JPH09187644A - Dissociating method of fine particles - Google Patents

Dissociating method of fine particles

Info

Publication number
JPH09187644A
JPH09187644A JP366796A JP366796A JPH09187644A JP H09187644 A JPH09187644 A JP H09187644A JP 366796 A JP366796 A JP 366796A JP 366796 A JP366796 A JP 366796A JP H09187644 A JPH09187644 A JP H09187644A
Authority
JP
Japan
Prior art keywords
fine particles
particles
suction
test
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP366796A
Other languages
Japanese (ja)
Other versions
JP3994446B2 (en
Inventor
Hiroyuki Matsumura
浩行 松村
Shigeru Inoue
茂 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP00366796A priority Critical patent/JP3994446B2/en
Publication of JPH09187644A publication Critical patent/JPH09187644A/en
Application granted granted Critical
Publication of JP3994446B2 publication Critical patent/JP3994446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily dissociate fine particles and reuse them as a placing powder by dissociating fine particles stuck or welded with each other by suction at the time of producing the fine particles through reaction, melting, etc. SOLUTION: In a stage in which the fine particles such as spherical ceramics are produced by reaction, melting or burning or the stage in which the particles are used as the placing powder at a high temp., particles are stuck or welded in aggregation, continuous chain and satellite-like with each other. At that time, the fine particles stuck or welded with each other are dissociated when a pipe is inserted into a vessel in which the fine particles are put and by sucking the vessel with a sucking type blast equipment for projection, and the particles are suck by pulling an air valve and sprayed from the injection nozzle at a tip of a gun to recover the particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ブラスト加工など
に用いられる投射材、粉砕媒体に用いられる微小メディ
ア、複合材料用の充填材又は焼成用セッター上に敷かれ
る敷粉として使用される微小粒の解離方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blasting material used for blasting, a fine medium used for a crushing medium, a filler for a composite material, or a fine particle used as a spread powder spread on a setter for firing. The present invention relates to a dissociation method of.

【0002】[0002]

【従来の技術】ブラストの用途として熱処理材スケール
の除去、各種金型などのクリーニング;各種コーティン
グ膜の接着強化のための素地研削加工;プレスや鋳込み
などの成形加工品のバリ除去;梨地加工に代表されるツ
ヤ消しや模様付け;各種工具やスプリングなどのピーニ
ング加工が行われている。これらの加工法は、圧縮空気
を動力源として、高速で投射材を処理材表面に打ち込む
エアブラスト加工法が中心となっている。
2. Description of the Related Art For the purpose of blasting, removal of scales of heat-treated materials, cleaning of various molds, base grinding for strengthening adhesion of various coating films, removal of burrs from molded products such as presses and castings, satin finish Typical matting and patterning; various tools and springs are peened. These processing methods are centered on an air blast processing method in which a blast material is driven onto the surface of the treated material at high speed using compressed air as a power source.

【0003】この加工に用いられる投射材の特徴として
は、粒が小さく、比重や機械的強度が大きく、耐摩耗性
に優れ、衝撃で破砕し難く、繰り返して使用できるもの
がよいとされている。
The characteristics of the shot material used for this processing are small particles, high specific gravity and mechanical strength, excellent wear resistance, hard to be crushed by impact and reusable. .

【0004】各種合金の鏡面の耐摩耗性付与、バフ研磨
の代替として鏡面の装飾効果付与、金属材料への変形な
しでの焼き入れ、光学、電子機器などの金属あるいは樹
脂表面のツヤ消しや模様付けなどに、粒径0.025〜
0.3mmの大きさの球状の微小粒が用いられている。
Addition of mirror surface abrasion resistance of various alloys, addition of mirror surface decoration effect as an alternative to buffing, quenching without deformation to metal materials, matte or pattern of metal or resin surface of optical or electronic equipment. For attachment, particle size 0.025-
Spherical fine particles with a size of 0.3 mm are used.

【0005】また、粒径2mm以下の大きさからなる破
砕面および稜角を有し、主として角張った球状度が半球
以下の不定形状のグリットを用いて、複雑形状品の洗
浄、各種コーティング膜の接着力強化のための表面の粗
面化などが行われている。
Further, by using an irregularly shaped grit having a crushed surface and a ridge angle with a grain size of 2 mm or less and having an angular sphericity of hemisphere or less, washing of complicated shape products and adhesion of various coating films are performed. Roughening of the surface is performed to strengthen the strength.

【0006】一方、粉砕分野においても、ボールミルや
振動ボールミルより粉砕効率のよい媒体撹拌ミルの開発
で、サブミクロン以下の原料の粉砕が行われるようにな
り、媒体として用いられる粉砕メデイアも、粒径0.1
〜1mmの大きさの球状の微小粒が用いられている。
On the other hand, in the field of pulverization, the development of a medium agitating mill having a higher pulverization efficiency than a ball mill or a vibrating ball mill has made it possible to pulverize sub-micron or smaller raw materials, and the pulverized media used as a medium also have a particle size of 0.1
Spherical microparticles with a size of ~ 1 mm are used.

【0007】また、金属、ガラス、樹脂などをマトリッ
クスとし、これらに配合分散させ、マトリックスの機械
的強度、耐摩耗性、耐熱性などを向上させる充填材とし
て、粒径0.2mm以下の大きさの球状の微小粒が用い
られている。
Further, as a filler for improving mechanical strength, abrasion resistance, heat resistance and the like of the matrix by using metal, glass, resin or the like as a matrix and mixing and dispersing them in a matrix, a particle size of 0.2 mm or less. The spherical fine particles are used.

【0008】近年、小型化が進んでいる電子材料部品を
焼成する工程においても、焼成物とセッターの接着や反
応汚染を防止する目的として、セッターの上に敷いた
り、接着させる敷粉として、粒径0.025〜2mmの
大きさの球状の微小粒が用いられている。
Even in the process of firing electronic material parts, which have been reduced in size in recent years, particles are spread as a spread powder to be spread on or adhered to the setter for the purpose of preventing adhesion between the baked product and the setter and reaction contamination. Spherical fine particles having a diameter of 0.025 to 2 mm are used.

