JPH09182323A - Non-contact type electric power transmission device - Google Patents

Non-contact type electric power transmission device

Info

Publication number
JPH09182323A
JPH09182323A JP7342615A JP34261595A JPH09182323A JP H09182323 A JPH09182323 A JP H09182323A JP 7342615 A JP7342615 A JP 7342615A JP 34261595 A JP34261595 A JP 34261595A JP H09182323 A JPH09182323 A JP H09182323A
Authority
JP
Japan
Prior art keywords
power
inductor
capacitor
rectified
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7342615A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP7342615A priority Critical patent/JPH09182323A/en
Publication of JPH09182323A publication Critical patent/JPH09182323A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce favorably the inductance value of a resonance means, by reducing the voltage of a rectification power through a DC/DC converter to feed it to the resonance means. SOLUTION: When feeding, e.g. a commercial power with signal-phase AC 100V from a commercial power supply 6 to a non-contract type electric power transmission device 1, rectifying this power by a rectification means comprising a diode D1 and a capacitor C1 to reduce its voltage to a predetermined one by a DC/DC converter 3, the reduced voltage is smoothed by a smoothing means comprising a capacitor C2 to be fed both to a resonance means comprising an inductor L1 and a capacitor C3 and to an oscillator 4. Thereby, from the oscillator 4, a pulse signal with a predetermined frequency is fed to the gate of a field effect transistor FET1 to switch on/off the FET1 at the predetermined frequency. Therefore, since the loss of the FET1 by switching is reduced, the switching frequency can be made high enough. As a result, the inductance value of the inductor L1 can be enough reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、商用電源から得
た電力を2次側回路に非接触で伝達する非接触式電力伝
達装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type power transmission device for non-contactly transmitting electric power obtained from a commercial power source to a secondary side circuit.

【0002】[0002]

【従来の技術】近年、コードレス電話、液晶テレビ、電
動歯ブラシ、工作器具など、電力を使用する各種の携帯
機器が日常的に多数使用されている。このような携帯機
器は、通常、充電式の電池を内蔵しており、適宜充電す
る必要がある。この充電には、各種の方法が採用されて
いるが、携帯機器に充電用のアダプタやコードなどを接
続することなく、携帯機器を単に充電器台の上などに載
置するだけで充電が行われるようにするのが最も便利で
ある。
2. Description of the Related Art In recent years, a large number of various portable devices using electric power, such as cordless telephones, liquid crystal televisions, electric toothbrushes, and machine tools, have been used on a daily basis. Such a portable device usually has a built-in rechargeable battery and needs to be charged appropriately. Although various methods are used for this charging, charging is performed simply by placing the mobile device on the charger base, etc. without connecting a charging adapter or cord to the mobile device. It is most convenient to be taught.

【0003】そこで、電磁誘導を利用した非接触式電力
伝達装置が提案されているが、従来の非接触式電力伝達
装置は、商用電源からの電力を整流し、その整流電力を
所定周波数でスイッチングしてインダクタを含む共振手
段に供給することにより、共振手段のインダクタに電磁
気的に結合可能なインダクタを含む2次側回路に非接触
で電力を伝達する構成であった。
Therefore, although a non-contact power transmission device utilizing electromagnetic induction has been proposed, the conventional non-contact power transmission device rectifies power from a commercial power source and switches the rectified power at a predetermined frequency. Then, the power is transmitted to the resonance means including the inductor in a contactless manner to the secondary side circuit including the inductor that can be electromagnetically coupled to the inductor of the resonance means.

