JPH09181334A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09181334A
JPH09181334A JP33629895A JP33629895A JPH09181334A JP H09181334 A JPH09181334 A JP H09181334A JP 33629895 A JP33629895 A JP 33629895A JP 33629895 A JP33629895 A JP 33629895A JP H09181334 A JPH09181334 A JP H09181334A
Authority
JP
Japan
Prior art keywords
region
layer
current
semiconductor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33629895A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yamazaki
智幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP33629895A priority Critical patent/JPH09181334A/en
Publication of JPH09181334A publication Critical patent/JPH09181334A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce on-voltage by forming the lightly doped first-conductive type second semiconductor layer on a heavily doped first-conductive type first semiconductor and adjacently and selectively forming a lightly doped second- conductive type first semiconductor region and a highly doped second conductive type second semiconductor region on the second semiconductor layer. SOLUTION: An n<-> layer 1 is formed on an n<+> layer 2 becoming a buffer layer and a p-layer on the surface layer of the n<-1> layer 1. Then, the two kinds of a p<+> region 5 and a p-region 6 are formed. A cathode electrode 4 and an anode electrode 3 are formed by evaporating A1-Si. On a rated current region, current flows on a pn<-> junction part, the injection of holes from the p-region 6 is less, the quantity of excess carriers is small and therefore inverse restoration current becomes small. In a surge current region, on-voltage becomes comparatilvely small even in a large current region with the injection of the much holes from the p<+> region 5. Thus, an inverse restoration characteristic in rate current and surge current resistance can considerably be improved in the large current region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は電力変換機器に用
いられる電力用ダイオードなどの半導体装置に関する。
The present invention relates to a semiconductor device such as a power diode used for power conversion equipment.

【0002】[0002]

【従来の技術】電力変換機器に用いられる電力用ダイオ
ードは低オン電圧と高速スイッチング性が要求される。
低耐圧素子ではショットキーダイオードがこの特性を兼
ね備えているが、ショットキーダイオードを高耐圧化す
ると、オン電圧が大幅に増大すると共に、漏れ電流の大
幅な増加がある。このためショットキーダイオードは一
般に高耐圧では使用されていない。
2. Description of the Related Art A power diode used in a power conversion device is required to have a low on-voltage and a high speed switching property.
In a low breakdown voltage element, a Schottky diode also has this characteristic, but if the Schottky diode is made to have a high breakdown voltage, the ON voltage is greatly increased and the leakage current is also greatly increased. For this reason, Schottky diodes are generally not used in high breakdown voltage.

【0003】図4は高耐圧で使用されている従来のpi
nダイオードの断面図を示す。n-層1の一方の面にp
層7、他方にn+ 層2を形成し、p層7、n+ 層2のそ
れぞれの表面にアノード電極3、カソード電極4を形成
する。このpinダイオードはオン状態で伝導度変調を
利用しているので高耐圧でもオン電圧を低下させること
ができる。しかし、pinダイオードが逆回復する時
に、伝導度変調によって生じた過剰キャリアを掃き出す
ために大きな逆回復電流が流れ、スイッチング損失が増
大する。逆回復電流を抑制するためにライフタイムキラ
ーを導入するとオン電圧が増大する。つまりオン電圧と
スイッチング損失はトレードオフの関係にある。
FIG. 4 shows a conventional pi used for high breakdown voltage.
A sectional view of an n-diode is shown. p on one side of n - layer 1
The layer 7 and the n + layer 2 are formed on the other side, and the anode electrode 3 and the cathode electrode 4 are formed on the respective surfaces of the p layer 7 and the n + layer 2. Since this pin diode uses conductivity modulation in the ON state, the ON voltage can be lowered even with a high breakdown voltage. However, when the pin diode reversely recovers, a large reverse recovery current flows because it sweeps out excess carriers generated by conductivity modulation, and switching loss increases. If a lifetime killer is introduced to suppress the reverse recovery current, the on-voltage will increase. That is, the on-voltage and the switching loss have a trade-off relationship.

