediate adhesive layer is larger than the thickness of the heat generating layer and the fusion layer, the mechanical strength of the layers in the fusion portion of the adherend is destroyed during bonding, and the fusion is performed. The mechanical strength of the part is reduced.

【0041】上記マイクロ波融着用樹脂継手の各層に
は、必要に応じ、紫外線吸収剤、難燃剤、可塑剤、滑
剤、帯電防止剤、着色剤等の添加剤が配合されてもよ
い。
If necessary, additives such as an ultraviolet absorber, a flame retardant, a plasticizer, a lubricant, an antistatic agent, a colorant and the like may be added to each layer of the microwave fusion resin joint.

【0042】請求項1〜3記載の本発明のマイクロ波融
着用樹脂継手を製造する方法は、特に限定されるもので
はないが、例えば、一軸押出機、二軸押出機、バンバリ
ーミキサー、混練ロール、ブラベンダープラストグラ
フ、ニーダー等の混練装置を単独でもしくはこれらの装
置を適宜組み合わせて使用し、導電性のアニリン系重合
体微粒子並びに必要に応じてチタネート系カップリング
剤及び/又はアルミニウム系カップリング剤及び/又は
シラン化合物をポリオレフィン樹脂に添加し、もしく
は、上記不飽和カルボン酸(無水物)及びアイオノマー
樹脂の群から選ばれる1種以上をポリオレフィン樹脂に
添加し、もしくは、ポリオレフィン樹脂をシート成形
し、これらの各シートをラミネーターによって熱接着し
てマイクロ波融着用樹脂継手を製造する方法が採られて
もよく、又、上記の如く各層を別々に作製することな
く、多層押出成形法によって一挙にマイクロ波融着用樹
脂継手を作製してもよい。
The method for producing the microwave fusion resin joint of the present invention according to claims 1 to 3 is not particularly limited, but for example, a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneading roll. , A Brabender Plastograph, a kneading machine such as a kneader, or a combination of these machines is used, and conductive aniline polymer fine particles and, if necessary, a titanate coupling agent and / or an aluminum coupling are used. Agent and / or silane compound is added to the polyolefin resin, or at least one selected from the group of unsaturated carboxylic acids (anhydrides) and ionomer resins is added to the polyolefin resin, or the polyolefin resin is formed into a sheet. , Heat-bonding each of these sheets with a laminator for microwave fusion resin May be taken a method of manufacturing a hand, also without fabricating separately each layer as described above, may be produced micro NamiToru wear plastic joint at a stroke by multi-layer extrusion molding method.

【0043】請求項4記載の本発明のマイクロ波融着用
樹脂継手を製造する方法は、特に限定されるものではな
いが、例えば、予めインサートコアの表面に請求項1〜
3記載の本発明のマイクロ波融着用樹脂継手を捲回して
おき、射出成形を行うインサート方式射出成形やラミネ
ーターによる積層方式等により成形体中に埋設もしくは
表面に露出させて積層されてもよい。就中、インサート
方式射出成形によれば、上記請求項1〜3記載の本発明
のマイクロ波融着用樹脂継手に対し、新たに射出される
ポリオレフィン系樹脂もしくはこれと良好な相溶性を有
する樹脂が高温度に均一に加熱され溶融し、充分に高圧
に維持されて接着されるので、上記両層の界面が明確に
形成されない程度にまで強固に融着される。従って、上
記成形体中に埋設もしくは表面に露出させて積層される
マイクロ波融着用樹脂継手は、3層以上からなり、発熱
層を介して上記成形体中に埋設もしくは表面に露出させ
て積層されてもよく、更に、上記発熱層の表層に積層さ
れた中間接着層を介して積層されてもよく、更に、上記
発熱層の表層に直接積層された融着層を介して積層され
てもよい。勿論、請求項2記載の本発明のマイクロ波融
着用樹脂継手も好適に使用される。
The method for producing the microwave fusion resin joint of the present invention according to claim 4 is not particularly limited, but for example, the method may be applied to the surface of the insert core in advance.
The microwave fusion-bonding resin joint of the present invention described in 3 may be wound, and may be embedded in the molded body or laminated by being exposed on the surface by an insert method injection molding in which injection molding is performed, a laminating method using a laminator, or the like. In particular, according to the insert method injection molding, for the microwave fusion resin joint of the present invention according to claims 1 to 3, a newly-injected polyolefin resin or a resin having good compatibility therewith is used. Since it is uniformly heated and melted at a high temperature and is adhered while being maintained at a sufficiently high pressure, it is firmly fused to such an extent that the interface between both layers is not clearly formed. Therefore, the microwave fusion bonding resin joint which is embedded in the molded body or exposed and laminated on the surface is composed of three or more layers, and is embedded in the molded body or exposed and laminated on the surface via the heat generating layer. Alternatively, it may be laminated via an intermediate adhesive layer laminated on the surface of the heat generating layer, or further via a fusion layer directly laminated on the surface of the heat generating layer. . Of course, the resin joint for microwave fusion of the present invention according to claim 2 is also suitably used.

【0044】又、請求項4記載の本発明のマイクロ波融
着用樹脂継手を製造する際に、請求項2記載の本発明の
マイクロ波融着用樹脂継手を用いれば、既に成形された
ポリオレフィン系樹脂もしくはこれと良好な相溶性を有
する樹脂製品表面であっても、これに積層され加熱圧着
された上記マイクロ波融着用樹脂継手は、発熱層で発生
した熱を中間接着層が効率的に吸収し、該中間接着層の
全面にわたって均一に分散し、これに連続して積層され
ている融着層を均一且つ効率的に伝熱溶融するので、加
熱された2本ロールや熱プレスによる熱圧着法によっ
て、強固に積層することができる。
Further, when the microwave fusion resin joint according to the present invention is used in the production of the microwave fusion resin joint according to the present invention as defined in claim 4, an already molded polyolefin resin is used. Alternatively, even if the resin product surface has good compatibility with it, the above microwave fusion resin joint laminated and thermocompression-bonded thereto has the intermediate adhesive layer efficiently absorbing the heat generated in the heat generating layer. Since the intermediate adhesive layer is uniformly dispersed over the entire surface, and the fusion layer continuously laminated thereon is heat-transfer-melted uniformly and efficiently, a thermocompression bonding method using a heated two rolls or a hot press. Thus, it is possible to firmly stack the layers.