【0004】しかし、従来の非接触式電力伝達装置で
は、商用電力を全波整流した整流電力を共振回路に直接
供給するので、整流電力の電圧が高く、このため共振回
路に接続されたスイッチング用のトランジスタの損失が
大きいことから、スイッチング周波数を十分に高くする
ことができず、この結果、共振回路のインダクタンスを
小さくすることができない。たとえば、商用電源の電圧
が100ボルトの場合、全波整流した整流電力の電圧の
ピーク値は141ボルト程度であり、スイッチング周波
数は数KHz〜百数十KHz程度以下となって、インダ
クタンスは数mH程度(たとえば7.05mH)と大き
な値になる。また、スイッチング用のトランジスタに印
加される電圧のピーク値も、たとえば442ボルトと大
きな値になる。
However, in the conventional non-contact power transmission device, the rectified power obtained by full-wave rectifying the commercial power is directly supplied to the resonant circuit, so that the voltage of the rectified power is high and therefore the switching circuit connected to the resonant circuit is used. Since the transistor has a large loss, the switching frequency cannot be increased sufficiently, and as a result, the inductance of the resonance circuit cannot be reduced. For example, when the voltage of the commercial power supply is 100 V, the peak value of the voltage of the rectified electric power that is full-wave rectified is about 141 V, the switching frequency is about several KHz to several hundred and several tens KHz or less, and the inductance is several mH. It becomes a large value of about (for example, 7.05 mH). The peak value of the voltage applied to the switching transistor also becomes a large value, for example, 442 volts.

【0005】したがって、共振回路のインダクタが大型
化し、インダクタを基板上にパターン化することができ
ないので、非接触式電力伝達装置の小型・軽量化の妨げ
となるとともに、インダクタを個別部品として基板に実
装する必要があり、生産性が悪いという課題があった。
しかも、スイッチング用のトランジスタとして、高耐圧
のものを用いる必要があった。
Therefore, the inductor of the resonance circuit becomes large and the inductor cannot be patterned on the substrate, which hinders the size and weight reduction of the non-contact type power transmission device and also allows the inductor to be formed as an individual component on the substrate. There was a problem that it had to be implemented and productivity was poor.
Moreover, it is necessary to use a high withstand voltage transistor as the switching transistor.

【0006】[0006]

【発明の開示】本願発明は、上記した事情のもとで考え
出されたものであって、共振手段のインダクタンスを良
好に小さくできる非接触式電力伝達装置を提供すること
をその課題とする。
DISCLOSURE OF THE INVENTION The invention of the present application was conceived under the circumstances described above, and an object thereof is to provide a non-contact power transmission device in which the inductance of the resonance means can be favorably reduced.

【0007】上記の課題を解決するため、本願発明で
は、次の技術的手段を講じている。
In order to solve the above problems, the present invention takes the following technical measures.

【0008】本願発明の第1の側面によれば、商用電源
からの電力を整流し、その整流電力を所定周波数でスイ
ッチングしてインダクタを含む共振手段に供給すること
により、共振手段のインダクタに電磁気的に結合可能な
インダクタを含む2次側回路に非接触で電力を伝達する
非接触式電力伝達装置であって、整流電力の電圧を所定
値に降圧させる降圧手段を設けた非接触式電力伝達装置
が提供される。
According to the first aspect of the present invention, by rectifying the power from the commercial power source, switching the rectified power at a predetermined frequency and supplying the rectified power to the resonance means including the inductor, the inductor of the resonance means is electromagnetized. Is a non-contact type power transmission device for non-contactly transmitting electric power to a secondary side circuit including an inductor that can be electrically coupled, the non-contact type power transmission provided with a step-down means for stepping down the voltage of rectified electric power to a predetermined value. A device is provided.

【0009】降圧手段により整流電力の電圧を所定値に
降圧させて共振手段に供給するので、スイッチングの損
失が軽減され、この結果、スイッチング周波数を十分に
高くできる。しかも、共振手段のインダクタに印加され
る電圧が十分に低い。したがって、共振手段のインダク
タンスを良好に小さくでき、たとえば、インダクタを基
板上にパターン化できる。したがって、装置の小型・軽
量化を実現できるとともに、インダクタを個別部品とし
て基板に実装する必要がなくなり、生産性の向上を図る
ことができる。もちろん、スイッチング周波数を十分に
高くできることから、2次側回路のインダクタンスも小
さくでき、2次側回路についても同様の効果が得られ
る。
Since the voltage of the rectified electric power is stepped down to a predetermined value by the step-down means and supplied to the resonance means, switching loss is reduced, and as a result, the switching frequency can be sufficiently increased. Moreover, the voltage applied to the inductor of the resonance means is sufficiently low. Therefore, the inductance of the resonance means can be favorably reduced, for example, the inductor can be patterned on the substrate. Therefore, it is possible to reduce the size and weight of the device, and it is not necessary to mount the inductor as an individual component on the substrate, and productivity can be improved. Of course, since the switching frequency can be made sufficiently high, the inductance of the secondary side circuit can be reduced and the same effect can be obtained for the secondary side circuit.