【0004】図5は従来のp- inダイオードの断面図
を示す。図4と異なるのは、p層7がp- 領域8とp+
領域9とで形成されている点である。p- 領域8の存在
で、この層からの正孔の注入が抑制され、オン状態での
過剰キャリアを下げることができ、逆回復電流を小さく
でき、一方、p+ 領域9の存在でオン電圧の低下ができ
る。
FIG. 5 shows a cross-sectional view of a conventional p - in diode. The difference from FIG. 4 is that the p layer 7 has p regions 8 and p + regions.
This is a point formed with the region 9. The presence of the p region 8 suppresses the injection of holes from this layer, can reduce the excess carriers in the on-state, and can reduce the reverse recovery current, while the presence of the p + region 9 enables the on-voltage to be generated. Can be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかし、このp- in
ダイオードは定格電流領域では良好なオン特性を示す
が、回路異常等で流れるサージ電流領域のような大電流
領域ではp- 領域8からの正孔の注入がpinダイオー
ドのp層7からの注入と比べかなり低くなるために、オ
ン電圧がかなり増大する。
However, this p - in
The diode exhibits good ON characteristics in the rated current region, but in a large current region such as a surge current region which flows due to a circuit abnormality or the like, holes are injected from the p region 8 as compared with injection from the p layer 7 of the pin diode. Since it is much lower than the above, the on-voltage is considerably increased.

【0006】この発明の目的は、前記の課題を解決し
て、逆回復電流が小さく、かつ、定格電流領域およびサ
ージ電流領域でのオン電圧を低減できる半導体装置を提
供することにある。
An object of the present invention is to solve the above problems and to provide a semiconductor device having a small reverse recovery current and a reduced on-voltage in the rated current region and the surge current region.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めに、高濃度の第1導電形の第1半導体層上に低濃度の
第1導電形の第2半導体層が形成され、第2半導体層上
に低濃度の第2導電形の第1半導体領域と高濃度の第2
導電形の第2半導体領域とが隣接して選択的に形成さ
れ、第1半導体層表面にオーミック接続する第1金属電
極が形成され、第1半導体領域表面と第2半導体領域表
面とにオーミック接続する第2金属電極が形成される構
造とする。前記の第1半導体領域の表面濃度が1×10
15cm-3ないし1×1017cm-3で、かつ、第2半導体
領域の表面濃度が1×1018cm-3ないし1×1021
-3であるとよい。また第1半導体領域または第2半導
体領域が複数個形成され、その表面形状がストライプ状
もしくはセル状であるとよい。
In order to achieve the above-mentioned object, a second semiconductor layer of low concentration first conductivity type is formed on a high concentration first semiconductor layer of first conductivity type, and a second semiconductor layer of low concentration is formed. A first semiconductor region of a second conductivity type having a low concentration and a second semiconductor region having a high concentration of
A second semiconductor region having a conductivity type is selectively formed adjacent to the first semiconductor layer, a first metal electrode is formed on the surface of the first semiconductor layer for ohmic connection, and an ohmic connection is formed on the surface of the first semiconductor region and the surface of the second semiconductor region. The second metal electrode is formed. The surface concentration of the first semiconductor region is 1 × 10
15 cm −3 to 1 × 10 17 cm −3 , and the surface concentration of the second semiconductor region is 1 × 10 18 cm −3 to 1 × 10 21 c
It is good to be m -3 . Further, it is preferable that a plurality of first semiconductor regions or second semiconductor regions be formed and the surface shape thereof be stripe-like or cell-like.

【0008】図6はpinダイオードのp層の表面濃度
を変えたときの電流・電圧特性を示す。縦軸が電流密度
で横軸がオン電圧を示し、p層の表面濃度は1×1016
から1×1019cm-3まで変化させた。p層の表面濃度
を下げるとオン電圧が上昇し、電流密度とオン電圧の積
で表される発生損失密度も増大する。例えば、図中の発
生損失密度一定カーブ上で比べた場合、1×1016cm
-3の電流密度は1×1019cm-3の電流密度の半分程度
に減少する。サージ電流領域の電流密度を上げるにはp
層の表面濃度を所定の高さまで上げる必要がある。また
+ 領域の表面濃度はp領域の表面濃度よりさらに高く
するとよい。
FIG. 6 shows current / voltage characteristics when the surface concentration of the p layer of the pin diode is changed. The vertical axis represents the current density and the horizontal axis represents the on-voltage. The surface concentration of the p layer is 1 × 10 16.
To 1 × 10 19 cm −3 . When the surface concentration of the p layer is lowered, the ON voltage rises, and the generated loss density represented by the product of the current density and the ON voltage also increases. For example, when compared on the curve of the generated loss density shown in the figure, 1 × 10 16 cm
-3 current density is reduced to about half the current density of 1 × 10 19 cm -3. To increase the current density in the surge current area, p
It is necessary to increase the surface concentration of the layer to a certain height. The surface concentration of the p + region may be higher than that of the p region.