【0009】このような目的に用いられる微小粒の材質
としては、ガラスあるいは、ジルコン、アルミナ、ジル
コニア、ムライト、窒化珪素、炭化珪素などのセラミッ
クスがある。
The fine particles used for such purpose include glass or ceramics such as zircon, alumina, zirconia, mullite, silicon nitride and silicon carbide.

【0010】[0010]

【発明が解決しようとする課題】球状のガラスビーズの
製法は、流動焼成法が一般的である。この方法は、原料
であるカレットを一定の粒度に粉砕し、篩分けた後、1
100℃前後に加熱されたフレーム中で溶融し、表面張
力を利用して球状化する。この段階では、粒度分布が広
いため必要な粒度に篩で分級される。しかし、溶融時に
粒子同士が融着する現象が生じる。これを防止するため
に、溶融時にカーボンを付着させるカーボン法がある
が、粒径0.5mmより小さいものが製造できない。
As a method for producing spherical glass beads, a fluidized firing method is generally used. In this method, cullet as a raw material is crushed to a certain particle size and sieved, and then 1
It is melted in a frame heated to around 100 ° C. and spheroidized by utilizing surface tension. At this stage, since the particle size distribution is wide, the particles are sieved to the required particle size. However, a phenomenon occurs in which particles are fused to each other during melting. In order to prevent this, there is a carbon method in which carbon is adhered at the time of melting, but it is not possible to manufacture one having a particle size smaller than 0.5 mm.

【0011】球状のセラミックスビーズの製法は、液中
造粒法や撹拌造粒法あるいは噴霧造粒法などが一般的で
ある。噴霧造粒法の場合は、セラミックススラリーを回
転ディスク方式のスプレードライヤーを用いて顆粒状の
造粒体を得、任意の粒度に篩で分級後、1300〜20
00℃で焼成させることにより得られる。しかし、分級
工程で微粉が発生し、造粒体のまわりに付着する。これ
が原因となり、焼成時に微小粒同士が、凝集、あるいは
連鎖状に融着や付着したり、大きい粒の周りに小さい粒
が付着したサテライト状になる現象が生じる。
The method for producing spherical ceramic beads is generally a submerged granulation method, a stirring granulation method or a spray granulation method. In the case of the spray granulation method, a ceramics slurry is obtained by using a rotary disk type spray dryer to obtain a granular granulated body, which is sieved to an arbitrary particle size, and then 1300 to 20
It is obtained by firing at 00 ° C. However, fine powder is generated in the classifying process and adheres around the granules. Due to this, there occurs a phenomenon that during firing, fine particles agglomerate, or are fused or attached in a chain form, or become a satellite shape in which small particles are attached around large particles.

【0012】これを防止するために、焼成時に焼成温度
より融点の高い粉末を混合し、付着を防止させる方法が
あるが、粒径が小さくなるほど、得られた微小粒と付着
防止粉の分離が難しくなる。
In order to prevent this, there is a method of preventing the adhesion by mixing a powder having a melting point higher than the baking temperature at the time of baking, but as the particle size becomes smaller, the obtained fine particles and the anti-adhesion powder are separated from each other. It gets harder.

【0013】液中造粒法や撹拌造粒法においても、噴霧
造粒法と同様の現象が生じる。
In the submerged granulation method and the stirring granulation method, the same phenomenon as in the spray granulation method occurs.

【0014】一方、不定形状のセラミックスグリットの
製法は、圧縮造粒法や押出造粒法などが一般的である。
圧縮造粒法の場合は、セラミックス粉末をブリケッティ
ングマシンなどの圧縮成形機を用いて成形体を得、得ら
れた成形体をロールミルなどの破砕機で任意の粒度に破
砕し、篩で分級後、1300〜2000℃で焼成させる
ことにより得られる。しかし、分級工程で微粉が発生
し、成形体のまわりに付着したり、形状が不定形のた
め、球状品と比較して接触点が多く、これらが原因とな
り、焼成時に成形体同士が凝集、連鎖、サテライト状に
付着あるいは融着する現象が生じやすい。
On the other hand, a compression granulation method, an extrusion granulation method, or the like is generally used as a method for producing an irregular shaped ceramic grit.
In the case of the compression granulation method, a ceramic powder is used to obtain a compact using a compression molding machine such as a briquetting machine, and the obtained compact is crushed to a desired particle size with a crusher such as a roll mill, and then classified with a sieve. After that, it is obtained by firing at 1300 to 2000 ° C. However, fine powder is generated in the classification step, and it adheres to the periphery of the molded body or has an irregular shape, so there are more contact points than spherical products, which causes these, and the molded bodies aggregate during firing, The phenomenon of attachment or fusion in the form of chains or satellites easily occurs.

【0015】このように、粒が微粒化するほど電気炉な
どで、反応または溶融あるいは焼成する工程において、
粒同士が、凝集、連鎖、サテライト状に付着あるいは融
着してしまう。特に、ガラスやセラミックスビーズ、あ
るいはセラミックスグリットは、この現象が顕著であ
る。
As described above, in the process of reacting or melting or firing in an electric furnace, etc., as the particles become finer,
The particles adhere to each other or affix to each other in the form of aggregates, chains, or satellites. This phenomenon is particularly remarkable in glass, ceramic beads, and ceramic grit.

【0016】このように集合した微小粒を投射材、粉砕
媒体、充填材、敷粉などに用いた場合は、いろいろな問
題点が生じる。例えば投射に用いた場合、投射材投入タ
ンクやノズル内で閉塞が生じたり、噴射量にばらつきが
生じ、一定の条件で投射することができなくなったり、
同一部分に繰り返して投射した際、加工面が粗くなるな
どの問題がある。
When the fine particles thus collected are used as a blast material, a crushing medium, a filler, a spread powder, etc., various problems occur. For example, when used for projection, blockage may occur in the shot material charging tank or nozzle, the injection amount may vary, and projection may not be possible under certain conditions.
There is a problem that the machined surface becomes rough when repeatedly projected on the same portion.

【0017】一方、粉砕媒体として用いた場合、粉砕時
に付着した微小粒が解離し、スクリーンやスペーサーを
通過し、製品中に混入するなどの問題が生じる。
On the other hand, when it is used as a grinding medium, there arises a problem that fine particles attached at the time of grinding are dissociated, pass through a screen or a spacer, and are mixed into a product.