【0045】請求項5の融着方法は、請求項1乃至請求
項4記載の本発明のマイクロ波融着用樹脂継手を融着層
を介して熱融着性を有する被着体の接合面に当接した
後、上記マイクロ波融着用樹脂継手の発熱層にマイクロ
波を照射して行うものであるが、上記被着体としては、
その接合面が上記マイクロ波融着用樹脂継手と熱接着性
を有するものであれば特に限定されるものでなく、例え
ば、前記請求項1乃至請求項4記載のマイクロ波融着用
樹脂継手の融着層に用いられたポリオレフィン系樹脂も
しくはこれと良好な相溶性を有する樹脂からなるもので
あってもよく、又、上記ポリオレフィン系樹脂等とその
他の材料が混合され、埋設されもしくは積層された複合
体であってもよい。
According to a fifth aspect of the fusion bonding method, the resin joint for microwave fusion of the present invention according to any one of the first to fourth aspects is bonded to a joint surface of an adherend having a heat fusion property via a fusion layer. After contact, the heating layer of the microwave fusion resin joint is irradiated with microwaves, and the adherend is
The joining surface is not particularly limited as long as it has thermal adhesiveness with the microwave fusion resin joint, and for example, fusion of the microwave fusion resin joint according to claim 1 to claim 4. It may be composed of a polyolefin resin used for the layer or a resin having good compatibility with the polyolefin resin, or a composite in which the polyolefin resin or the like and other materials are mixed and embedded or laminated. May be

【0046】又、上記被着体の形状は特に限定されるも
のでなく、例えば、シート状もしくは板状であって、上
記シート状体もしくは板状体の厚さが比較的薄いもので
あれば、図1の如く、上記シート状体もしくは板状体2
1の端部付近の一面に請求項1乃至請求項4記載のマイ
クロ波融着用樹脂継手1を融着層13を介して積層し、
予め熱プレスによって融着したマイクロ波融着用樹脂継
手31を作製しておき、接合しようとする他のシート状
体もしくは板状体21の端部付近に上記マイクロ波融着
用樹脂継手31の融着層13を介して積層し、該積層部
分にマイクロ波を照射して2枚の被着体21、21を融
着して継手を形成し、接合してもよく、又、2枚のシー
ト状体もしくは板状体21の端部付近の接合部分に上記
マイクロ波融着用樹脂継手1を挟着し、該マイクロ波融
着用樹脂継手1にマイクロ波を照射して接合してもよ
い。
The shape of the adherend is not particularly limited, and may be, for example, a sheet or plate, and the sheet or plate may be relatively thin. 1, as shown in FIG. 1, the sheet-like body or plate-like body 2
The microwave fusion resin joint 1 according to any one of claims 1 to 4 is laminated on one surface in the vicinity of the end portion of 1 through a fusion layer 13,
A microwave fusion resin joint 31 that has been fused by hot pressing is prepared in advance, and the microwave fusion resin joint 31 is fused near the end of another sheet-like body or plate-like body 21 to be joined. You may laminate | stack via the layer 13 and irradiate a microwave to the lamination | stacking part, and the two adherends 21 and 21 may be fuse | bonded, and a joint may be formed and joined, or it may be a sheet form of 2 sheets. The microwave fusion-bonding resin joint 1 may be sandwiched between the joint portions near the ends of the body or the plate-like body 21, and the microwave fusion-bonding resin joint 1 may be irradiated with microwaves to be joined.

【0047】上記板状体の厚さが比較的厚いものであれ
ば、該板状体の突き合わせ端面に請求項1乃至請求項4
記載のマイクロ波融着用樹脂継手を融着層を介して押圧
しながらマイクロ波を照射して2枚の被着体を融着して
接合してもよい。上記シート状体もしくは板状体と同様
に、アングルその他の曲面、折曲面からなるプロファイ
ルであってもよい。
If the plate-shaped body is relatively thick, the butt end surfaces of the plate-shaped body may be provided with the butt ends.
It is also possible to irradiate microwaves while pressing the resin joint for microwave fusion described above via the fusion layer to fuse and bond the two adherends. Similar to the sheet-shaped body or the plate-shaped body, the profile may be a curved surface such as an angle or a bent surface.

【0048】又、図2に示す管継手用インサート金型の
コア部に円筒状に巻き付けて装着した後、射出成形機に
て作製されたマイクロ波融着管継手類やストレーナー、
ストッパー、バルブ等の接続部を有するマイクロ波融着
用樹脂継手であってもよい。図2において、32は、上
記の如く、発熱層11、中間接着層12及び融着層13
を備えたマイクロ波融着用樹脂継手10を接合面に埋設
したマイクロ波融着管継手(ソケット)であって、上記
マイクロ波融着用樹脂積層体10の最内層は中間接着層
12からなるが、融着層13と同材質の厚い上記マイク
ロ波融着管継手の外壁が存在するので、融着層13が省
略されても機能は低下しない。又、22、22はポリエ
チレン製管からなる被着体である。上記マイクロ波融着
用樹脂継手の接続部の形状は、図2において断面円形の
マイクロ波融着管継手(ソケット)で示したが、上記形
状はこれに限定されるものではなく、断面正方形もしく
は長方形の角型、半円形、U字形、コ字形その他重ね合
わせもしくは突き合わせが可能なものであればその形状
を問わない。
Further, after being mounted by being wound in a cylindrical shape around the core portion of the insert mold for pipe fittings shown in FIG. 2, microwave fusion pipe fittings and strainers produced by an injection molding machine,
It may be a resin joint for microwave fusion having a connecting portion such as a stopper or a valve. In FIG. 2, reference numeral 32 denotes the heat generating layer 11, the intermediate adhesive layer 12, and the fusion bonding layer 13 as described above.
A microwave fusion tube fitting (socket) having a microwave fusion resin joint 10 provided with embedded in a joint surface, wherein the innermost layer of the microwave fusion resin laminate 10 comprises an intermediate adhesive layer 12. Since the outer wall of the microwave fusion tube fitting having the same material as that of the fusion layer 13 is thick, the function does not deteriorate even if the fusion layer 13 is omitted. Further, 22 and 22 are adherends made of polyethylene pipes. The shape of the connecting portion of the resin joint for microwave fusion is shown as a microwave fusion pipe fitting (socket) having a circular cross section in FIG. 2, but the shape is not limited to this, and a square or rectangular cross section is used. Any shape such as square, semi-circular, U-shaped, U-shaped, etc. can be used as long as they can be overlapped or butted.