【0009】図7はpinダイオードのp層の表面濃度
を変えたときの逆回復電流波形図を示す。p領域の表面
濃度が小さくなると逆回復電流は小さくなり、ソフトリ
カバリー(逆回復電流の減衰率が小さいこと)となる。
FIG. 7 shows a reverse recovery current waveform diagram when the surface concentration of the p layer of the pin diode is changed. When the surface concentration of the p region becomes small, the reverse recovery current becomes small and soft recovery (the attenuation rate of the reverse recovery current is small) is achieved.

【0010】[0010]

【発明の実施の形態】図1はこの発明の第1実施例で、
同図(a)は平面図、同図(b)は同図(a)をY−Y
線で切断した断面図を示す。同図(a)は電極を剥離し
た状態を示し、同図(b)では電極が形成されている状
態を示す。バッファ層となるn+ 層2上にn- 層1がエ
ピタキシャル成長などにより形成され、n- 層1の表面
層にp層をイオン注入で形成した後、p層より深くp形
不純物を選択的に導入して、p + 領域5とp領域6を形
成する。同図(a)ではp領域6をp+ 領域5で取り囲
んでいるが、逆の場合でもよい。このときはn- 層1の
表面層に不純物導入マスクを利用してp領域6とp+
域5とを隣接して選択的に形成する。また、p領域6の
表面濃度とp+ 領域5の表面濃度の中間の表面濃度を有
する領域を追加して複数個形成してもよい。しかし、こ
のような中間の領域を追加すると製造工程が増すため、
実用的にはp領域6とp+ 領域5の2種類がよい。ま
た、カソード電極4とアノード電極3はオーミック性の
電極材料であるAl−Siを蒸着することで形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows a first embodiment of the present invention.
The figure (a) is a top view, the figure (b) shows the figure (a) YY.
A sectional view taken along a line is shown. In the figure (a), the electrode is peeled off.
The state in which electrodes are formed is shown in FIG.
State. Buffer layer n+N on layer 2-Layer 1 is
Formed by epitaxial growth, etc.-Layer 1 surface
After forming the p-layer in the layer by ion implantation, p-type deeper than the p-layer
By introducing impurities selectively, p +Form region 5 and p region 6
To achieve. In FIG. 7A, the p region 6 is set to p+Surrounded by Area 5
However, the reverse is also possible. Then n-Layer 1
Using the impurity introduction mask in the surface layer, p regions 6 and p+Territory
Regions 5 and 5 are formed adjacently and selectively. In addition, in the p region 6
Surface concentration and p+With a surface density intermediate between the surface density of area 5
A plurality of regions may be added to form a plurality of regions. But this
Since adding an intermediate area such as increases the manufacturing process,
Practically p region 6 and p+Two types of area 5 are preferable. Ma
In addition, the cathode electrode 4 and the anode electrode 3 have ohmic characteristics.
It is formed by depositing Al-Si, which is an electrode material
You.