【0018】また、充填材として用いた場合も、配合分
散時の流動性が悪くなり、斑点、色むらなど色調が不均
一になったり、機械的強度、耐摩耗性、耐熱性などにば
らつきが生じる。
Also, when used as a filler, the fluidity at the time of compounding and dispersion becomes poor, the color tone becomes uneven such as spots and color unevenness, and the mechanical strength, abrasion resistance, heat resistance, etc. vary. Occurs.

【0019】敷粉として用いた場合は、粒が微粒化する
ほどあるいは高温になるほど、敷粉同士が、凝集、連
鎖、サテライト状に付着あるいは融着してしまう。特
に、低融点の物質が含まれるほどこの現象が顕著であ
り、このようなものは敷粉として再利用できず、産業廃
棄物として処理する必要がある。
When it is used as a spread powder, the spread particles adhere to or agglomerate, chain, or satellite-like in agglomeration, chains, or satellites as the particles become finer or the temperature becomes higher. In particular, the lower the melting point of the substance contained, the more remarkable this phenomenon is, and such a substance cannot be reused as bed dust and must be treated as industrial waste.

【0020】本発明は、これらの問題の解決された、微
小粒を反応または溶融あるいは焼成により製造する工
程、あるいは敷粉として高温で使用する工程において、
微小粒同士が、凝集、連鎖、サテライト状に付着あるい
は融着しても、その微小粒を容易に解離できる方法の提
供を目的とするものである。この微小粒を投射材として
用いることで、投射材投入タンクやノズル内で閉塞する
ことがなく、噴射量が一定で、同一部分に繰り返して投
射しても、加工面が滑らかで、かつ均一であり、粉砕媒
体として用いた場合も、サテライト状に付着した微小粒
が解離し、スラリーに混入することによるトラブルがな
く、充填材として用いた場合も、流動性がよいため配合
分散性がよく、色調や特性にばらつきが生じにくくな
り、敷粉としても再利用が可能となる。
In the present invention, in which the above problems are solved, fine particles are produced by reaction, melting or firing, or used as a spread powder at a high temperature,
It is an object of the present invention to provide a method capable of easily dissociating fine particles even if the fine particles adhere or fuse in the form of agglomeration, chains, or satellites. By using these fine particles as a shot material, there is no blockage in the shot material input tank or nozzle, the injection amount is constant, and even if repeatedly shot on the same part, the processed surface is smooth and uniform. Yes, even when used as a grinding medium, the fine particles adhering to the satellite dissociate, there is no trouble due to mixing in the slurry, even when used as a filler, good mixing and dispersibility because of good fluidity, Variations in color tone and characteristics are less likely to occur, and it can be reused as bed dust.

【0021】[0021]

【課題を解決するための手段】本発明は、お互いに付着
あるいは融着した微小粒を、吸引により互いに解離する
ことを特徴とする微小粒の解離方法を要旨とするもので
ある。
DISCLOSURE OF THE INVENTION The gist of the present invention is a method for dissociating fine particles which are characterized in that fine particles adhered or fused to each other are dissociated from each other by suction.

【0022】以下に、本発明の微小粒の解離方法が充足
すべき要件について、詳細に説明する。
The requirements to be satisfied by the method for dissociating fine particles of the present invention will be described in detail below.

【0023】a)吸引回収設備 コンプレッサーなどによる圧縮空気を動力源とする場合
は、投射用の吸引式ブラスト設備、液体ホーニング設
備、あるいはエジェクター機構のある吸引回収設備など
が好ましい。水を動力源とする場合は、ベンチュリース
クラバー、水エジェクターなどが好ましい。
A) Suction / Recovery Equipment When compressed air from a compressor or the like is used as a power source, a suction-type blasting equipment for projection, a liquid honing equipment, or a suction / recovery equipment having an ejector mechanism is preferable. When water is used as a power source, a venturi scrubber, a water ejector and the like are preferable.

【0024】また、真空ポンプ、送風機、掃除機などに
よる吸込空気を動力源とする場合は、エジェクター機構
のある吸引回収設備に連結することが好ましい。
When the suction air from a vacuum pump, a blower, a vacuum cleaner or the like is used as a power source, it is preferably connected to a suction / recovery facility having an ejector mechanism.

【0025】いずれの吸引設備の場合も、解離させた微
小粒を回収する付帯設備がある方が、より好ましい。
In any suction equipment, it is more preferable to have an auxiliary equipment for collecting the dissociated fine particles.

【0026】b)吸引条件 吸引時の微小粒の状態は、乾式でも湿式でも問題なく解
離できるが、微小粒の材質、解離作業の効率、解離設備
の摩耗防止面から、圧縮空気の圧力、真空度、風量を調
整する必要がある。
B) Suction condition The state of the fine particles at the time of suction can be dissociated without any problem whether dry or wet, but from the viewpoint of the material of the fine particles, the efficiency of dissociation work, and the wear prevention of dissociation equipment, the pressure of compressed air and vacuum are used. It is necessary to adjust the degree and air volume.

【0027】圧縮空気を動力源とする場合は、微小粒の
材質にもよるが、その圧力は、2〜10kg/cm2
が好ましく、吸引時の真空度は、1〜7m水柱が好まし
い。この数値以下であると、微小粒の解離が充分ではな
くなる。
When compressed air is used as the power source, the pressure is 2 to 10 kg / cm 2 G, depending on the material of the fine particles.
Is preferred, and the vacuum degree during suction is preferably 1 to 7 m water column. If it is less than this value, the dissociation of fine particles becomes insufficient.

【0028】真空ポンプ、送風機、掃除機などによる吸
込空気、あるいはベンチュリースクラバー、水エジェク
ターなど水を動力源とする場合も、吸引時の真空度は、
1〜7m水柱が好ましい。
Even when suction air from a vacuum pump, a blower, a vacuum cleaner, or water such as a venturi scrubber or a water ejector is used as a power source, the degree of vacuum during suction is
1-7 m water column is preferred.

