JPH09182911A - Steel wire for spring and its production - Google Patents

Steel wire for spring and its production

Info

Publication number
JPH09182911A
JPH09182911A JP35296095A JP35296095A JPH09182911A JP H09182911 A JPH09182911 A JP H09182911A JP 35296095 A JP35296095 A JP 35296095A JP 35296095 A JP35296095 A JP 35296095A JP H09182911 A JPH09182911 A JP H09182911A
Authority
JP
Japan
Prior art keywords
orientation
magnetic field
steel wire
spring
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35296095A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
断 松本
Takeshi Yoshioka
剛 吉岡
Norito Yamao
憲人 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35296095A priority Critical patent/JPH09182911A/en
Publication of JPH09182911A publication Critical patent/JPH09182911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve strength and rigidity of a steel wire by efficiently causing martensitic transformation in drawing. SOLUTION: In drawing to cause strain induced martensitic transformation, by impressing a magnetic field of >=0.5 tesla, martensitic transformation is efficiently produced to increase a martensitic phase quantity. Further, by limiting a direction of the magnetic field, a crystal orientation of martensitic phase is controlled. That is, a (100) orientation of the martensitic phase of >=50% is made to <=30 deg. for the axial direction. In this case, a ridigity at (100) orientation in the martensitic phase is higher than that of other crystal orientation, in the case the orientation is in a range of <=30 deg. for the axial direction, the (100) orientation is essentially in parallel to the axial line, the rigidity of a steel wire for spring is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はばね用鋼線とその製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a spring steel wire and a method for manufacturing the same.

【0002】[0002]

【従来の技術】JIS G 4314 SUS304-WPB などは準安定オ
ーステナイト系ステンレス鋼線であり、引き抜き加工中
の加工誘起マルテンサイト変態によって生成するマルテ
ンサイト相が鋼線の強度に大きく寄与している。そのた
め加工誘起マルテンサイト変態を効率的に起こして鋼線
を高強度化する種々の検討が行われている。例えば、
「ばね技術研究会1995年度秋季講演会講演論文集(1995-
11),p1」に示されているように極低温にて伸線加工する
方法などが検討されている。また、磁場の利用について
は「日本金属学会講演概要、Vol.109th(1991),p78」に
示すように、液体He中という極低温において8テスラ
という通常の電磁石では作り得ない大きな磁場が加工誘
起マルテンサイト変態に及ぼす影響を調査した例があ
る。一方、工業的に利用可能な電磁石で作りうる2テス
ラ以下での磁場の影響を示した例はない。
2. Description of the Related Art JIS G 4314 SUS304-WPB and the like are metastable austenitic stainless steel wires, and the martensite phase generated by the processing-induced martensitic transformation during drawing greatly contributes to the strength of the steel wire. Therefore, various studies have been conducted to efficiently cause the work-induced martensitic transformation to increase the strength of the steel wire. For example,
`` Spring Technology Research Group 1995 Autumn Lecture Proceedings (1995-
11), p1 ”, a method of wire drawing at cryogenic temperature is being studied. Regarding the use of a magnetic field, as shown in "Summary of the Japan Institute of Metals, Vol.109th (1991), p78", a large magnetic field of 8 Tesla, which cannot be created by an ordinary electromagnet, is induced at extremely low temperature in liquid He. There is an example of investigating the effect on martensitic transformation. On the other hand, there is no example showing the influence of a magnetic field below 2 Tesla that can be produced by an industrially available electromagnet.