【0011】このダイオードはp形の領域がp+ 領域5
とp領域6の2種類で形成されるため、n- 層1との接
合もp+ - 接合とpn- 接合の2種類となる。従っ
て、ダイオードの通電電流が小さい領域では、えん層電
圧(フェルミレベル差で生じる半導体内部の電圧)が小
さいpn- 接合に電流が流れ、通電電流が大きくなると
オン電圧が増大してえん層電圧の大きいp+ - 接合に
も電流は流れるようになる。従って、定格電流領域(サ
ージ電流と比べかなり小さい領域てある)ではオン電圧
の比較的小さい領域となるため、電流はpn- 接合部を
流れ、従って、p領域6からの正孔の注入が少なく、過
剰キャリアの量は少なくなるので逆回復電流は小さく、
逆回復損失も小さくなる。また逆回復電流波形もソフト
リカバリーとなる。一方、サージ電流領域ではオン電圧
が大きくなり、えん層電圧の大きいp+ - 接合を通し
て流れる電流が支配的となり、このp+ 領域5からの多
量の正孔の注入により、大電流領域でもオン電圧は比較
的小さくなる。実用的には定格電流領域での逆回復電流
を小さく、ソフトリカバリーとするためにはp領域6の
表面濃度を1×1015cm-3〜1×1017cm-3の範囲
がよく(さらに望ましくは1×1016cm-3〜1×10
17cm-3の範囲がよい)、サージ電流領域でのオン電圧
を比較的小さく抑制するためにはp+ 領域5の表面濃度
を1×1018cm-3〜1×1021の範囲がよい。尚、逆
回復電流が小さいということはダイオードの逆回復耐量
が大きいことを意味し、また大電流領域でのオン電圧が
大きくないことはサージ電流耐量が大きいことを意味す
る。
In this diode, the p-type region is the p + region 5
And the p region 6, the junction with the n layer 1 is also two types of p + n junction and pn junction. Therefore, in the region where the current flowing through the diode is small, a current flows through the pn - junction with a small engraving layer voltage (voltage inside the semiconductor caused by the Fermi level difference), and when the energizing current increases, the on-voltage increases and the engraving layer voltage increases. A current also flows through the large p + n - junction. Therefore, in the rated current region (which is considerably smaller than the surge current), the on-state voltage is relatively small, so that the current flows through the pn - junction, so that the injection of holes from the p region 6 is small. , The amount of excess carriers is small, so the reverse recovery current is small,
Reverse recovery loss is also small. The reverse recovery current waveform also becomes soft recovery. On the other hand, in the surge current region, the ON voltage becomes large, and the current flowing through the p + n - junction having a large arm layer voltage becomes dominant, and due to the injection of a large amount of holes from the p + region 5, the ON current also becomes large. The voltage is relatively small. Practically, the reverse recovery current in the rated current region is small, and in order to achieve soft recovery, the surface concentration of the p region 6 is preferably in the range of 1 × 10 15 cm −3 to 1 × 10 17 cm −3 (more Desirably 1 × 10 16 cm −3 to 1 × 10
17 good range of cm -3), in order to relatively suppressed small on-voltage of the surge current region a surface concentration of the p + regions 5 1 × 10 18 cm -3 ~1 × 10 21 range of good . It should be noted that a small reverse recovery current means that the reverse recovery withstand capability of the diode is large, and that the on-voltage in the large current region is not large means that the surge current withstand capability is large.

【0012】図2はこの発明の第2実施例で、同図
(a)は平面図、同図(b)は同図(a)をX−X線で
切断した断面図を示す。同図(a)は電極を剥離した状
態を示し、同図(b)では電極が形成されている状態を
示す。第1実施例のp領域6を複数個ストライプ状に配
置したものである。勿論、p領域6とp+ 領域5を入替
えても構わない。その場合は、前記したようにn- 層1
の表面層に不純物導入マスクを利用してp領域6とp+
領域5とを隣接して選択的に形成する。またp領域6お
よびp+ 領域5の表面濃度については第1実施例と同じ
である。また、この構造の長所はp領域6の表面濃度が
低くなった場合でも、逆バイアス時にp+ 領域5からp
領域6に延びる空乏層でp領域6がピンチオフし、その
ため、耐圧の低下を防ぐことができる。この考えは図5
で示すp- inダイオードであるSSD(Static Shiel
ding Diode)やSFD(Softand Fast Recavary Diode)
でも同様であるが、これらのダイオードのp+ 領域の形
成は耐圧を維持することのみが目的であり、一方、この
発明のダイオードでは大電流領域で積極的に電流を流し
オン電圧の増大を抑制することが目的である。従って、
+ 領域形成の目的が従来のダイオードとこの発明のダ
イオードでは大きく異なる。
FIG. 2 shows a second embodiment of the present invention. FIG. 2 (a) is a plan view and FIG. 2 (b) is a sectional view taken along line XX of FIG. 2 (a). The figure (a) shows the state where the electrode was peeled off, and the figure (b) shows the state where the electrode is formed. A plurality of p regions 6 of the first embodiment are arranged in stripes. Of course, the p region 6 and the p + region 5 may be exchanged. In that case, as described above, n layer 1
Of the p region 6 and p + using the impurity introduction mask on the surface layer of
Regions 5 and 5 are formed adjacently and selectively. The surface concentrations of p region 6 and p + region 5 are the same as in the first embodiment. In addition, the advantage of this structure is that even when the surface concentration of the p region 6 becomes low, the p + region 5 to the p region 5 are reverse-biased when reverse biased.
In the depletion layer extending to the region 6, the p region 6 is pinched off, and therefore the breakdown voltage can be prevented from lowering. This idea is shown in Figure 5.
SSD (Static Shiel) which is a p - in diode
Ding Diode) and SFD (Soft and Fast Recavary Diode)
However, similarly, the formation of the p + region of these diodes is intended only to maintain the breakdown voltage. On the other hand, in the diode of the present invention, the current is positively flowed in the large current region to suppress the increase of the on-voltage. The purpose is to do. Therefore,
The purpose of forming the p + region is significantly different between the conventional diode and the diode of the present invention.