【0029】c)解離方法 投射用のブラストガンユニットを使用する場合は、ユニ
ットに圧縮空気ラインを接続し、ユニット下部のサクシ
ョンノズルにサクションホースを取り付け、ホース先端
にサクションパイプを接続し、解離させる微小粒の入っ
た容器にパイプを差込み、エアバルブを引くと微小粒が
吸引され、ガン先端の噴射ノズルから微小粒が噴射され
る。噴射された微小粒は、樹脂などでライニングされた
容器に直接回収される。大部分のものは、吸引から噴射
の間で解離されるが、微小粒を衝突板などに衝突させる
ことにより解離されるものもある。
C) Dissociation method When using a blast gun unit for projection, a compressed air line is connected to the unit, a suction hose is attached to the suction nozzle at the bottom of the unit, and a suction pipe is connected to the tip of the hose to dissociate. When a pipe is inserted into a container containing fine particles and the air valve is pulled, the fine particles are sucked, and the fine particles are jetted from a jet nozzle at the tip of the gun. The sprayed fine particles are directly collected in a container lined with resin or the like. Most of them are dissociated between suction and jetting, but some are dissociated by colliding fine particles with a collision plate or the like.

【0030】圧縮空気を動力源としたエジェクター機構
のある吸引回収設備を使用する場合は、設備に圧縮空気
ラインを接続し、設備のサクションノズルにサクション
ホースを取り付け、ホース先端にサクションパイプを接
続し、解離させる微小粒の入った容器にパイプを差込
み、エアバルブを開くと、微小粒が設備内に吸引回収さ
れ解離される。
When using a suction / recovery facility with an ejector mechanism that uses compressed air as a power source, connect a compressed air line to the facility, attach a suction hose to the suction nozzle of the facility, and connect a suction pipe to the end of the hose. , When a pipe is inserted into the container containing the fine particles to be dissociated and the air valve is opened, the fine particles are sucked and collected in the equipment and dissociated.

【0031】真空ポンプ、送風機、掃除機などによる吸
込空気、あるいはベンチュリースクラバー、水エジェク
ターなど水を動力源とする吸引回収設備は、設備に吸引
ラインを接続し、設備のサクションノズルにサクション
ホースを取り付け、ホース先端にサクションパイプを接
続し、解離させる微小粒の入った容器にパイプを差込
み、吸引バルブを開くと、微小粒が設備内に吸引回収さ
れ解離される。
For suction and recovery equipment powered by suction air from a vacuum pump, blower, vacuum cleaner, or water such as venturi scrubber or water ejector, connect a suction line to the equipment and attach a suction hose to the suction nozzle of the equipment. When a suction pipe is connected to the end of the hose, the pipe is inserted into the container containing the fine particles to be dissociated, and the suction valve is opened, the fine particles are sucked and collected in the equipment and dissociated.

【0032】d)微小粒の大きさ 微小粒を反応または溶融あるいは焼成により製造する工
程、あるいは敷粉として高温で使用する工程において、
微小粒同士が、凝集、連鎖、サテライト状に付着あるい
は融着しやすい大きさは、粒径が0.01〜2mmの範
囲にあるものであり、特に、粒径0.3mm以下の球状
のものは、この現象が顕著である。
D) Size of fine particles In the step of producing fine particles by reaction, melting or baking, or in the step of using as fine particles at high temperature,
The size in which fine particles are easily attached or fused in the form of agglomerates, chains, or satellites is such that the particle size is in the range of 0.01 to 2 mm, and particularly spherical with a particle size of 0.3 mm or less. This phenomenon is remarkable.

【0033】以下、本発明の微小粒の一例であるジルコ
ニア質微小粒の解離方法について説明する。
A method of dissociating zirconia-based fine particles, which is an example of the fine particles of the present invention, will be described below.

【0034】ジルコニア微小粒に用いられるジルコニア
粉末の製法としては、電融法、加水分解法、中和共沈
法、加水分解−中和法、水熱酸化法、熱分解法、アルコ
キシド法などがあるが、特に限定する必要はない。ま
た、安定化剤として、MgO、CaO、Y23、CeO
2などの酸化物が主に使用されるが、微小粒の使用目的
により、安定化剤とその含有量を定めればよい。
The zirconia powder used for the zirconia fine particles may be produced by an electrofusion method, a hydrolysis method, a neutralization coprecipitation method, a hydrolysis-neutralization method, a hydrothermal oxidation method, a thermal decomposition method or an alkoxide method. However, there is no particular limitation. Further, as a stabilizer, MgO, CaO, Y 2 O 3 , CeO
Oxides such as 2 are mainly used, but the stabilizer and its content may be determined depending on the purpose of use of the fine particles.

【0035】ジルコニア粉末を造粒する方法としては、
噴霧造粒法、転動造粒法、攪拌造粒法、液中造粒法、押
出造粒法、圧縮造粒法などがあるが、各種粉末製造法で
得られたジルコニア粉末の特性と製造する大きさおよび
形状に合わせて、造粒方法を選択する必要がある。
As a method for granulating the zirconia powder,
There are spray granulation method, rolling granulation method, stirring granulation method, submerged granulation method, extrusion granulation method, compression granulation method, etc., but the characteristics and production of zirconia powder obtained by various powder production methods It is necessary to select the granulation method according to the size and shape to be used.

【0036】例えば、0.1mmより小さい球状の微小
粒の製法は、噴霧造粒法が一般的である。安定化剤を含
まないジルコニア粉末に安定化剤であるイットリア粉末
を加え、これを湿式で粉砕混合してジルコニアスラリー
を得、500cP以上に粘度調整後、大気中で回転ディ
スク式の噴霧乾燥装置を用いて造粒乾燥させ、得られた
造粒体を希望サイズに篩で分級後、この造粒体を130
0〜1600℃で焼成することにより得られる。
For example, a spray granulation method is generally used for producing spherical fine particles smaller than 0.1 mm. Yttria powder, which is a stabilizer, is added to zirconia powder that does not contain a stabilizer, and this is pulverized and mixed by wet to obtain a zirconia slurry. After adjusting the viscosity to 500 cP or more, a rotary disk type spray dryer is used in the air. Granulate and dry using the obtained granules, classify the granules to the desired size with a sieve, and
It is obtained by firing at 0 to 1600 ° C.