【0003】[0003]

【発明が解決しようとする課題】しかし、鋼線の高強度
化・高剛性率化に関して極低温での伸線加工は冷却また
は冷媒のコスト、生産性を考慮すると必ずしも有効な手
段とはいえない。また、極低温でかつ8テスラという大
きな磁場を印加することもコストを考慮に入れると有効
な手段とはいえない。従って、本発明は高強度・高剛性
率のばね用鋼線と、鋼線の特性とコスト・生産性などと
が見合い、効率的に加工誘起マルテンサイト変態を誘起
するばね用鋼線の製造方法を提供するものである。
However, in order to increase the strength and rigidity of steel wire, wire drawing at extremely low temperatures is not always an effective means in consideration of the cost and productivity of cooling or refrigerant. . Further, applying a large magnetic field of 8 Tesla at an extremely low temperature is not an effective means in view of cost. Therefore, the present invention is a method for manufacturing a spring steel wire for efficiently inducing work-induced martensitic transformation by matching the high strength / high rigidity spring steel wire with the characteristics and cost / productivity of the steel wire. Is provided.

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、常温において電磁石によ
り2テスラ程度の磁場を印加すると加工誘起マルテンサ
イト変態が促進され、かつ変態したマルテンサイト相の
結晶方位が磁場の向きによって制御できるという知見に
基づくものである。即ち、加工誘起マルテンサイト変態
が起こる引き抜き加工時に0.5テスラ以上の磁場を印
加することにより、マルテンサイト変態を効率的に起こ
してマルテンサイト相量を増加させる。さらに磁場の向
きを限定することによりマルテンサイト相の結晶方位を
制御し、鋼線の強度と剛性率を向上させる。マルテンサ
イト相の結晶方位は、[100]方位が線軸方向に対し
て30°以内となるように制御する。このような結晶方
位を有する鋼線は特にばね用として好適である。
The present invention has been made to solve the above-mentioned problems, and when a magnetic field of about 2 tesla is applied by an electromagnet at room temperature, the work-induced martensite transformation is promoted and the transformed martensite is transformed. This is based on the finding that the crystal orientation of the site phase can be controlled by the direction of the magnetic field. That is, by applying a magnetic field of 0.5 Tesla or more during the drawing process in which the work-induced martensitic transformation occurs, the martensitic transformation is efficiently caused to increase the martensite phase amount. Furthermore, by limiting the direction of the magnetic field, the crystal orientation of the martensite phase is controlled, and the strength and rigidity of the steel wire are improved. The crystal orientation of the martensite phase is controlled so that the [100] orientation is within 30 ° with respect to the linear axis direction. A steel wire having such a crystal orientation is particularly suitable for springs.

【0005】[0005]

【発明の実施の形態】以下、本発明をより詳細に説明す
る。 <50%以上のマルテンサイト相の[100]方位が線
軸方向に対して30°以内に配向>マルテンサイト相に
おいて[100]方位での剛性率が他の結晶方位のそれ
よりも高く、この方位が線軸方向に対して30°以内の
範囲にあれば実質的に線軸方向と平行とみなしてよく、
ばね用鋼線の剛性率が向上される。そして、50%以上
のマルテンサイト相の[100]方位が線軸方向と実質
的に平行となって初めて剛性率の実用的な向上が認めら
れるからである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. <50% or more of the [100] orientation of the martensite phase is oriented within 30 ° with respect to the linear axis direction> In the martensite phase, the rigidity in the [100] orientation is higher than that of other crystal orientations, and this orientation If is within the range of 30 ° with respect to the line axis direction, it may be regarded as substantially parallel to the line axis direction,
The rigidity of the steel wire for spring is improved. Then, the practical improvement of the rigidity can be recognized only when the [100] orientation of 50% or more of the martensite phase becomes substantially parallel to the direction of the linear axis.