【0049】請求項1乃至請求項4記載の本発明のマイ
クロ波融着用樹脂継手を融着層を介して熱融着性を有す
る被着体と一体に融着するために照射されるマイクロ波
としては、例えば、商用周波数の2.45GHzで、電
力は、100〜2,000W等が好ましい。
Microwaves for irradiating the resin joint for microwave fusion of the present invention according to any one of claims 1 to 4 so as to be integrally fused with an adherend having a heat fusion property through a fusion layer. For example, it is preferable that the commercial frequency is 2.45 GHz and the electric power is 100 to 2,000 W.

【0050】上記マイクロ波の照射時間は、接合される
被着体のサイズや形状によっても異なるが、例えば、ガ
ス用中密度ポリエチレン管を同材質からなる管継手の内
面に上記マイクロ波融着用樹脂シートを埋設してなるマ
イクロ波融着管継手に接合し、融着する場合、専用のマ
イクロ波照射機によって上記マイクロ波を照射して、融
着が完了する照射時間は、10秒〜180秒である。
The irradiation time of the microwave varies depending on the size and shape of the adherend to be joined, but for example, a medium density polyethylene pipe for gas is formed on the inner surface of a pipe joint made of the same material as the microwave fusion resin. When the sheet is joined to a microwave fusion tube fitting which is embedded and fused, the microwave is irradiated by a dedicated microwave irradiator to complete the fusion, and the irradiation time is 10 seconds to 180 seconds. Is.

【0051】請求項1記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、中間接着層に効率的に伝熱し、該中
間接着層に均一に分散すると共に、これと接して積層さ
れている融着層及びこれと接する被着体にまで均一、且
つ、効率的に伝熱し、該融着層及びこれと接する被着体
を溶融させ、強固に融着される。更に、上記中間接着層
は、上記発熱層と融着層との間にあって、両者を強い接
着力で結合しているものであるので、被着体との融着強
度が強固に保持される。
Since the microwave fusion resin joint of the present invention according to claim 1 is constructed as described above, the composition, the composition and the thickness of each layer are combined, and the polyolefin resin for the heat generating layer is combined. Conductive aniline-based polymer particles finely dispersed therein are dielectrically heated by irradiation of microwaves to obtain a high amount of heat, which efficiently transfers heat to the intermediate adhesive layer and is uniformly dispersed in the intermediate adhesive layer. Along with this, heat is evenly and efficiently transferred to the fusion layer laminated in contact with this and the adherend in contact therewith, and the fusion layer and the adherend in contact therewith are melted and firmly fused. Be worn. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained.

【0052】請求項2記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、該発熱層の両面に積層されている中
間接着層に効率的に伝熱し、上記発熱層の両面に積層さ
れている中間接着層に均一に分散すると共に、これと接
して積層されている融着層及びこれと接する被着体にま
で均一、且つ、効率的に伝熱し、該融着層及びこれと接
する被着体を溶融させ、強固に融着される。更に、上記
中間接着層は、上記発熱層と融着層との間にあって、両
者を強い接着力で結合しているものであるので、被着体
との融着強度が強固に保持される。
Since the microwave fusion resin joint of the present invention according to claim 2 is constructed as described above, the composition, the composition and the thickness of each layer are combined, and the polyolefin resin for the heat generating layer is combined. The conductive aniline-based polymer fine particles finely dispersed therein are subjected to dielectric heating by microwave irradiation to obtain a high amount of heat, and efficiently transfer heat to the intermediate adhesive layers laminated on both sides of the heat generating layer. , Evenly disperse in the intermediate adhesive layer laminated on both sides of the heat generating layer, and evenly and efficiently transfer heat to the fusion layer and the adherend in contact with the intermediate adhesive layer. The fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained.

【0053】請求項3記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、中間接着層に効率的に伝熱し、中間
接着層に均一に分散すると共に、これと接して積層され
ている融着層及びこれと接する被着体にまで均一、且
つ、効率的に伝熱し、該融着層及びこれと接する被着体
を溶融させ、強固に融着される。更に、上記中間接着層
は、上記発熱層と融着層との間にあって、両者を強い接
着力で結合しているものであるので、被着体との融着強
度が強固に保持される。就中、上記中間接着層は、上記
発熱層と融着層との間にあって、その厚さを融着層及び
発熱層の厚さ以下にすることによって、上記の如くマイ
クロ波融着された被着体の融着部における機械的強度を
高く保持することができる。
Since the microwave fusion resin joint of the present invention according to claim 3 is constructed as described above, the polyolefin resin for the heating layer is combined with the composition, the composition and the thickness of each layer. Conductive aniline-based polymer fine particles finely dispersed in it are dielectrically heated by irradiation of microwaves to obtain a high amount of heat, efficiently transfer heat to the intermediate adhesive layer, and evenly disperse in the intermediate adhesive layer. , Evenly and efficiently transfer heat to the fusion layer laminated in contact therewith and the adherend in contact therewith to melt the fusion layer and the adherend in contact therewith and firmly bond To be done. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained. In particular, the intermediate adhesive layer is between the heat generating layer and the fusing layer, and the thickness of the intermediate adhesive layer is made equal to or less than the thickness of the fusing layer and the heat generating layer, so that the microwave fusion-bonded material is coated as described above. It is possible to maintain high mechanical strength at the fusion-bonded portion of the bonded body.

【0054】請求項4記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、該発熱層の両面に積層されている中
間接着層に効率的に伝熱し、上記発熱層の両面に積層さ
れている中間接着層に均一に分散すると共に、これと接
して積層されている融着層及びこれと接する被着体にま
で均一、且つ、効率的に伝熱し、該融着層及びこれと接
する被着体を溶融させ、強固に融着される。更に、上記
中間接着層は、上記発熱層と融着層との間にあって、両
者を強い接着力で結合しているものであるので、被着体
との融着強度が強固に保持される。就中、上記マイクロ
波融着用樹脂継手は、被着体の接合部を含めた継手に、
熱成形もしくは熱接着によって、予め、積層もしくは埋
設されているので、被着体が管、ロッド、アングルその
他のプロファイルの如き複雑な形状の製品であっても、
予備的な何らの加工を施すことなく、確実、且つ、迅速
に強固に接合することができる。
Since the microwave fusion resin joint of the present invention according to claim 4 is constructed as described above, the combination of the construction, the composition and the thickness of each layer contributes to the polyolefin resin for the heat generating layer. The conductive aniline-based polymer fine particles finely dispersed therein are subjected to dielectric heating by microwave irradiation to obtain a high amount of heat, and efficiently transfer heat to the intermediate adhesive layers laminated on both sides of the heat generating layer. , Evenly disperse in the intermediate adhesive layer laminated on both sides of the heat generating layer, and evenly and efficiently transfer heat to the fusion layer and the adherend in contact with the intermediate adhesive layer. The fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained. Above all, the above-mentioned microwave fusion resin joint is a joint including a joint portion of an adherend,
Since it is laminated or embedded in advance by thermoforming or heat bonding, even if the adherend is a product with a complicated shape such as a pipe, rod, angle or other profile,
It is possible to securely and promptly and firmly bond without performing any preliminary processing.