【0037】しかし、この焼成工程において、粒子同士
が付着あるいは融着する現象が生じる。微粒になるほ
ど、粒同士が、凝集、連鎖、サテライト状に付着あるい
は融着する現象が顕著になり、このままでは、投射材や
充填材あるいは粉砕部材として使用できない。この微小
粒を圧縮空気を動力源とするエジェクター機構を持った
吸引回収設備により、圧力2kg/cm2以上、真空度
1m水柱以上の条件で、吸引回収することで微小粒を解
離させる。
However, in this firing step, a phenomenon occurs in which particles adhere to each other or fuse. As the particles become finer, the phenomenon that the particles adhere to each other in the form of agglomeration, chains, or satellites becomes more prominent, and as it is, it cannot be used as a shot material, a filler, or a crushing member. The fine particles are dissociated by sucking and collecting the fine particles under the conditions of a pressure of 2 kg / cm 2 or more and a vacuum degree of 1 m water column or more by a suction and recovery equipment having an ejector mechanism using compressed air as a power source.

【0038】また、この造粒体あるいは微小粒を130
0〜1600℃で敷粉として使用した場合も、焼成工程
同様、粒子同士が付着あるいは融着する現象が生じる。
この場合においても、圧縮空気を動力源とするエジェク
ター機構を持った吸引回収設備により、圧力2kg/c
2以上、真空度1m水柱以上の条件で、吸引回収する
ことで微小粒を解離させ、再利用することができる。
The granules or fine particles are
Even when it is used as spread powder at 0 to 1600 ° C., the phenomenon that particles adhere to each other or are fused to each other occurs as in the firing step.
Even in this case, the pressure of 2 kg / c can be obtained by the suction recovery facility having an ejector mechanism using compressed air as a power source.
The fine particles can be dissociated and reused by suction and recovery under the conditions of m 2 or more and a degree of vacuum of 1 m water column or more.

【0039】[0039]

【発明の効果】以上の如く、本発明は、微小粒を反応ま
たは溶融あるいは焼成により製造する工程、あるいは敷
粉として高温で使用する工程において、微小粒同士が、
凝集、連鎖、サテライト状に付着あるいは融着しても、
吸引することにより、その微小粒を容易に解離できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, in the step of producing fine particles by reaction, melting or firing, or in the step of using as a spread powder at a high temperature, the fine particles are
Even if attached or fused in the form of agglomerates, chains, or satellites,
The fine particles can be easily dissociated by suction.

【0040】この微小粒を投射材として用いることで、
投射材投入タンクやノズル内で閉塞することがなく、噴
射量が一定で、同一部分に繰り返して投射しても、加工
面が滑らかで、かつ均一であり、粉砕媒体として用いた
場合も、サテライト状に付着した微小粒が解離し、スク
リーンやスペーサーを通過し、スラリーに混入するトラ
ブルがなくなり、充填材として用いた場合も、流動性が
よいため配合分散性がよく、色調や特性にばらつきが生
じにくくなる。また、容易に解離できるので、敷粉とし
て再利用が可能となった。
By using these fine particles as a projection material,
It does not clog in the shot material input tank or nozzle, the injection amount is constant, and even if it is repeatedly projected on the same part, the processed surface is smooth and uniform, and even when used as a grinding medium, satellite The fine particles attached in a state of dissociation pass through the screen and spacers, eliminating the trouble of mixing in the slurry. Even when used as a filler, the fluidity is good and the compounding dispersibility is good, and there are variations in color tone and characteristics. Less likely to occur. Moreover, since it can be easily dissociated, it can be reused as bed powder.

【0041】[0041]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例により何等限定されるも
のでない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0042】実施例1 市販のジルコニア粉末TZ−3Y(東ソー(株)製:顆
粒状)を目開き0.038mmおよび0.125mmの
佐藤式振動篩(晃栄産業(株)製:400D)で分級
し、この範囲内のものを大気雰囲気下で電気炉により、
1500℃、保持4時間の条件で焼成し、該焼成品をロ
ールクラッシャーMRC−10((株)マキノ製:隙間
5mm)で解し、集合粒を得た。更に、該集合粒をサイ
レントクリーナーSC−30−32(オオサワ&カンパ
ニー製:内径32mmφ)を用いて、圧縮空気圧力4k
g/cm2G、真空度1.3m水柱、吸込空気量1.3
3/minで吸引回収し、球状の微小粒を得た。次
に、該微小粒を目開き0.025mmおよび0.090
mmの佐藤式振動篩で分級して、平均粒径0.045m
mのジルコニア質微小粒を得た。得られた微小粒を用い
て、敷粉試験、投射試験、樹脂混合試験、粉砕試験を行
った。
Example 1 Commercially available zirconia powder TZ-3Y (manufactured by Tosoh Co., Ltd .: granular) was passed through a Sato-type vibrating sieve having openings of 0.038 mm and 0.125 mm (manufactured by Koei Sangyo Co., Ltd .: 400D). Classify, and those in this range under an air atmosphere with an electric furnace,
Firing was performed under conditions of 1500 ° C. and holding for 4 hours, and the fired product was disentangled with a roll crusher MRC-10 (manufactured by Makino Co., Ltd .: gap 5 mm) to obtain aggregated particles. Further, the aggregated particles were compressed with a silent cleaner SC-30-32 (manufactured by Osawa & Co .: inner diameter 32 mmφ) at a compressed air pressure of 4 k.
g / cm 2 G, vacuum degree 1.3 m water column, suction air amount 1.3
The particles were collected by suction at m 3 / min to obtain spherical fine particles. Next, the fine particles are opened with openings of 0.025 mm and 0.090.
Classification with a Sato-type vibrating screen of mm, average particle size 0.045m
m zirconia-based fine particles were obtained. Using the obtained fine particles, a floor powder test, a projection test, a resin mixing test, and a crushing test were performed.