【0010】商用電源からの電力を整流する整流手段と
しては、たとえば全波整流回路、あるいは半波整流回路
などを用いることができる。
As the rectifying means for rectifying the electric power from the commercial power source, for example, a full-wave rectifying circuit or a half-wave rectifying circuit can be used.

【0011】インダクタを含む共振手段としては、たと
えばインダクタとキャパシタとの並列共振回路、あるい
はインダクタとキャパシタとの直列共振回路などを用い
ることができる。
As the resonance means including the inductor, for example, a parallel resonance circuit of an inductor and a capacitor or a series resonance circuit of an inductor and a capacitor can be used.

【0012】好ましい実施の形態によれば、整流電力の
スイッチングが、整流電力を電源とする発振器と、この
発振器からの発振出力に応じて共振手段に供給される整
流電力をスイッチングするトランジスタとにより行われ
る。
According to a preferred embodiment, switching of the rectified electric power is performed by an oscillator which uses the rectified electric power as a power source and a transistor which switches the rectified electric power supplied to the resonance means according to an oscillation output from the oscillator. Be seen.

【0013】トランジスタとしては、電界効果トランジ
スタあるいはバイポーラトランジスタなどを用いること
ができる。電界効果トランジスタの場合、ゲートが発振
器の出力端に接続され、ソース・ドレイン間が共振手段
と直列に接続される。バイポーラトランジスタの場合、
ベースが発振器の出力端に接続され、コレクタ・エミッ
タ間が共振手段と直列に接続される。降圧手段により整
流電力を降圧するので、スイッチング用のトランジスタ
として、耐圧の低いものを用いることができ、製造コス
トの低減を図ることができる。
As the transistor, a field effect transistor or a bipolar transistor can be used. In the case of a field effect transistor, the gate is connected to the output terminal of the oscillator, and the source and drain are connected in series with the resonance means. For bipolar transistors,
The base is connected to the output terminal of the oscillator, and the collector and the emitter are connected in series with the resonance means. Since the rectified power is stepped down by the step-down means, a transistor having a low breakdown voltage can be used as the switching transistor, and the manufacturing cost can be reduced.

【0014】別の好ましい実施の形態によれば、2次側
回路は、充電式電池を含み、非接触で伝達された電力に
より充電式電池が充電される。
According to another preferred embodiment, the secondary circuit includes a rechargeable battery, and the rechargeable battery is charged by the electric power transmitted in a contactless manner.

【0015】充電式電池としては、たとえばニッケル・
カドミウム電池、ニッケル・水素電池、リチウムイオン
電池などを用いることができる。
As a rechargeable battery, for example, nickel
A cadmium battery, a nickel-hydrogen battery, a lithium ion battery or the like can be used.

【0016】本願発明のその他の特徴および利点は、添
付図面を参照して以下に行う詳細な説明によって、より
明らかとなろう。
Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

【0017】[0017]

【発明の実施の形態】以下、本願発明の好ましい実施の
形態を、図面を参照して具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the drawings.

【0018】図1は、本願発明に係る非接触式電力伝達
装置の回路図であって、図1においては、非接触式電力
伝達装置1の他に、非接触式電力伝達装置1から無接触
で電力を伝達される2次側回路2も含めて図示してい
る。なお、図示していないが、2次側回路2は、コード
レス電話、液晶テレビ、電動歯ブラシ、工作器具など、
電力を使用する各種の携帯機器に内蔵されており、非接
触式電力伝達装置1は、それらの携帯機器の充電器台に
内蔵されている。この非接触式電力伝達装置1は、DC
/DCコンバータ3、発振器4、電源プラグ5、ダイオ
ードD1、キャパシタC1〜C3、インダクタL1、お
よび電界効果トランジスタFET1を備えており、電源
プラグ5は商用電源6に電気的に接続される。
FIG. 1 is a circuit diagram of a non-contact type power transmission device according to the present invention. In FIG. 1, in addition to the non-contact type power transmission device 1, there is no contact from the non-contact type power transmission device 1. The secondary side circuit 2 to which electric power is transmitted is also shown in the figure. Although not shown, the secondary circuit 2 includes a cordless telephone, a liquid crystal television, an electric toothbrush, a machine tool, etc.
It is built in various mobile devices that use electric power, and the non-contact power transmission device 1 is built in the charger base of those mobile devices. This non-contact power transmission device 1 has a DC
The DC / DC converter 3, the oscillator 4, the power supply plug 5, the diode D1, the capacitors C1 to C3, the inductor L1, and the field effect transistor FET1 are provided, and the power supply plug 5 is electrically connected to the commercial power supply 6.