【0055】請求項5記載の本発明の融着方法は、叙上
の如く構成されているので、請求項1乃至請求項4の本
発明のマイクロ波融着用樹脂継手の構成、配合及び各層
の厚さが相俟って、発熱層のポリオレフィン系樹脂中に
微細に分散された導電性のアニリン系重合体微粒子が、
マイクロ波の照射によって誘電加熱され高熱量が得ら
れ、該発熱層の両面に積層されている中間接着層に効率
的に伝熱し、上記発熱層の両面に積層されている中間接
着層に均一に分散すると共に、これと接して積層されて
いる融着層及びこれと接する被着体にまで均一、且つ、
効率的に伝熱し、該融着層及びこれと接する被着体を溶
融させ、強固に融着される。就中、請求項4の本発明の
マイクロ波融着用樹脂継手を用いる場合、被着体の接合
部を含めた継手に、熱成形もしくは熱接着によって、予
め、積層もしくは埋設されているので、被着体が管、ロ
ッド、アングルその他のプロファイルの如き複雑な形状
の製品であっても、予備的な何らの加工を施すことな
く、確実、且つ、迅速に強固に接合することができる。
Since the fusing method of the present invention according to claim 5 is constructed as described above, the constitution, composition and composition of each layer of the microwave fusion resin joint of the present invention according to claims 1 to 4 are defined. Combined with the thickness, conductive aniline-based polymer fine particles finely dispersed in the polyolefin-based resin of the heating layer,
A high amount of heat is obtained by dielectric heating due to microwave irradiation, heat is efficiently transferred to the intermediate adhesive layers laminated on both sides of the heat generating layer, and is evenly distributed on the intermediate adhesive layers laminated on both sides of the heat generating layer. Along with the dispersion, the fusion layer laminated in contact with this and the adherend in contact therewith, and
The heat is efficiently transferred, the fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Especially, when the microwave fusion resin joint of the present invention of claim 4 is used, since it is preliminarily laminated or embedded in the joint including the joint of the adherend by thermoforming or thermal bonding, Even if the adhered body is a product having a complicated shape such as a tube, a rod, an angle, or the like, it is possible to firmly and securely join the product firmly without performing any preliminary processing.

【0056】[0056]

【発明の実施の形態】以下に実施例を掲げて、本発明を
更に詳しく説明するが、本発明はこれら実施例のみに限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

【0057】(実施例1)融着層用シートの調製 中密度ポリエチレン(三井石油化学社製、メルトフロー
レート(MFR)=0.2g/10min)を、Tダイ
法によって押出成形し、厚さ0.5mmの融着層用シー
トを調製した。
Example 1 Preparation of Sheet for Fusing Layer Medium density polyethylene (manufactured by Mitsui Petrochemical Co., Ltd., melt flow rate (MFR) = 0.2 g / 10 min) was extrusion-molded by the T-die method to give a thickness. A 0.5 mm fusion-bonding sheet was prepared.

【0058】中間接着層用シートの調製 上記中密度ポリエチレン80重量%及びマレイン酸変性
線状低密度ポリエチレン(三井石油化学社製、MFR=
0.9g/10min)20重量%からなるポリエチレ
ン樹脂組成物を、Tダイ法によって押出成形し、厚さ
0.1mmの中間接着層用シートを調製した。
Preparation of Sheet for Intermediate Adhesive Layer 80% by weight of the above-mentioned medium density polyethylene and linear low density polyethylene modified with maleic acid (MFR = MFR = MFR)
A polyethylene resin composition composed of 20% by weight of 0.9 g / 10 min) was extrusion-molded by a T-die method to prepare a sheet for an intermediate adhesive layer having a thickness of 0.1 mm.

【0059】発熱層用シートの調製 上記中密度ポリエチレン100重量部、導電性のアニリ
ン系重合体微粒子(アライドシグナル社製、商品名:V
ersicon)30重量部を予備捏和した後、Tダイ
法によって押出成形し、厚さ0.5mmの発熱層用シー
トを調製した。上記融着層用シート2枚の間に、上記中
間接着層用シート2枚、更に最内層に上記発熱層用シー
ト1枚を挟持して積層し、熱ラミネーターにて加熱下に
圧着し、上記各シートを融着してマイクロ波融着用樹脂
継手を作製した。
Preparation of Sheet for Heat Generation Layer 100 parts by weight of the above medium density polyethylene, conductive aniline polymer fine particles (trade name: V manufactured by Allied Signal Co., Ltd.)
30 parts by weight of ersicon) was pre-kneaded and then extrusion-molded by the T-die method to prepare a heat-generating layer sheet having a thickness of 0.5 mm. Between the two sheets for the fusion bonding layer, two sheets for the intermediate adhesive layer, and one sheet for the heat generating layer as the innermost layer are sandwiched and laminated, and pressure-bonded under heating with a heat laminator, The respective sheets were fused to produce a resin joint for microwave fusion.

【0060】(実施例2)実施例1の発熱層用シートの
導電性のアニリン系重合体微粒子の配合量を30重量部
から60重量部に変更したこと以外、実施例1と同様に
してマイクロ波融着用樹脂継手を作製した。
Example 2 The same procedure as in Example 1 was carried out except that the content of the conductive aniline polymer fine particles in the heating layer sheet of Example 1 was changed from 30 parts by weight to 60 parts by weight. A resin joint for wave fusion was prepared.