【0043】実施例2 実施例1と同じジルコニア粉末TZ−3Yを目開き0.
053mmおよび0.090mmの佐藤式振動篩で分級
し、この範囲内のものを大気雰囲気下で電気炉により、
1500℃、保持4時間の条件で焼成し、該焼成品をロ
ールクラッシャーMRC−10(隙間5mm)で解し、
集合粒を得た。更に、該集合粒をワンダーガンW301
型(オオサワ&カンパニー製:内径11mmφ)を用い
て、圧縮空気圧力5kg/cm2G、真空度2.3m水
柱、吐出空気量1.2m3/minで吸引し、0.1m3
のゴムライニング槽内に噴射回収し、球状の微小粒を得
た。次に、該微小粒を目開き0.038mmおよび0.
063mmの佐藤式振動篩で分級して、平均粒径0.0
48mmのジルコニア質微小粒を得た。得られた微小粒
を用いて、敷粉試験、投射試験、樹脂混合試験、粉砕試
験を行った。
Example 2 The same zirconia powder TZ-3Y as in Example 1 was opened.
Classify with Sato type vibrating sieve of 053 mm and 0.090 mm, and those within this range are treated with an electric furnace in an air atmosphere.
Baking is performed under the conditions of 1500 ° C. and a holding time of 4 hours, and the fired product is melted with a roll crusher MRC-10 (gap 5 mm),
Obtained aggregated grains. Furthermore, the aggregated particles are treated with Wonder Gun W301.
Using a mold (made by Osawa & Co .: inner diameter 11 mmφ), suction with compressed air pressure of 5 kg / cm 2 G, vacuum degree of 2.3 m water column, and discharge air volume of 1.2 m 3 / min, and 0.1 m 3
It was sprayed and collected in the rubber lining tank of to obtain spherical fine particles. Next, the fine particles are opened with openings of 0.038 mm and 0.
Classified with a Sato-type vibrating sieve of 063 mm to give an average particle size of 0.0
48 mm zirconia fine particles were obtained. Using the obtained fine particles, a floor powder test, a projection test, a resin mixing test, and a crushing test were performed.

【0044】実施例3 実施例1と同じジルコニア粉末TZ−3Yをスラリー濃
度65質量%となるように水を加えて、10mmφジル
コニアボールの投入された振動ボールミルMB−1(中
央化工機(株):振幅4mm)で4時間分散させて、ジ
ルコニア粉末スラリーを1100g得た。更に、ジルコ
ニア粉末TZ−3Yを目開き0.063mmおよび0.
106mmの佐藤式振動篩で分級し、この範囲内のもの
700g得た。次に、市販の10リットルの樹脂製ビー
カーに水を377g入れ、攪拌機で攪拌しながら、アン
モニア水を添加して、pHを9〜9.5に調整し、前記
のジルコニア粉末700gを核として投入し、分散スラ
リーを得た。次に、該分散スラリーのpHを9〜9.5
に保ちながら、前記のジルコニア粉末スラリー1100
gを定量ポンプを用いて連続的に添加し、核表面に着肉
成長させ、造粒体とした。スラリーの添加が終了した時
点で、セラミックスバインダーSA−260(中央理化
工業(株)製)をジルコニア粉末量に対して、0.5質
量%添加し、攪拌停止後、造粒体を静定分離し、100
℃で乾燥した。更に、乾燥造粒体を目開き0.090m
mおよび0.125mmの佐藤式振動篩で分級し、この
範囲のものを大気雰囲気下で電気炉により、1500
℃、保持4時間の条件で焼成し、該焼成品をロールクラ
ッシャーMRC−10(隙間5mm)で解し、集合粒を
得た。更に、該集合粒をNV型水封式真空ポンプ
((株)荏原製作所製:内径32mmφ)を用いて、真
空度5.6m水柱、吸込空気量2.6m3/minで
0.2m3のゴムライニング槽に吸引回収し、球状の微
小粒を得た。次に、該微小粒を目開き0.075mmお
よび0.100mmの佐藤式振動篩で分級して、平均粒
径0.09mmのジルコニア質微小粒を得た。得られた
微小粒を用いて、敷粉試験、投射試験、樹脂混合試験、
粉砕試験を行った。
Example 3 The same zirconia powder TZ-3Y as in Example 1 was added with water to a slurry concentration of 65% by mass, and a vibrating ball mill MB-1 (Chuo Kakoki Co., Ltd.) charged with 10 mmφ zirconia balls was added. : Amplitude 4 mm) and dispersed for 4 hours to obtain 1100 g of zirconia powder slurry. Furthermore, the zirconia powder TZ-3Y was opened with openings of 0.063 mm and 0.
Classification with a 106 mm Sato type vibrating screen gave 700 g of powder within this range. Next, 377 g of water was put into a commercially available 10-liter resin beaker, ammonia water was added while stirring with a stirrer to adjust the pH to 9 to 9.5, and 700 g of the zirconia powder was added as a core. Then, a dispersion slurry was obtained. Next, the pH of the dispersed slurry is adjusted to 9 to 9.5.
While maintaining the above, the zirconia powder slurry 1100
g was continuously added using a metering pump, and the surface of the nucleus was infiltrated and grown to obtain a granulated body. When the addition of the slurry was completed, 0.5% by mass of ceramic binder SA-260 (manufactured by Chuo Rika Kogyo Co., Ltd.) was added to the amount of zirconia powder, and after stirring was stopped, the granules were statically separated. Then 100
Dried at ° C. Furthermore, open the dried granules by 0.090 m
m and 0.125 mm Sato-type vibrating screen, classify in this range by an electric furnace in the atmosphere at 1500
Firing was performed under the conditions of 4 ° C. and a holding time of 4 hours, and the fired product was crushed with a roll crusher MRC-10 (gap 5 mm) to obtain aggregated particles. Furthermore, the aggregate particle NV type water ring vacuum pump (Co. Ebara Ltd. inner diameter 32Mmfai) using a vacuum 5.6m water column, in the suction air amount 2.6 m 3 / min of 0.2 m 3 It was suctioned and collected in a rubber lining tank to obtain spherical fine particles. Next, the fine particles were classified by a Sato type vibrating screen having openings of 0.075 mm and 0.100 mm to obtain zirconia fine particles having an average particle diameter of 0.09 mm. Using the obtained microparticles, floor powder test, projection test, resin mixing test,
A crushing test was performed.