【0019】また、2次側回路2は、インダクタL2、
キャパシタC4,C5、ダイオードD2、スイッチSW
1、および充電式電池7を備えている。
The secondary circuit 2 includes an inductor L2,
Capacitors C4, C5, diode D2, switch SW
1 and a rechargeable battery 7.

【0020】商用電源6の一端は、電源プラグ5を介し
てダイオードD1のアノードに接続されており、ダイオ
ードD1のカソードは、DC/DCコンバータ3の入力
端とキャパシタC1の一端とに接続されている。DC/
DCコンバータ3の出力端は、キャパシタC2,C3の
一端と発振器4の電源入力端とインダクタL1の一端と
に接続されており、発振器4の出力端は、電界効果トラ
ンジスタFET1のゲートに接続されている。インダク
タL1の他端は、キャパシタC3の他端と電界効果トラ
ンジスタFET1のドレインとに接続されており、キャ
パシタC1,C2の他端とDC/DCコンバータ3およ
び発振器4の接地端と電界効果トランジスタFET1の
ソースとは、電源プラグ5を介して商用電源6の他端に
接続されている。
One end of the commercial power supply 6 is connected to the anode of the diode D1 via the power plug 5, and the cathode of the diode D1 is connected to the input end of the DC / DC converter 3 and one end of the capacitor C1. There is. DC /
The output end of the DC converter 3 is connected to one ends of the capacitors C2 and C3, the power supply input end of the oscillator 4 and one end of the inductor L1, and the output end of the oscillator 4 is connected to the gate of the field effect transistor FET1. There is. The other end of the inductor L1 is connected to the other end of the capacitor C3 and the drain of the field effect transistor FET1, and the other ends of the capacitors C1 and C2, the ground end of the DC / DC converter 3 and the oscillator 4, and the field effect transistor FET1. Is connected to the other end of the commercial power supply 6 via the power plug 5.

【0021】インダクタL2の一端は、キャパシタC4
の一端およびダイオードD2のアノードに接続されてお
り、ダイオードD2のカソードは、キャパシタC5の一
端とスイッチSW1の一端とに接続されている。スイッ
チSW1の他端は、充電式電池7の正極端に接続されて
おり、充電式電池7の負極端とキャパシタC4,C5の
他端とは、インダクタL2の他端に接続されている。
One end of the inductor L2 is connected to the capacitor C4.
To the anode of the diode D2, and the cathode of the diode D2 is connected to one end of the capacitor C5 and one end of the switch SW1. The other end of the switch SW1 is connected to the positive end of the rechargeable battery 7, and the negative end of the rechargeable battery 7 and the other ends of the capacitors C4 and C5 are connected to the other end of the inductor L2.