【0013】図3はこの発明の第3実施例で、同図
(a)は平面図、同図(b)は同図(a)をX−X線で
切断した断面図を示す。同図(a)は電極を剥離した状
態を示し、同図(b)では電極が形成されている状態を
示す。図2(a)との違いはp領域の平面形状が円形の
セル状となっている点であり、その他は同一である。
尚、p領域の平面形状は多角形でも勿論よい。
FIG. 3 shows a third embodiment of the present invention. FIG. 3 (a) is a plan view and FIG. 3 (b) is a sectional view taken along line XX in FIG. 3 (a). The figure (a) shows the state where the electrode was peeled off, and the figure (b) shows the state where the electrode is formed. The difference from FIG. 2A is that the planar shape of the p region is a circular cell shape, and the others are the same.
The plane shape of the p region may be polygonal.

【0014】[0014]

【発明の効果】この発明によれば、p領域とp+ 領域の
2種類のp形の領域を設け、それらの表面濃度を所定の
値に制御することで、従来のダイオードよりも、定格電
流領域における逆回復特性(逆回復耐量やソフトリカバ
リーなど)と大電流領域におけるサージ電流耐量を大幅
に向上させる。
According to the present invention, two types of p-type regions, a p region and ap + region, are provided and their surface concentrations are controlled to a predetermined value, so that the rated current is higher than that of the conventional diode. Reverse recovery characteristics (reverse recovery withstand and soft recovery) in the area and surge current withstand in the large current area are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例で、(a)は平面図、
(b)は(a)をY−Y線で切断した断面図
FIG. 1 is a plan view of a first embodiment of the present invention,
(B) is sectional drawing which cut | disconnected (a) by the YY line.

【図2】この発明の第2実施例で、(a)は平面図、
(b)は(a)をX−X線で切断した断面図
FIG. 2 is a second embodiment of the present invention, (a) is a plan view,
(B) is a cross-sectional view taken along line XX of (a)

【図3】この発明の第3実施例で、(a)は平面図、
(b)は(a)をX−X線で切断した断面図
FIG. 3 is a plan view of a third embodiment of the present invention,
(B) is a cross-sectional view taken along line XX of (a)

【図4】高耐圧で使用されている従来のpinダイオー
ドの断面図
FIG. 4 is a cross-sectional view of a conventional pin diode used for high breakdown voltage.

【図5】従来のp- inダイオードの断面図FIG. 5 is a sectional view of a conventional p - in diode.

【図6】pinダイオードのp層の表面濃度を変えたと
きの電流・電圧特性図
FIG. 6 is a current / voltage characteristic diagram when the surface concentration of the p layer of the pin diode is changed.

【図7】pinダイオードのp層の表面濃度を変えたと
きの逆回復電流波形図
FIG. 7 is a reverse recovery current waveform diagram when the surface concentration of the p layer of the pin diode is changed.

【符号の説明】[Explanation of symbols]