【0006】<磁場の作用>マルテンサイト変態は非磁
性のオーステナイト相から強磁性のマルテンサイト相へ
の変態である。変態の際に磁場を印加することによって
マルテンサイト相の自由エネルギーが低下し、マルテン
サイト相が生成し易くなる。 <磁場の向き>変態中に磁場を印加することによりマル
テンサイト相における容易磁化方向である[100]方
位が磁場の向きに成長し易くなる。磁場の向きを線軸方
向とすれば線軸方向に[100]方位が揃う。 <磁場の強さ>0.5〜2.0テスラが好ましい。これ
は0.5テスラ未満では磁場印加の効果が小さく、2.
0テスラを越える磁場を発生させるには通常の電磁石で
は不十分であり大きな費用がかかるためである。
<Operation of magnetic field> The martensite transformation is a transformation from a non-magnetic austenite phase to a ferromagnetic martensite phase. By applying a magnetic field during the transformation, the free energy of the martensite phase is lowered and the martensite phase is easily generated. <Direction of magnetic field> By applying a magnetic field during transformation, the [100] orientation, which is the easy magnetization direction in the martensite phase, easily grows in the direction of the magnetic field. If the direction of the magnetic field is the line axis direction, the [100] orientation is aligned in the line axis direction. <Magnetic field strength> 0.5 to 2.0 tesla is preferable. If it is less than 0.5 Tesla, the effect of applying a magnetic field is small.
This is because ordinary electromagnets are not sufficient to generate a magnetic field exceeding 0 Tesla and are expensive.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。SUS304鋼
(重量%で、C:0.07%, Ni:8.3%, Cr:18.2% )を熱間圧
延にて線径5.5mm の線材とした後、(a) 1.5テスラの
磁場を線軸方向に印加しながら、(b)0.3テスラの磁
場を線軸方向に印加しながら、(c) 磁場なしで、伸線加
工して線径1.8mm の鋼線とした。これをX線によるマル
テンサイト量の測定、電子線回析による[100]方位
の集積度測定および剛性率測定を行った。集積度測定は
マルテンサイト相の30個の結晶について[100]方
位を調べ、線軸方向との角度を調査した。その結果を表
1に示す。
Embodiments of the present invention will be described below. SUS304 steel (weight%, C: 0.07%, Ni: 8.3%, Cr: 18.2%) was hot-rolled into a wire with a diameter of 5.5 mm, and then (a) a magnetic field of 1.5 Tesla was applied in the wire axis direction. While (b) applying a magnetic field of 0.3 Tesla in the direction of the wire axis, (c) without a magnetic field, wire drawing was performed to obtain a steel wire with a wire diameter of 1.8 mm. This was subjected to measurement of the amount of martensite by X-ray, measurement of the degree of integration in the [100] direction by electron diffraction, and measurement of the rigidity. For the measurement of the degree of integration, the [100] orientation was investigated for 30 crystals of the martensite phase, and the angle with the line axis direction was investigated. Table 1 shows the results.

【0008】[0008]

【表1】 [Table 1]

【0009】同表に示すように、1.5テスラの磁場を
線軸方向に印加した場合には、マルテンサイト相量が増
加し、[100]方位が線軸方向と30°以内の範囲に
あるマルテンサイト相の結晶が50%以上あり、比較例
に比べて剛性率が高い。
As shown in the table, when a magnetic field of 1.5 Tesla is applied in the linear axis direction, the amount of martensite phase increases and the [100] orientation is within the range of 30 ° with the linear axis direction. The site phase crystals are 50% or more, and the rigidity is higher than that of the comparative example.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
マルテンサイト変態を効率的に起こしてマルテンサイト
量を増加させることができる。また、磁場の向きを限定
することによりマルテンサイト相の結晶方位を制御でき
る。これにより、ばね用鋼線の強度および剛性率を向上
できる。
As described above, according to the present invention,
The amount of martensite can be increased by efficiently causing martensitic transformation. Further, the crystal orientation of the martensite phase can be controlled by limiting the direction of the magnetic field. As a result, the strength and rigidity of the spring steel wire can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加工誘起マルテンサイト組織を得るばね
用鋼線において、50%以上のマルテンサイト相の[1
00]方位が線軸方向に対して30°以内の範囲に配向
していることを特徴とするばね用鋼線。
1. A spring steel wire for obtaining a work-induced martensite structure, comprising [1] of martensite phase of 50% or more.
[00] is oriented within a range of 30 ° with respect to the direction of the wire axis.
【請求項2】 ばね用鋼線を引き抜き加工する際に、線
軸方向に0.5テスラ以上の磁場を印加することを特徴
とするばね用鋼線の製造方法。
2. A method for manufacturing a steel wire for spring, which comprises applying a magnetic field of 0.5 Tesla or more in the direction of the wire axis when drawing the steel wire for spring.
JP35296095A 1995-12-28 1995-12-28 Steel wire for spring and its production Pending JPH09182911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35296095A JPH09182911A (en) 1995-12-28 1995-12-28 Steel wire for spring and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35296095A JPH09182911A (en) 1995-12-28 1995-12-28 Steel wire for spring and its production