【0022】ダイオードD1と電解コンデンサからなる
キャパシタC1とは、たとえば単相交流100ボルトの
商用電源6からの電力を整流する整流手段を構成してい
る。DC/DCコンバータ3は、ダイオードD1および
キャパシタC1からなる整流手段により整流された整流
電力の電圧を所定電圧に降圧する降圧手段を構成してい
る。このDC/DCコンバータ3の具体的な回路は周知
であるので、図示および説明を省略する。キャパシタC
2は、電解コンデンサからなり、DC/DCコンバータ
3により降圧された整流電力を平滑化する平滑手段を構
成している。発振器4と電界効果トランジスタFET1
とは、キャパシタC2により平滑化された整流電力を所
定周波数でスイッチングするスイッチング手段を構成し
ている。すなわち、発振器4は、DC/DCコンバータ
3により降圧された整流電力を電源として動作し、予め
設定された所定周波数のパルス信号を電界効果トランジ
スタFET1のゲートに供給する。これにより電界効果
トランジスタFET1のチャネルすなわちドレイン・ソ
ース間が、発振器4からのパルス信号の周波数に応じて
導通状態と非導通状態との間の反転を繰り返し、インダ
クタL1とキャパシタC3とからなる共振手段に供給さ
れるDC/DCコンバータ3からの整流電力を断続させ
る。なお、発振器4の具体的な回路は周知であるので、
図示および説明を省略する。また、電界効果トランジス
タFET1は、nチャネルエンハンスメントモードMO
S・FETである。インダクタL1とキャパシタC3と
は、並列共振回路からなる共振手段を構成しており、こ
の並列共振回路の共振条件をほぼ満足するように、発振
器4の発振周波数が設定されている。
The diode D1 and the capacitor C1 composed of an electrolytic capacitor constitute a rectifying means for rectifying the electric power from the commercial power source 6 of single-phase AC 100 V, for example. The DC / DC converter 3 constitutes a step-down means for stepping down the voltage of the rectified power rectified by the rectifying means composed of the diode D1 and the capacitor C1 to a predetermined voltage. Since the specific circuit of the DC / DC converter 3 is well known, illustration and description thereof will be omitted. Capacitor C
Reference numeral 2 is an electrolytic capacitor, and constitutes a smoothing means for smoothing the rectified power stepped down by the DC / DC converter 3. Oscillator 4 and field effect transistor FET1
Represents a switching means for switching the rectified power smoothed by the capacitor C2 at a predetermined frequency. That is, the oscillator 4 operates by using the rectified power stepped down by the DC / DC converter 3 as a power source and supplies a pulse signal of a predetermined frequency set in advance to the gate of the field effect transistor FET1. As a result, the channel of the field effect transistor FET1, that is, between the drain and the source, repeats inversion between the conducting state and the non-conducting state according to the frequency of the pulse signal from the oscillator 4, and the resonance means including the inductor L1 and the capacitor C3. The rectified electric power supplied from the DC / DC converter 3 is intermittently supplied. Since the concrete circuit of the oscillator 4 is well known,
Illustration and description are omitted. Further, the field effect transistor FET1 has an n-channel enhancement mode MO.
S-FET. The inductor L1 and the capacitor C3 constitute a resonance means composed of a parallel resonance circuit, and the oscillation frequency of the oscillator 4 is set so as to substantially satisfy the resonance condition of the parallel resonance circuit.

【0023】2次側回路2のインダクタL2とキャパシ
タC4とは、並列共振回路を構成しており、インダクタ
L2を非接触式電力伝達装置1のインダクタL1による
磁束と鎖交する状態に位置させることにより、インダク
タL2に電磁誘導による起電力が発生する。この並列共
振回路は、電磁誘導によりインダクタL2に発生する起
電力により共振するように回路条件が設定されている。
ダイオードD2と電解コンデンサからなるキャパシタC
5とは、インダクタL2とキャパシタC4とからなる並
列共振回路からの誘導電力を整流する整流回路を構成し
ている。スイッチSW1は、ダイオードD2とキャパシ
タC5とからなる整流回路からの整流電力を充電式電池
7に供給するスイッチ手段を構成している。充電式電池
7は、スイッチSW1からなるスイッチ手段を介して供
給される整流電力により充電され、携帯機器の制御回路
および駆動回路などの各種回路(図示せず)に直流電力
を供給する電源を構成している。
The inductor L2 and the capacitor C4 of the secondary side circuit 2 constitute a parallel resonance circuit, and the inductor L2 is positioned so as to interlink with the magnetic flux generated by the inductor L1 of the non-contact power transmission device 1. As a result, electromotive force due to electromagnetic induction is generated in the inductor L2. The circuit condition of this parallel resonance circuit is set so that the parallel resonance circuit resonates with the electromotive force generated in the inductor L2 by electromagnetic induction.
Capacitor C consisting of diode D2 and electrolytic capacitor
5 constitutes a rectifying circuit for rectifying the induced power from the parallel resonant circuit including the inductor L2 and the capacitor C4. The switch SW1 constitutes switch means for supplying the rechargeable battery 7 with the rectified power from the rectifier circuit including the diode D2 and the capacitor C5. The rechargeable battery 7 is charged by the rectified power supplied via the switch means including the switch SW1 and constitutes a power supply for supplying DC power to various circuits (not shown) such as a control circuit and a drive circuit of the mobile device. doing.