【0061】(実施例3)実施例2の中間接着層用シー
トの中密度ポリエチレン配合比率を80重量%から90
重量%に変更し、マレイン酸変性線状低密度ポリエチレ
ンに替えてアイオノマー(三井・デュポンポリケミカル
社製、MFR=10g/10min)10重量%を用い
たこと以外、実施例2と同様にしてマイクロ波融着用樹
脂継手を作製した。
(Example 3) The medium density polyethylene compounding ratio of the sheet for intermediate adhesive layer of Example 2 was changed from 80% by weight to 90% by weight.
In the same manner as in Example 2 except that 10% by weight of an ionomer (MFR / Dupont Polychemical Co., Ltd., MFR = 10 g / 10 min) was used in place of the maleic acid-modified linear low density polyethylene instead of the maleic acid-modified linear low density polyethylene. A resin joint for wave fusion was prepared.

【0062】(実施例4)実施例2の中間接着層用シー
トのマレイン酸変性線状低密度ポリエチレンに替えてア
イオノマー(前出)20重量%を用いたこと以外、実施
例2と同様にしてマイクロ波融着用樹脂継手を作製し
た。
Example 4 The same procedure as in Example 2 was repeated except that 20% by weight of the ionomer (described above) was used in place of the maleic acid-modified linear low density polyethylene in the intermediate adhesive layer sheet of Example 2. A resin joint for microwave fusion was prepared.

【0063】(実施例5)実施例2の中間接着層用シー
トの中密度ポリエチレン配合比率を80重量%から60
重量%に変更し、マレイン酸変性線状低密度ポリエチレ
ンに替えてアイオノマー(前出)40重量%を用いたこ
と以外、実施例2と同様にしてマイクロ波融着用樹脂継
手を作製した。
(Example 5) The compounding ratio of the medium-density polyethylene for the intermediate adhesive layer sheet of Example 2 was 80 to 60% by weight.
A resin joint for microwave fusion bonding was produced in the same manner as in Example 2 except that the weight ratio was changed to 40% by weight of the ionomer (described above) in place of the maleic acid-modified linear low density polyethylene.

【0064】(実施例6)高密度ポリエチレン(三井石
油化学社製、MFR=0.4g/10min)からなる
厚さ0.5mmの融着層用シートを実施例1と同様に調
製し、上記高密度ポリエチレン70重量%、マレイン酸
変性線状低密度ポリエチレン(前出)30重量%からな
るポリエチレン樹脂組成物を厚さ0.1mmの中間接着
層用シートを調製し、更に、実施例2の発熱層の中密度
ポリエチレンに替えて上記高密度ポリエチレンを用い発
熱層用シートを調製し、上記各シートを実施例1と同じ
構成で積層し、実施例1と同様にラミネートしてマイク
ロ波融着用樹脂継手を作製した。
Example 6 A sheet for fusion layer having a thickness of 0.5 mm and made of high density polyethylene (MFR = 0.4 g / 10 min, manufactured by Mitsui Petrochemical Co., Ltd.) was prepared in the same manner as in Example 1, A polyethylene resin composition comprising 70% by weight of high-density polyethylene and 30% by weight of maleic acid-modified linear low-density polyethylene (described above) was prepared as a sheet for an intermediate adhesive layer having a thickness of 0.1 mm. A sheet for heat generating layer was prepared by using the high density polyethylene in place of the medium density polyethylene in the heat generating layer, and the sheets were laminated in the same constitution as in Example 1 and laminated in the same manner as in Example 1 for microwave fusion. A resin joint was produced.

【0065】(実施例7)実施例2の中間接着層用シー
トの厚さを0.1mmから0.5mmに変更したこと以
外、実施例2と同様にしてマイクロ波融着用樹脂継手を
作製した。
Example 7 A microwave fusion bonding resin joint was produced in the same manner as in Example 2 except that the thickness of the intermediate adhesive layer sheet of Example 2 was changed from 0.1 mm to 0.5 mm. .

【0066】(比較例1)実施例1の発熱層用シートの
導電性のアニリン系重合体微粒子の配合量を30重量部
から150重量部に変更したこと以外、実施例1と同様
にしてマイクロ波融着用樹脂継手を作製した。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that the content of the conductive aniline polymer fine particles in the heat generating layer sheet of Example 1 was changed from 30 parts by weight to 150 parts by weight. A resin joint for wave fusion was prepared.

【0067】(比較例2)実施例1の発熱層用シートの
導電性のアニリン系重合体微粒子の配合量を30重量部
から3重量部に変更したこと以外、実施例1と同様にし
てマイクロ波融着用樹脂継手を作製した。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that the content of the conductive aniline polymer fine particles in the heating layer sheet of Example 1 was changed from 30 parts by weight to 3 parts by weight. A resin joint for wave fusion was prepared.

【0068】(比較例3)実施例2の発熱層用シートの
みからなるマイクロ波融着用樹脂継手を作製した。
(Comparative Example 3) A microwave fusion resin joint made of only the heat-generating layer sheet of Example 2 was produced.

【0069】(比較例4)実施例1の中間接着層用シー
ト2枚を省いた構成で実施例1と同様にラミネートして
マイクロ波融着用樹脂継手を作製した。
(Comparative Example 4) A resin joint for microwave fusion was prepared by laminating in the same manner as in Example 1 except that the two sheets for the intermediate adhesive layer of Example 1 were omitted.

【0070】(実施例8〜14)、(比較例5〜8) 実施例及び比較例で得られた各マイクロ波融着用樹脂継
手を、管継手用インサート金型のコア部に円筒状に巻き
付けて装着した後、上記中密度ポリエチレンを用い、射
出成形機にて図2に示す如き管挿入部の寸法が、内径3
4mm、厚さ10mmであるマイクロ波融着管継手(ソ
ケット)を作製した。
(Examples 8 to 14), (Comparative Examples 5 to 8) Each of the microwave fusion resin joints obtained in Examples and Comparative Examples was wrapped around the core portion of the insert mold for pipe fittings in a cylindrical shape. Then, using the above-mentioned medium density polyethylene, the size of the pipe insertion part as shown in FIG.
A microwave fusion tube fitting (socket) having a thickness of 4 mm and a thickness of 10 mm was produced.