1 n- 領域 2 n+ 領域 3 アノード電極 4 カソード電極 5 p+ 領域 6 p領域 7 p層 8 p- 領域 9 p+ 領域1 n Region 2 n + Region 3 Anode Electrode 4 Cathode Electrode 5 p + Region 6 p Region 7 p Layer 8 p Region 9 p + Region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】高濃度の第1導電形の第1半導体層上に低
濃度の第1導電形の第2半導体層が形成され、第2半導
体層上に低濃度の第2導電形の第1半導体領域と高濃度
の第2導電形の第2半導体領域とが隣接して選択的に形
成され、第1半導体層表面にオーミック接続する第1金
属電極が形成され、第1半導体領域表面と第2半導体領
域表面とにオーミック接続する第2金属電極が形成され
ることを特徴とする半導体装置。
1. A second semiconductor layer having a low concentration first conductivity type is formed on a first semiconductor layer having a high concentration first conductivity type, and a second semiconductor layer having a low concentration second conductivity type is formed on a second semiconductor layer. A first semiconductor region and a high-concentration second conductivity type second semiconductor region are selectively formed adjacent to each other, and a first metal electrode is formed on the surface of the first semiconductor layer to make ohmic contact; A semiconductor device having a second metal electrode formed in ohmic contact with the surface of the second semiconductor region.
【請求項2】第1半導体領域の表面濃度が1×1015
-3ないし1×10 17cm-3で、かつ第2半導体領域の
表面濃度が1×1018cm-3ないし1×10 21cm-3
あることを特徴とする請求項1記載の半導体装置。
2. The surface concentration of the first semiconductor region is 1 × 10.Fifteenc
m-3Or 1 × 10 17cm-3And in the second semiconductor region
Surface concentration is 1 × 1018cm-3Or 1 × 10 twenty onecm-3so
The semiconductor device according to claim 1, wherein the semiconductor device is present.
【請求項3】第1半導体領域が複数個形成され、その表
面形状がストライプ状もしくはセル状であることを特徴
とする請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a plurality of first semiconductor regions are formed and the surface shape thereof is a stripe shape or a cell shape.
【請求項4】第2半導体領域が複数個形成され、その表
面形状がストライプ状もしくはセル状であることを特徴
とする請求項1記載の半導体装置。
4. The semiconductor device according to claim 1, wherein a plurality of second semiconductor regions are formed, and the surface shape is a stripe shape or a cell shape.
JP33629895A 1995-12-25 1995-12-25 Semiconductor device Pending JPH09181334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33629895A JPH09181334A (en) 1995-12-25 1995-12-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33629895A JPH09181334A (en) 1995-12-25 1995-12-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09181334A true JPH09181334A (en) 1997-07-11

Family

ID=18297667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33629895A Pending JPH09181334A (en) 1995-12-25 1995-12-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09181334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502128A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション X-Y addressable electrical microswitch array and sensor matrix using the same
JP2006019528A (en) * 2004-07-01 2006-01-19 Fuji Electric Holdings Co Ltd Semiconductor apparatus
JP2008047565A (en) * 2006-08-10 2008-02-28 Denso Corp Diode
JP2018029150A (en) * 2016-08-19 2018-02-22 サンケン電気株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502128A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション X-Y addressable electrical microswitch array and sensor matrix using the same
JP2006019528A (en) * 2004-07-01 2006-01-19 Fuji Electric Holdings Co Ltd Semiconductor apparatus
JP2008047565A (en) * 2006-08-10 2008-02-28 Denso Corp Diode
JP2018029150A (en) * 2016-08-19 2018-02-22 サンケン電気株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US4982260A (en) Power rectifier with trenches
CN108389901B (en) Carrier storage enhancement type super-junction IGBT
US6252288B1 (en) High power trench-based rectifier with improved reverse breakdown characteristic
US5241195A (en) Merged P-I-N/Schottky power rectifier having extended P-I-N junction
JPH09501270A (en) Silicon carbide thyristor
JP2003520430A (en) Trench insulated gate bipolar transistor with improved safe operating area
JPH10335679A (en) Diode and manufacture thereof
TWI593119B (en) Hochspannungs-trench-junction-barrier-schottkydiode
US5345100A (en) Semiconductor rectifier having high breakdown voltage and high speed operation
US5982015A (en) High breakdown voltage semiconductor device
US4901120A (en) Structure for fast-recovery bipolar devices
KR100194668B1 (en) Power insulated gate bipolar transistor
JP2743057B2 (en) Semiconductor device
US11195922B2 (en) Silicon carbide semiconductor device
JP3103655B2 (en) Semiconductor device
JPH09181334A (en) Semiconductor device
JP4770009B2 (en) Superjunction Schottky diode
KR20210008296A (en) Semiconductor device and its manufacturing method
US4062032A (en) Gate turn off semiconductor rectifiers
JP3807023B2 (en) Power diode
KR20210013947A (en) Schottky barrier diode
CN116093152A (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
KR102335550B1 (en) Siliconcarbide junction barrier Schottky diode with enhanced ruggedness
CN113659014A (en) Power diode with cathode short-circuit groove grid structure
JP7257912B2 (en) semiconductor equipment