【0024】次に動作を説明する。電源プラグ5を商用
電源6のコンセント(図示せず)に挿入すると、商用電
源6から非接触式電力伝達装置1にたとえば単相交流1
00ボルトの商用電力が供給され、この商用電力は、ダ
イオードD1とキャパシタC1とからなる整流手段によ
り整流され、DC/DCコンバータ3により所定電圧に
降圧されて、キャパシタC2からなる平滑手段により平
滑化され、インダクタL1とキャパシタC3とからなる
共振手段および発振器4に供給される。これにより発振
器4が、所定周波数のパルス信号を電界効果トランジス
タFET1のゲートに供給し、電界効果トランジスタF
ET1が所定周波数でオン・オフする。したがって、イ
ンダクタL1とキャパシタC3とからなる共振手段に供
給される整流電力が所定周波数で断続され、共振手段が
共振して、インダクタL1により磁束が発生する。この
とき、DC/DCコンバータ3により整流電力を適切に
降圧しているので、スイッチングによる電界効果トラン
ジスタFET1の損失が良好に軽減されることから、ス
イッチング周波数を十分に高くできる。この結果、イン
ダクタL1のインダクタンスを十分に小さくでき、イン
ダクタL1を基板上にパターン化することが可能にな
る。
Next, the operation will be described. When the power plug 5 is inserted into an outlet (not shown) of the commercial power supply 6, the commercial power supply 6 is connected to the non-contact power transmission device 1, for example, a single-phase alternating current 1
A commercial power of 00 V is supplied, and the commercial power is rectified by a rectifying unit including a diode D1 and a capacitor C1, reduced to a predetermined voltage by the DC / DC converter 3, and smoothed by a smoothing unit including a capacitor C2. And is supplied to the oscillator 4 and the resonance means including the inductor L1 and the capacitor C3. As a result, the oscillator 4 supplies a pulse signal of a predetermined frequency to the gate of the field effect transistor FET1, and the field effect transistor F
ET1 turns on and off at a predetermined frequency. Therefore, the rectified electric power supplied to the resonance means composed of the inductor L1 and the capacitor C3 is interrupted at a predetermined frequency, the resonance means resonates, and a magnetic flux is generated by the inductor L1. At this time, since the rectified power is appropriately stepped down by the DC / DC converter 3, the loss of the field effect transistor FET1 due to switching is appropriately reduced, and thus the switching frequency can be sufficiently increased. As a result, the inductance of the inductor L1 can be made sufficiently small, and the inductor L1 can be patterned on the substrate.

【0025】たとえば、商用電源6の電圧を100ボル
トとし、DC/DCコンバータ3により整流電力の電圧
のピーク値を数ボルト〜数十ボルト(たとえば12ボル
ト)に降圧した場合、電界効果トランジスタFET1の
スイッチングによる損失が許容限度になるまでスイッチ
ングの周波数を高くすると、数百KHz〜数MHzの周
波数でスイッチングすることが可能になる。したがっ
て、インダクタL1のインダクタンスをたとえば60μ
H程度に小さくできる。この結果、インダクタL1を基
板上でパターン化できることから、装置の小型・軽量化
を実現できるとともに、インダクタL1を個別部品とし
て基板に実装する必要がなくなり、生産性の向上を実現
できる。しかも、電界効果トランジスタFET1のドレ
インに印加される電圧のピーク値もたとえば37.7ボ
ルト程度に小さくなり、電界効果トランジスタFET1
として耐圧の低いものを用いることができる。
For example, when the voltage of the commercial power source 6 is set to 100 V and the peak value of the voltage of the rectified power is reduced to several volts to several tens of volts (for example, 12 volts) by the DC / DC converter 3, the field effect transistor FET1 is operated. If the switching frequency is increased until the switching loss reaches an allowable limit, switching can be performed at a frequency of several hundreds KHz to several MHz. Therefore, the inductance of the inductor L1 is, for example, 60 μm.
It can be as small as H. As a result, since the inductor L1 can be patterned on the substrate, the size and weight of the device can be reduced, and it is not necessary to mount the inductor L1 as an individual component on the substrate, and productivity can be improved. Moreover, the peak value of the voltage applied to the drain of the field effect transistor FET1 also becomes small, for example, about 37.7 volts.
A material having a low breakdown voltage can be used.