【0071】(実施例15〜21)、(比較例9〜1
2) 上記実施例8〜14及び比較例5〜8で得られたマイク
ロ波融着管継手に、上記中密度ポリエチレン製、外径3
4mm、厚さ4mmの2本の管体を図2の仮想線で示し
た位置に挿入した後、図示していないマイクロ波照射装
置にて、2.45GHz、600Wのマイクロ波を90
秒間照射し、上記2本の管体を上記マイクロ波融着管継
手に融着した。
(Examples 15 to 21), (Comparative Examples 9 to 1)
2) The microwave fusion tube fittings obtained in Examples 8 to 14 and Comparative Examples 5 to 8 were made of the above medium density polyethylene and had an outer diameter of 3
After inserting two 4 mm thick and 4 mm thick tubular bodies at the positions shown by the phantom lines in FIG. 2, microwaves of 2.45 GHz and 600 W are generated by a microwave irradiation device (not shown).
Irradiation was performed for 2 seconds to fuse the two pipes to the microwave fusion pipe joint.

【0072】上記シート状のマイクロ波融着用樹脂継
手、マイクロ波融着管継手を用いた融着方法の性能を評
価するため、上記実施例15〜21及び比較例9〜12
で得られた管体・マイクロ波融着管継手接合体の重なり
合った融着部分から試験片を調製し、T型剥離強度を測
定した。測定結果は表1及び表2に示す。
In order to evaluate the performance of the above-mentioned sheet-shaped microwave fusion-bonding resin joint and the fusion-bonding method using the microwave fusion-bonding pipe joint, the above Examples 15 to 21 and Comparative Examples 9 to 12 were evaluated.
A test piece was prepared from the overlapping fusion-bonded portions of the tubular body / microwave fusion-bonded pipe joint assembly obtained in (3), and the T-type peel strength was measured. The measurement results are shown in Tables 1 and 2.

【0073】[0073]

【表1】 [Table 1]

【0074】[0074]

【表2】 [Table 2]

【0075】[0075]

【発明の効果】請求項1記載の本発明のマイクロ波融着
用樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、中間接着層に効率的に伝熱し、該中
間接着層に均一に分散すると共に、これと接して積層さ
れている融着層及びこれと接する被着体にまで均一、且
つ、効率的に伝熱し、該融着層及びこれと接する被着体
を溶融させ、強固に融着される。更に、上記中間接着層
は、上記発熱層と融着層との間にあって、両者を強い接
着力で結合しているものであるので、被着体との融着強
度が強固に保持される。
EFFECT OF THE INVENTION Since the microwave fusion resin joint of the present invention according to claim 1 is constructed as described above, the polyolefin of the heat generating layer is combined with the composition, the composition and the thickness of each layer. Conductive aniline-based polymer fine particles finely dispersed in a system resin are dielectrically heated by irradiation of microwaves to obtain a high amount of heat, efficiently transfer heat to the intermediate adhesive layer, and evenly to the intermediate adhesive layer. While being dispersed, heat is evenly and efficiently transferred to the fusion layer laminated in contact with this and the adherend in contact therewith, and the fusion layer and the adherend in contact therewith are melted and firmly bonded. Fused to. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained.

【0076】請求項2記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、該発熱層の両面に積層されている中
間接着層に効率的に伝熱し、上記発熱層の両面に積層さ
れている中間接着層に均一に分散すると共に、これと接
して積層されている融着層及びこれと接する被着体にま
で均一、且つ、効率的に伝熱し、該融着層及びこれと接
する被着体を溶融させ、強固に融着される。更に、上記
中間接着層は、上記発熱層と融着層との間にあって、両
者を強い接着力で結合しているものであるので、被着体
との融着強度が強固に保持される。
Since the microwave fusion resin joint of the present invention according to claim 2 is constructed as described above, the composition, the composition and the thickness of each layer are combined, and the polyolefin resin for the heat generating layer is combined. The conductive aniline-based polymer fine particles finely dispersed therein are subjected to dielectric heating by microwave irradiation to obtain a high amount of heat, and efficiently transfer heat to the intermediate adhesive layers laminated on both sides of the heat generating layer. , Evenly disperse in the intermediate adhesive layer laminated on both sides of the heat generating layer, and evenly and efficiently transfer heat to the fusion layer and the adherend in contact with the intermediate adhesive layer. The fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained.

【0077】請求項3記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、中間接着層に効率的に伝熱し、中間
接着層に均一に分散すると共に、これと接して積層され
ている融着層及びこれと接する被着体にまで均一、且
つ、効率的に伝熱し、該融着層及びこれと接する被着体
を溶融させ、強固に融着される。更に、上記中間接着層
は、上記発熱層と融着層との間にあって、両者を強い接
着力で結合しているものであるので、被着体との融着強
度が強固に保持される。就中、上記中間接着層は、上記
発熱層と融着層との間にあって、その厚さを融着層及び
発熱層の厚さ以下にすることによって、上記の如くマイ
クロ波融着された被着体の融着部における機械的強度を
高く保持することができる。
Since the microwave fusion resin joint of the present invention according to claim 3 is constructed as described above, the polyolefin resin for the heating layer is combined with the composition, the composition and the thickness of each layer. Conductive aniline-based polymer fine particles finely dispersed in it are dielectrically heated by irradiation of microwaves to obtain a high amount of heat, efficiently transfer heat to the intermediate adhesive layer, and evenly disperse in the intermediate adhesive layer. , Evenly and efficiently transfer heat to the fusion layer laminated in contact therewith and the adherend in contact therewith to melt the fusion layer and the adherend in contact therewith and firmly bond To be done. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained. In particular, the intermediate adhesive layer is between the heat generating layer and the fusing layer, and the thickness of the intermediate adhesive layer is made equal to or less than the thickness of the fusing layer and the heat generating layer, so that the microwave fusion-bonded material is coated as described above. It is possible to maintain high mechanical strength at the fusion-bonded portion of the bonded body.