【0045】実施例4 実施例1と同じジルコニア粉末TZ−3Yを打錠機HT
−12SS((株)畑鉄工所製:臼径20mmφ)で成
形し、該成形品をロールクラッシャーMRC−10(隙
間2mm)で解砕した。該解砕品を目開き0.425m
mおよび0.600mmの佐藤式振動篩で分級し、この
範囲のものを大気雰囲気下で電気炉により、1500
℃、保持4時間の条件で焼成し、該焼成品を実施例1と
同じ条件で吸引回収し、グリット状の微小粒を得た。次
に、該微小粒を目開き0.300mmおよび0.425
mmの佐藤式振動篩で分級して、平均粒径0.355m
mのジルコニア質微小粒を得た。得られた微小粒を用い
て、投射試験、粉砕試験を行った。
Example 4 The same zirconia powder TZ-3Y as in Example 1 was used for tableting machine HT.
-12SS (manufactured by Hata Tekko Co., Ltd .: die diameter 20 mmφ), and the molded product was crushed with a roll crusher MRC-10 (gap 2 mm). Open the crushed product 0.425 m
m and 0.600 mm Sato-type vibrating sieve, and those in this range are 1500
Firing was carried out under the conditions of 4 ° C. and a holding time of 4 hours, and the baked product was suction-collected under the same conditions as in Example 1 to obtain grit-like fine particles. Next, the fine particles are opened with openings of 0.300 mm and 0.425.
mm Sato-type vibrating screen for classification, average particle size 0.355m
m zirconia-based fine particles were obtained. A projection test and a crushing test were performed using the obtained fine particles.

【0046】比較例1 実施例1で得た集合粒を目開き0.025mmおよび
0.09mmの佐藤式振動篩で分級して、平均粒径0.
055mmのジルコニア質微小粒を得た。得られた微小
粒を用いて、敷粉試験、投射試験、樹脂混合試験、粉砕
試験を行った。しかし、敷粉試験において、一部、チタ
ン酸バリウムからなる焼結体と敷粉が接着した。樹脂混
合試験では、微小粒が凝集している部分が斑点としてあ
り、色調が悪かった。投射試験、粉砕試験では、凝集し
ているものが解離したと思われる篩間量が多く、篩上の
ものの平均粒径を測定したところ、0.048mmだっ
た。 比較例2 実施例4で得たグリット状の焼成品を目開き0.300
mmおよび0.425mmの佐藤式振動篩で分級して、
平均粒径0.355mmのジルコニア質微小粒を得た。
得られた微小粒を用いて、投射試験、粉砕試験を行っ
た。しかし、投射試験、粉砕試験ともに、篩間量が多か
った。
Comparative Example 1 The aggregated particles obtained in Example 1 were classified with a Sato type vibrating sieve having mesh openings of 0.025 mm and 0.09 mm to give an average particle diameter of 0.
055 mm zirconia fine particles were obtained. Using the obtained fine particles, a floor powder test, a projection test, a resin mixing test, and a crushing test were performed. However, in the spread powder test, a part of the sintered body made of barium titanate was bonded to the spread powder. In the resin mixing test, there were spots where fine particles aggregated, and the color tone was poor. In the projection test and the crushing test, the amount of inter-sieve that seems to have dissociated was large, and the average particle size of the product on the screen was 0.048 mm. Comparative Example 2 The grit-like fired product obtained in Example 4 has an opening of 0.300.
mm and 0.425 mm Sato type vibrating screen
Zirconia fine particles having an average particle diameter of 0.355 mm were obtained.
A projection test and a crushing test were performed using the obtained fine particles. However, in both the projection test and the crushing test, the amount of inter-sieve was large.

【0047】以上の実施例1〜4および比較例1〜2で
得られた微小粒の特性を表1に、テストの結果を表2に
示す。
The characteristics of the fine particles obtained in the above Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1, and the test results are shown in Table 2.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】敷粉試験は、凹状のアルミナセッター(1
00mm×100mm×厚さ3mm)の上に球状の微小
粒を敷き、チタン酸バリウムからなる2mm×2mm×
5mmの直方成形体を10個載せ、大気雰囲気下で電気
炉により、1330℃、保持2時間の条件で焼成した。
The floor powder test was carried out using a concave alumina setter (1
(00 mm × 100 mm × thickness 3 mm), spherical fine particles are laid on top of the barium titanate to form 2 mm × 2 mm ×
Ten 5 mm rectangular parallelepiped compacts were placed and baked in an electric furnace under the conditions of 1330 ° C. and a holding time of 2 hours in an electric furnace.

【0051】投射試験は、試験片(炭素鋼SS41:5
0mm×50mm×5mm)に、サクション方式のワン
ダーガンW301ES−26型(オオサワ&カンパニー
製:内径8mmφ)を用いて、圧縮空気圧力6kg/c
2G、投射角度60゜、投射距離15cm、投射時間
1分の条件で球状の微小粒を投射し、投射した微小粒を
最終分級に使用した下限値と同一の目開きおよび目開き
0.020mmの試験篩(飯田製作所(株)製:200
φ)で分級し、その篩間量を測定した。
The projection test was carried out using a test piece (carbon steel SS41: 5).
0mm x 50mm x 5mm), using a suction method Wonder Gun W301ES-26 type (Oosawa & Company: inner diameter 8mmφ), compressed air pressure 6kg / c
m 2 G, a projection angle of 60 °, a projection distance of 15 cm, and a projection time of 1 minute were used to project spherical microparticles, and the projected microparticles had the same opening and opening as the lower limit value used for final classification. 020 mm test sieve (made by Iida Seisakusho: 200)
φ), and the amount of sifting was measured.

【0052】また、グリット状の微小粒は、同じ試験片
に同一条件で投射し、投射した微小粒を目開き0.30
0mmおよび0.212mmの試験篩(200φ)で分
級し、その篩間量を測定した。
The grit-like fine particles were projected on the same test piece under the same conditions, and the projected fine particles were opened by 0.30.
Classification was carried out with 0 mm and 0.212 mm test sieves (200φ), and the amount of the sieve was measured.