【0026】非接触式電力伝達装置1を内蔵した充電器
台の上に2次側回路2を内蔵した携帯機器を載置する
と、非接触式電力伝達装置1のインダクタL1により発
生した磁束が、2次側回路2のインダクタLに鎖交する
ように、インダクタL1,L2が配置されているので、
インダクタL1により発生した磁束により、インダクタ
L2に起電力が発生し、これによりインダクタL2とキ
ャパシタC4とからなる並列共振回路が共振し、誘導電
力がダイオードD2とキャパシタC5とからなる整流回
路により整流されて、スイッチSW1が閉成していれ
ば、充電式電池7に供給され、充電式電池7が充電され
る。
When a portable device having the secondary circuit 2 built therein is placed on the charger base having the non-contact power transmission device 1 built therein, the magnetic flux generated by the inductor L1 of the non-contact power transmission device 1 becomes Since the inductors L1 and L2 are arranged so as to interlink with the inductor L of the secondary circuit 2,
The magnetic flux generated by the inductor L1 generates an electromotive force in the inductor L2, which causes the parallel resonant circuit including the inductor L2 and the capacitor C4 to resonate, and the induced power is rectified by the rectifying circuit including the diode D2 and the capacitor C5. If the switch SW1 is closed, the rechargeable battery 7 is supplied and the rechargeable battery 7 is charged.

【0027】すなわち、商用電源6からの電力が、イン
ダクタL1とインダクタL2との電磁的結合により、非
接触式電力伝達装置1から2次側回路2に非接触で伝達
され、充電式電池7が充電される。なお、インダクタL
1に印加される整流電力のスイッチング周波数を高くし
ているので、インダクタL1により発生する磁束の周波
数も高いことから、2次側回路2のインダクタL2のイ
ンダクタンスも小さくできる。したがって、インダクタ
L2も基板上にパターン化できるので、2次側回路2の
小型・軽量化を実現できるとともに、インダクタL2を
個別部品として基板に実装する必要がなくなり、生産性
の向上を実現できる。以上の結果、携帯機器やその充電
器台を小型・軽量化することも可能になる。
That is, the electric power from the commercial power source 6 is transferred from the non-contact type power transfer device 1 to the secondary side circuit 2 in a non-contact manner by the electromagnetic coupling between the inductor L1 and the inductor L2, and the rechargeable battery 7 is formed. Be charged. In addition, inductor L
Since the switching frequency of the rectified power applied to No. 1 is high, the frequency of the magnetic flux generated by the inductor L1 is also high, so that the inductance of the inductor L2 of the secondary side circuit 2 can be reduced. Therefore, since the inductor L2 can also be patterned on the substrate, the secondary circuit 2 can be reduced in size and weight, and it is not necessary to mount the inductor L2 as an individual component on the substrate, and productivity can be improved. As a result, it becomes possible to reduce the size and weight of the portable device and its charger stand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明に係る非接触式電力伝達装置の回路図
である。
FIG. 1 is a circuit diagram of a non-contact power transmission device according to the present invention.

【符号の説明】[Explanation of symbols]