【0078】請求項4記載の本発明のマイクロ波融着用
樹脂継手は、叙上の如く構成されているので、その構
成、配合及び各層の厚さが相俟って、発熱層のポリオレ
フィン系樹脂中に微細に分散された導電性のアニリン系
重合体微粒子が、マイクロ波の照射によって誘電加熱さ
れ高熱量が得られ、該発熱層の両面に積層されている中
間接着層に効率的に伝熱し、上記発熱層の両面に積層さ
れている中間接着層に均一に分散すると共に、これと接
して積層されている融着層及びこれと接する被着体にま
で均一、且つ、効率的に伝熱し、該融着層及びこれと接
する被着体を溶融させ、強固に融着される。更に、上記
中間接着層は、上記発熱層と融着層との間にあって、両
者を強い接着力で結合しているものであるので、被着体
との融着強度が強固に保持される。就中、上記マイクロ
波融着用樹脂継手は、被着体の接合部を含めた継手に、
熱成形もしくは熱接着によって、予め、積層もしくは埋
設されているので、被着体が管、ロッド、アングルその
他のプロファイルの如き複雑な形状の製品であっても、
予備的な何らの加工を施すことなく、確実、且つ、迅速
に強固に接合することができる。
Since the microwave fusion resin joint of the present invention according to claim 4 is constructed as described above, the polyolefin resin for the heat generating layer is combined with the composition, the composition and the thickness of each layer. The conductive aniline-based polymer fine particles finely dispersed therein are subjected to dielectric heating by microwave irradiation to obtain a high amount of heat, and efficiently transfer heat to the intermediate adhesive layers laminated on both sides of the heat generating layer. , Evenly disperse in the intermediate adhesive layer laminated on both sides of the heat generating layer, and evenly and efficiently transfer heat to the fusion layer and the adherend in contact with the intermediate adhesive layer. The fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Further, since the intermediate adhesive layer is between the heat generating layer and the fusion bonding layer and bonds the two with a strong adhesive force, the fusion bonding strength with the adherend is firmly maintained. Above all, the above-mentioned microwave fusion resin joint is a joint including a joint portion of an adherend,
Since it is laminated or embedded in advance by thermoforming or heat bonding, even if the adherend is a product with a complicated shape such as a pipe, rod, angle or other profile,
It is possible to securely and promptly and firmly bond without performing any preliminary processing.

【0079】請求項5記載の本発明の融着方法は、叙上
の如く構成されているので、請求項1乃至請求項4の本
発明のマイクロ波融着用樹脂継手の構成、配合及び各層
の厚さが相俟って、発熱層のポリオレフィン系樹脂中に
微細に分散された導電性のアニリン系重合体微粒子が、
マイクロ波の照射によって誘電加熱され高熱量が得ら
れ、該発熱層の両面に積層されている中間接着層に効率
的に伝熱し、上記発熱層の両面に積層されている中間接
着層に均一に分散すると共に、これと接して積層されて
いる融着層及びこれと接する被着体にまで均一、且つ、
効率的に伝熱し、該融着層及びこれと接する被着体を溶
融させ、強固に融着される。就中、請求項4の本発明の
マイクロ波融着用樹脂継手を用いる場合、被着体の接合
部を含めた継手に、熱成形もしくは熱接着によって、予
め、積層もしくは埋設されているので、被着体が管、ロ
ッド、アングルその他のプロファイルの如き複雑な形状
の製品であっても、予備的な何らの加工を施すことな
く、確実、且つ、迅速に強固に接合することができる。
Since the fusing method of the present invention according to claim 5 is constructed as described above, the constitution, composition and each layer of the resin joint for microwave fusion according to the present invention of claims 1 to 4 Combined with the thickness, conductive aniline-based polymer fine particles finely dispersed in the polyolefin-based resin of the heating layer,
A high amount of heat is obtained by dielectric heating due to microwave irradiation, heat is efficiently transferred to the intermediate adhesive layers laminated on both sides of the heat generating layer, and is evenly distributed on the intermediate adhesive layers laminated on both sides of the heat generating layer. Along with the dispersion, the fusion layer laminated in contact with this and the adherend in contact therewith, and
The heat is efficiently transferred, the fusion layer and the adherend in contact with the fusion layer are melted and firmly fused. Especially, when the microwave fusion resin joint of the present invention of claim 4 is used, since it is preliminarily laminated or embedded in the joint including the joint of the adherend by thermoforming or thermal bonding, Even if the adhered body is a product having a complicated shape such as a tube, a rod, an angle, or the like, it is possible to firmly and securely join the product firmly without performing any preliminary processing.

【0080】[0080]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のマイクロ波融着用樹脂継手を、2枚の
ポリエチレン樹脂板の端部を重ね合わせて融着する本発
明の融着方法の実施の一態様を示す一部切欠断面図であ
る。
FIG. 1 is a partially cutaway cross-sectional view showing an embodiment of a fusion bonding method of the present invention, in which a resin joint for microwave fusion of the present invention is fused by fusing the ends of two polyethylene resin plates in an overlapping manner. is there.

【図2】ポリエチレン樹脂管継手(ソケット)の接合面
に本発明のマイクロ波融着用樹脂継手を埋設したマイク
ロ波融着用樹脂継手にポリエチレン樹脂管を接合する本
発明の融着方法の実施の一態様を示す一部切欠断面図で
ある。
FIG. 2 is an embodiment of the fusing method of the present invention in which a polyethylene resin pipe is joined to a microwave fusion resin joint in which the microwave fusion resin joint of the present invention is embedded in the joining surface of a polyethylene resin pipe joint (socket). It is a partial cutaway sectional view showing a mode.

【符号の説明】[Explanation of symbols]