Publications (1)

Publication Number Publication Date
JPH09182911A true JPH09182911A (en) 1997-07-15

Family

ID=18427636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35296095A Pending JPH09182911A (en) 1995-12-28 1995-12-28 Steel wire for spring and its production

Country Status (1)

Country Link
JP (1) JPH09182911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228122A (en) * 2008-03-25 2009-10-08 Nippon Steel Corp Method for controlling quality of steel material
CN105579595A (en) * 2013-10-11 2016-05-11 贝卡尔特公司 High tensile strength steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228122A (en) * 2008-03-25 2009-10-08 Nippon Steel Corp Method for controlling quality of steel material
CN105579595A (en) * 2013-10-11 2016-05-11 贝卡尔特公司 High tensile strength steel wire

Similar Documents

Publication Publication Date Title
Lee et al. Influence of carbide precipitation and dissolution on the microstructure of ultra-fine-grained intercritically annealed medium manganese steel
Chojnowski et al. Accelerated spheroidization of pearlite
JP4931992B2 (en) Measuring apparatus including a magnetoelastic alloy layer and method for forming the alloy layer
JP4895108B2 (en) FeGaAl alloy and magnetostrictive torque sensor
US4540453A (en) Magnetically soft ferritic Fe-Cr-Ni alloys
CN104109778B (en) A kind of preparation method of Ti-Nb-Fe-O high damping alloy
Myeong et al. A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel
Yu-Qing et al. Interaction of phosphorus, carbon, manganese, and chromium in intergranular embrittlement of iron
JPH09182911A (en) Steel wire for spring and its production
CN108277325A (en) A kind of heat treatment method of non-crystaline amorphous metal
Mei et al. Magnetostriction of grain-aligned Tb0. 3Dy0. 7Fe1. 95
JP4309141B2 (en) High-strength low-permeability austenitic stainless steel sheet and manufacturing method, and bolt-fastening washer manufacturing method
JPS62294130A (en) Production of stainless steel having high strength and non-magnetism
JP2015199997A (en) High elastic limit nonmagnetic austenitic stainless steel sheet and manufacturing method therefor
Carinci et al. M2C carbide precipitation in Af1410 steel
Koppenaal A thermal processing technique for TRIP steels
Lo et al. Evaluation of the effects of pulsed magnetic field treatment as a nondestructive treatment for magnetic materials
JP7312995B1 (en) stainless magnet
Masumoto et al. On the effect of heat treatment on the magnetic properties of iron-aluminium alloys
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
Zhai et al. Effects of thermal history and microstructure on segregation of phosphorus and alloying elements in the heat-affected zone of a low alloy steel
JPH0257668A (en) Extra low temperature use nonmagnetic austenitic stainless steel having excellent reheating resistance
JPH0517823A (en) Production of electromagnetic soft iron for thick plate excellent in magnetic shielding property
JPH03197618A (en) Heat treatment of maraging steel
Onuki et al. Improvement of Magnetostrictive Properties of Fe-15mol% Ga Alloy by Texture Formation during High Temperature Uniaxial Compression Deformation