1 非接触式電力伝達装置 2 2次側回路 3 DC/DCコンバータ 4 発振器 7 充電式電池 FET1 電界効果トランジスタ L1,L2 インダクタ C3,C4 キャパシタ 1 Non-contact Power Transfer Device 2 Secondary Side Circuit 3 DC / DC Converter 4 Oscillator 7 Rechargeable Battery FET1 Field Effect Transistor L1, L2 Inductor C3, C4 Capacitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 商用電源からの電力を整流し、その整流
電力を所定周波数でスイッチングしてインダクタを含む
共振手段に供給することにより、前記インダクタに電磁
気的に結合可能なインダクタを含む2次側回路に非接触
で電力を伝達する非接触式電力伝達装置であって、 前記整流電力の電圧を所定値に降圧させる降圧手段を設
けたことを特徴とする、非接触式電力伝達装置。
1. A secondary side including an inductor that can be electromagnetically coupled to the inductor by rectifying power from a commercial power source, switching the rectified power at a predetermined frequency and supplying the rectified power to a resonance means including the inductor. A non-contact power transmission device for transmitting electric power to a circuit in a non-contact manner, comprising a step-down means for stepping down the voltage of the rectified power to a predetermined value.
【請求項2】 前記整流電力のスイッチングは、前記整
流電力を電源とする発振器と、この発振器からの発振出
力に応じて前記共振手段に供給される前記整流電力をス
イッチングするトランジスタとにより行われることを特
徴とする、請求項1に記載の非接触式電力伝達装置。
2. The switching of the rectified power is performed by an oscillator that uses the rectified power as a power source and a transistor that switches the rectified power that is supplied to the resonance unit according to an oscillation output from the oscillator. The non-contact power transmission device according to claim 1, wherein
【請求項3】 前記2次側回路は、充電式電池を含み、
非接触で伝達された電力により前記充電式電池が充電さ
れることを特徴とする、請求項1または請求項2に記載
の非接触式電力伝達装置。
3. The secondary circuit includes a rechargeable battery,
The contactless power transfer device according to claim 1 or 2, wherein the rechargeable battery is charged by power transferred in a contactless manner.
JP7342615A 1995-12-28 1995-12-28 Non-contact type electric power transmission device Pending JPH09182323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7342615A JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7342615A JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Publications (1)

Publication Number Publication Date
JPH09182323A true JPH09182323A (en) 1997-07-11

Family

ID=18355151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342615A Pending JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Country Status (1)

Country Link
JP (1) JPH09182323A (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217277A (en) * 1999-01-19 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd Noncontact power supply facility
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
US20120086867A1 (en) * 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
CN103094942A (en) * 2011-11-04 2013-05-08 海洋王照明科技股份有限公司 Constant voltage current-limiting charging circuit and lamp
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217277A (en) * 1999-01-19 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd Noncontact power supply facility
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9473209B2 (en) 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US20120086867A1 (en) * 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
WO2012045050A3 (en) * 2010-09-30 2012-06-21 Intel Corporation Wireless power transfer apparatus and method thereof
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
CN103094942A (en) * 2011-11-04 2013-05-08 海洋王照明科技股份有限公司 Constant voltage current-limiting charging circuit and lamp
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems

Similar Documents

Publication Publication Date Title
JPH09182323A (en) Non-contact type electric power transmission device
KR101933462B1 (en) Wireless power receiver for controlling magnitude of wireless power
JP2803943B2 (en) Non-contact power supply
US9711974B2 (en) Wireless power transmitting apparatus and method thereof
KR101893104B1 (en) Wireless power receiver for controlling wireless power by using switch
US20050162125A1 (en) Integrated induction battery charge apparatus
JP5577896B2 (en) Wireless power supply apparatus and wireless power transmission system
JP2003299255A (en) Portable battery charger
EP2587653A2 (en) Received power conversion device for resonant wireless charging system
CN104885330B (en) Power supply unit and wireless power transmitter
JPH09298847A (en) Non-contact charger
CN103988387B (en) Feeder equipment, feed system and electronic equipment
JP2013532461A (en) Circuit of contactless inductive power transmission system
WO2016042776A1 (en) Power reception device, non-contact power transmission system, and charging method
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
KR20040028312A (en) Contactless battery charging system using induction coupling method
JP2000166129A (en) Method and apparatus for reducing stand-by power of noncontact charger
TW201126861A (en) Non-contact power transmission device
WO2015035924A1 (en) Wireless charging device and mobile terminal using same
JP2673876B2 (en) Driving circuit for electromagnetic induction coil and charging device using the driving circuit
JPH09182304A (en) Non-contact charger
CN108879982A (en) Bistable state primary side constant current magnetic induction couples wireless charging device and its application method
JP3197625B2 (en) Charger having inductive inverter circuit
JPH09182322A (en) Non-contact type electric power transmission device
CN209896937U (en) Auxiliary power supply