1、10 マイクロ波融着用樹脂継手 11 発熱層 12 中間接着層 13 融着層 21 ポリエチレン樹脂板(被着体) 22 ポリエチレン樹脂管(被着体) 31 マイクロ波融着用樹脂継手(板継手) 32 マイクロ波融着用樹脂継手(管継手:ソケット) 1, 10 Microwave fusion resin joint 11 Heat generating layer 12 Intermediate adhesive layer 13 Fusion layer 21 Polyethylene resin plate (adherent) 22 Polyethylene resin pipe (adherent) 31 Microwave fusion resin joint (plate joint) 32 Resin fitting for microwave fusion (pipe fitting: socket)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08J 5/12 CES C08J 5/12 CES B29L 23:00 31:24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // C08J 5/12 CES C08J 5/12 CES B29L 23:00 31:24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 モノオレフィンの重合体及び共重合体を
主体とするポリオレフィン樹脂からなる厚さ0.01〜
3mmの融着層、上記ポリオレフィン樹脂0〜99重量
%及び不飽和カルボン酸(無水物)変性ポリオレフィン
樹脂及びアイオノマー樹脂の群から選ばれる1種以上1
〜100重量%のポリオレフィン樹脂組成物からなる厚
さ0.005〜1mmの中間接着層及び上記ポリオレフ
ィン樹脂100重量部に対し導電性のアニリン系重合体
微粒子5〜100重量部が分散されている厚さ0.01
〜5mmの発熱層が融着層、中間接着層、発熱層の順に
積層されていることを特徴とするマイクロ波融着用樹脂
継手。
1. A thickness of 0.01 to 10 comprising a polyolefin resin mainly composed of a polymer and a copolymer of monoolefin.
3 mm fusion layer, 0 to 99% by weight of the above polyolefin resin, and one or more selected from the group consisting of unsaturated carboxylic acid (anhydride) modified polyolefin resin and ionomer resin 1
To 100% by weight of a polyolefin resin composition having a thickness of 0.005 to 1 mm, and 5 to 100 parts by weight of conductive aniline polymer fine particles dispersed in 100 parts by weight of the polyolefin resin. 0.01
A resin joint for microwave fusion, wherein a heat generating layer having a thickness of up to 5 mm is laminated in the order of a fusing layer, an intermediate adhesive layer, and a heat generating layer.
【請求項2】 発熱層の両面に中間接着層及び融着層が
順に積層されていることを特徴とする請求項1記載のマ
イクロ波融着用樹脂継手。
2. The microwave fusion resin joint according to claim 1, wherein an intermediate adhesive layer and a fusion layer are sequentially laminated on both surfaces of the heat generating layer.
【請求項3】 中間接着層の厚さが、発熱層の厚さ及び
融着層の厚さ以下であることを特徴とする請求項1及び
請求項2記載のマイクロ波融着用樹脂継手。
3. The microwave fusion resin joint according to claim 1 or 2, wherein the thickness of the intermediate adhesive layer is equal to or less than the thickness of the heat generating layer and the thickness of the fusion layer.
【請求項4】 請求項1乃至請求項3記載のマイクロ波
融着用樹脂積層体を熱融着性を有する継手の接合面に、
該マイクロ波融着用樹脂積層体の融着層が最外層となる
如く積層もしくは埋設してなることを特徴とするマイク
ロ波融着用樹脂継手。
4. The resin laminate for microwave fusion according to any one of claims 1 to 3 is attached to a joint surface of a joint having heat fusion property,
A microwave fusion resin joint, wherein the fusion layer of the microwave fusion resin laminate is laminated or embedded so as to be an outermost layer.
【請求項5】 請求項1乃至請求項4記載のマイクロ波
融着用樹脂積層体を融着層を介して熱融着性を有する被
着体の接合面に当接した後、上記マイクロ波融着用樹脂
継手の発熱層にマイクロ波を照射することを特徴とする
融着方法。
5. The microwave fusion resin laminate according to any one of claims 1 to 4 is brought into contact with a bonding surface of an adherend having heat fusion property via a fusion layer, and then the microwave fusion is performed. A fusion method comprising irradiating a heating layer of a worn resin joint with microwaves.
JP134496A 1996-01-09 1996-01-09 Resin joint for microwave fusion and fusing method Pending JPH09187876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP134496A JPH09187876A (en) 1996-01-09 1996-01-09 Resin joint for microwave fusion and fusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP134496A JPH09187876A (en) 1996-01-09 1996-01-09 Resin joint for microwave fusion and fusing method

Publications (1)

Publication Number Publication Date
JPH09187876A true JPH09187876A (en) 1997-07-22

Family

ID=11498887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP134496A Pending JPH09187876A (en) 1996-01-09 1996-01-09 Resin joint for microwave fusion and fusing method

Country Status (1)

Country Link
JP (1) JPH09187876A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517240A (en) * 2005-11-24 2009-04-30 エボニック デグサ ゲーエムベーハー Electromagnetic welding method
JP2009538247A (en) * 2006-05-26 2009-11-05 ペラ イノベーション リミテッド Manufacturing method and manufacturing apparatus for moldable product
JP2009293085A (en) * 2008-06-05 2009-12-17 Achilles Corp Plated product using polyolefin base resin or polyacetal base resin as base material
JP2010031318A (en) * 2008-07-28 2010-02-12 Achilles Corp Plated article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517240A (en) * 2005-11-24 2009-04-30 エボニック デグサ ゲーエムベーハー Electromagnetic welding method
JP2009538247A (en) * 2006-05-26 2009-11-05 ペラ イノベーション リミテッド Manufacturing method and manufacturing apparatus for moldable product
JP2009293085A (en) * 2008-06-05 2009-12-17 Achilles Corp Plated product using polyolefin base resin or polyacetal base resin as base material
JP2010031318A (en) * 2008-07-28 2010-02-12 Achilles Corp Plated article

Similar Documents

Publication Publication Date Title
CA2123690C (en) Method and article for microwave bonding of polyethylene pipe
US6403889B1 (en) Bi-layer covering sheath
JP6630021B2 (en) Heat-resistant two-layer heat-shrinkable tube and method of coating object to be coated
WO2021200686A1 (en) High-frequency dielectric heating adhesive sheet
JPH09187876A (en) Resin joint for microwave fusion and fusing method
WO2021200684A1 (en) High-frequency dielectric heating adhesive sheet
JP2020070365A (en) High-frequency dielectric heating adhesive sheet and heat insulation structure body
JPH06136330A (en) Heat-bondable laminated composite film and its production
AU764318B2 (en) Method of sealing a tube in a container
WO1997006205A2 (en) Joining of polyolefin articles
JPH08239631A (en) Resin sheet for microwave welding, resin composition for microwave welding, and method of welding therewith
JP7223553B2 (en) High-frequency dielectric heating adhesive sheet, pipe joining method, and pipe joint
JPH09208755A (en) Resin composition for melt adhesion
JPH09124953A (en) Resin composition for microwave fusion
JPH09241599A (en) Resin composition for microwave welding
JPH08259746A (en) Microwave-weldable resin composition
JPH09241508A (en) Microwave-weldable resin composition
WO2022118826A1 (en) Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure
WO2022118825A1 (en) Adhesive for high-frequency dielectric heating, structure, and method for manufacturing structure
JPH09241507A (en) Microwave-weldable resin composition
JPH08111282A (en) Multi-layer sheet form heater and method for covering exterior sheet
JPH08336898A (en) Method for connecting thermoplastic resin tube
JPH09241588A (en) Resin composition for microwave welding and method for jointing pipes therewith
JPS5859018A (en) Method of joining crosslinked polyolefin pipe
JP2000120971A (en) Polyethylene pipe connecting method based on electro- fusion joint