【0053】樹脂混合試験は、メチルメタクリレート樹
脂(Kulzer製:テクノビット4071)に球状の
微小粒を20質量%配合し、重合剤を加え、加圧重合器
(Kulzer製:テクノマットMR−1000)を用
いて、90mm×64mm×3mmの成形体を作製し、
色調を確認した。
The resin mixing test was carried out by adding 20% by mass of spherical fine particles to a methyl methacrylate resin (Kulzer: Technobit 4071), adding a polymerization agent, and then applying a pressure polymerization unit (Kulzer: Technomat MR-1000). To produce a molded body of 90 mm × 64 mm × 3 mm,
The color tone was confirmed.

【0054】粉砕試験は、形状が球状のものは、媒体撹
拌ミル(ハルエンジニアリング製:内容積2リットル)
に1.2リットルの微小粒を投入し、市販のジルコニア
粉末TZ−3Y(東ソー(株)製)をスラリー濃度45
質量%に調整し、該スラリーを0.5リットル投入後、
周速10m/秒、粉砕時間1時間の条件で粉砕した。粉
砕後、スラリーを最終分級に使用した下限値と同一の目
開きおよび目開き0.020mmの試験篩(200φ)
で分級し、その篩間量を測定した。
In the crushing test, a medium stirring mill (made by Hull Engineering: internal volume 2 liters) is used for spherical particles.
Then, 1.2 liters of fine particles are put into the container, and a commercially available zirconia powder TZ-3Y (manufactured by Tosoh Corporation) is added to a slurry concentration of 45.
After adjusting to the mass% and adding 0.5 liter of the slurry,
Pulverization was performed under the conditions of a peripheral speed of 10 m / sec and a pulverization time of 1 hour. After crushing, the slurry has the same openings as the lower limit used for final classification and a test sieve (200φ) with an opening of 0.020 mm.
And the amount of sieve was measured.

【0055】形状がグリット状のものは、ジルコニア製
の粉砕ポット(内容積1リットル)に0.7リットルの
微小粒を投入し、0.3リットルの水を加えて、ボール
ミル(ヤマト科学(株)製:UB−32、回転数90r
pm)で1時間処理した。処理後、内容物を目開き0.
300mmおよび0.212mmの試験篩(200φ)
で分級し、その篩間量を確認した。
For the grit-like shape, 0.7 liter of fine particles are put into a zirconia crushing pot (internal volume of 1 liter), 0.3 liter of water is added, and a ball mill (Yamato Scientific Co., Ltd. ): UB-32, rotation speed 90r
pm) for 1 hour. After processing, open the contents to 0.
300 mm and 0.212 mm test sieve (200φ)
The particles were classified by and the amount of the sieve was confirmed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】お互いに付着あるいは融着した微小粒を、
吸引により互いに解離することを特徴とする微小粒の解
離方法。
1. Fine particles adhered or fused to each other,
A method for dissociating fine particles, characterized in that they are dissociated from each other by suction.
【請求項2】請求項1に記載の微小粒が、セラミックス
であることを特徴とする微小粒の解離方法。
2. A method for dissociating fine particles, wherein the fine particles according to claim 1 are ceramics.
【請求項3】請求項1または2記載の微小粒が、0.3
mm以下の球状であることを特徴とする微小粒の解離方
法。
3. The fine particles according to claim 1 or 2 are 0.3.
A method for dissociating fine particles, which is spherical with a size of mm or less.
【請求項4】請求項1または2記載の微小粒が、2mm
以下の不定形状のグリットであることを特徴とする微小
粒の解離方法。
4. The fine particles according to claim 1 or 2 have a diameter of 2 mm.
A method for dissociating fine particles, characterized in that the grit has the following irregular shape.
JP00366796A 1996-01-12 1996-01-12 Microparticle dissociation method Expired - Fee Related JP3994446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00366796A JP3994446B2 (en) 1996-01-12 1996-01-12 Microparticle dissociation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00366796A JP3994446B2 (en) 1996-01-12 1996-01-12 Microparticle dissociation method

Publications (2)

Publication Number Publication Date
JPH09187644A true JPH09187644A (en) 1997-07-22
JP3994446B2 JP3994446B2 (en) 2007-10-17

Family

ID=11563797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00366796A Expired - Fee Related JP3994446B2 (en) 1996-01-12 1996-01-12 Microparticle dissociation method

Country Status (1)

Country Link
JP (1) JP3994446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181859A (en) * 1999-10-12 2001-07-03 Natl Inst Of Advanced Industrial Science & Technology Meti Method and apparatus for manufacturing composite structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181859A (en) * 1999-10-12 2001-07-03 Natl Inst Of Advanced Industrial Science & Technology Meti Method and apparatus for manufacturing composite structure

Also Published As

Publication number Publication date
JP3994446B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
CN110860249B (en) Neodymium iron boron powder stirring process and stirring system and neodymium iron boron magnetic steel manufacturing process
CN1141053A (en) Alpha alumina-based abrasive grain
CN101065505A (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
TW200424131A (en) Titanium dioxide scouring media and method of production
JP3994446B2 (en) Microparticle dissociation method
CN1630572A (en) Blasting materials and method of blasting
JP3720622B2 (en) Granules for shot blasting
EP0996696B1 (en) GRINDING MEDIA CONSISTING ESSENTIALLY OF SINTERED TiO 2 PARTICLES
KR20070105017A (en) The method of abrasives manufacture using molten steel slag and the abrasives manufactured thereof
JP5376242B2 (en) Blasting projection material and manufacturing method thereof
JP3687291B2 (en) Granule screening method
JP3746962B2 (en) Abrasive material and polishing method using the abrasive material
JPH08103647A (en) Production of combined powder
JP3662778B2 (en) Method for producing granular iron oxide agglomerated powder
JP2004268215A (en) Regenerating method of abrasive
JP2002036252A (en) Mold cleaning method
JP2002306944A (en) Granulation/drying process and fluidized bed granulation/drying equipment
JPS6234779A (en) Polishing material
KR101015805B1 (en) Manufacturing method for the abrasive material
JPS61241069A (en) Manufacture of abrasives for blast processing
JP2001277129A (en) Blasting material and blasting process
JP2001277124A (en) Blasting material and blasting process
JP3118490B2 (en) Ceramic sintered body
JP2001277131A (en) Blasting material and blasting process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees