JPH09180865A - Heater resistance material - Google Patents

Heater resistance material

Info

Publication number
JPH09180865A
JPH09180865A JP35164595A JP35164595A JPH09180865A JP H09180865 A JPH09180865 A JP H09180865A JP 35164595 A JP35164595 A JP 35164595A JP 35164595 A JP35164595 A JP 35164595A JP H09180865 A JPH09180865 A JP H09180865A
Authority
JP
Japan
Prior art keywords
resistance
resistance material
heater
nickel oxide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35164595A
Other languages
Japanese (ja)
Inventor
Keizo Suzuki
敬三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35164595A priority Critical patent/JPH09180865A/en
Publication of JPH09180865A publication Critical patent/JPH09180865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a heater with its superior thermal efficiency and its stable physical characteristics in a resistance material for the heater which covers the surface of a base material due to sputtering and which is heated by an electric resistance due to welding. SOLUTION: This resistance material, in particular, contains ferro-silicon and/or metal silicon. Said resistance material may contain nickel oxide and/or iron tritetraoxide in addition to said ferro-silicon and/or metal silicon. Here, it is desirable that the inclusion ratio of said nickel oxide and/or iron tritetraoxide is 1 to 50wt.%, and it is desirable that the inclusion ratio of said nickel oxide and/or iron tritetraoxide is lower as it is spaced from said base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶射により基材の
表面を覆い、通電に伴う電気抵抗により発熱するヒータ
ー用の抵抗材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance material for a heater, which covers the surface of a base material by thermal spraying and generates heat due to electric resistance accompanying energization.

【0002】[0002]

【従来の技術】ガスや水等の流体、あるいは個体等を電
気加熱する場合、シーズヒーターの使用が一般的である
が、近年、基材の表面に溶射により抵抗材の被膜を形成
し、この被膜を面状発熱体として利用したヒーターが、
伝熱抵抗が小さく熱効率の高い省エネルギー型のヒータ
ーとして注目されている。このヒーターに係る技術に
は、天然砂鉄原料を用いた面発熱被膜の形成方法(特公
平2−56425号広報)、セラミツク発熱体(特開昭
59−94394号広報)、加熱用伝熱材料及び発熱体
とそれを用いた加熱装置(特開平5−214506号広
報)等がある。
2. Description of the Related Art A sheath heater is generally used for electrically heating a fluid such as gas or water, or an individual, but recently, a resistance material film is formed on the surface of a base material by thermal spraying. A heater that uses the coating as a planar heating element,
It is attracting attention as an energy-saving heater with low heat transfer resistance and high thermal efficiency. The technology relating to this heater includes a method for forming a surface heating film using a natural sand iron raw material (Japanese Patent Publication No. 2-56425), a ceramic heating element (Japanese Patent Laid-Open No. 59-94394), a heat transfer material for heating, and There is a heating element and a heating device using the heating element (Japanese Patent Laid-Open No. 214506/1993).

【0003】[0003]

【発明が解決しようとする課題】一般に、電気抵抗加熱
の熱量は、(電圧)×(電流)または(電流)×(電
流)×(抵抗)であり、抵抗は、(抵抗率)×(抵抗体
の長さ)/(抵抗体の断面積)である。従って、抵抗体
の長さ及び断面積を変えることにより、必要な抵抗が得
られる。一方、加熱面積や熱量が固定され、上記抵抗体
の長さ及び断面積を変えるだけでは所望の抵抗が得られ
ない場合には、抵抗体を形成する抵抗材に固有の抵抗率
を変化させる必要がある。
Generally, the heat quantity of electric resistance heating is (voltage) × (current) or (current) × (current) × (resistance), and the resistance is (resistivity) × (resistance) (Body length) / (resistor cross-sectional area). Therefore, the required resistance can be obtained by changing the length and cross-sectional area of the resistor. On the other hand, when the heating area and the amount of heat are fixed and the desired resistance cannot be obtained only by changing the length and cross-sectional area of the resistor, it is necessary to change the resistivity specific to the resistor material forming the resistor. There is.

【0004】しかしながら、金属系材料は、抵抗率が
0.0004Ω・cmオーダーと小さいため、そのまま
では抵抗材として使用できない。セラミックの混合によ
り抵抗率を0.001〜1.0Ω・cmとすることも可
能であるが、この混合物を溶射して得た被膜では、金属
とセラミックとが事実上不均一となるため、通電する
と、被膜中にて、局所的に微細な断線が生じる場合があ
る。
However, since the metal-based material has a low resistivity of 0.0004 Ω · cm order, it cannot be used as a resistance material as it is. It is possible to make the resistivity 0.001 to 1.0 Ω · cm by mixing ceramics, but the coating obtained by thermal spraying of this mixture causes non-uniformity of the metal and the ceramic, so that the electrical conduction Then, fine disconnection may occur locally in the film.

【0005】また、加熱と冷却とを繰り返すヒーターの
場合、基材または絶縁材と抵抗材との間で熱膨張率に大
きな差があると、剪断応力等により断線や剥離等を生じ
やすく、物理的に不安定となるという問題がある。一
方、溶射の特性として、コーティング時における抵抗材
の歩留りが30%程度と低いにもかかわらず、材料の価
格が8000〜15000円/kg程度と高価であるた
め、溶射によりヒーターを製造する場合には、高価な材
料を多量に廃棄しなければならないという問題もある。
Further, in the case of a heater that repeats heating and cooling, if there is a large difference in the coefficient of thermal expansion between the base material or the insulating material and the resistance material, disconnection or peeling is likely to occur due to shear stress, etc. There is a problem that it becomes unstable. On the other hand, as a characteristic of thermal spraying, although the yield of the resistance material at the time of coating is as low as about 30%, the price of the material is as high as about 8,000 to 15,000 yen / kg, so when manufacturing a heater by thermal spraying. Also has a problem that a large amount of expensive materials must be discarded.

【0006】本発明は上記事情に鑑みてなされたもの
で、溶射により基材の表面を覆い、通電に伴う電気抵抗
により発熱するヒーター用の抵抗材に関し、特に、熱効
率に優れ、安定した物理的特性を有するヒーターを安価
に提供するための抵抗材の開発をその目的としている。
The present invention has been made in view of the above circumstances, and relates to a resistance material for a heater which covers the surface of a base material by thermal spraying and generates heat due to electric resistance due to energization, and in particular, has excellent thermal efficiency and stable physical properties. Its purpose is to develop a resistance material to provide a heater having characteristics at low cost.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、溶射可能な各種材料の抵抗特性について種々検討し
たところ、酸化ニッケル(NiO)及び四三酸化鉄(F
34)が、それぞれ0.001Ω・cm及び0.1Ω
・cmオーダーと相対的に高い抵抗率を示し、かつ絶縁
材(セラミック)との熱膨張率が同程度であることか
ら、抵抗率が高く、かつ絶縁材との整合性に優れた抵抗
材として有望であった。
[Means for Solving the Problems] In order to achieve the above object, various studies were conducted on the resistance characteristics of various thermal sprayable materials. As a result, nickel oxide (NiO) and ferric tetroxide (F) were obtained.
e 3 O 4 ) is 0.001Ω · cm and 0.1Ω respectively
・ As a resistance material showing a relatively high resistivity on the order of cm and having a thermal expansion coefficient similar to that of the insulating material (ceramic), it has a high resistivity and excellent compatibility with the insulating material. It was promising.

【0008】しかしながら、これらの材料は、価格が1
0000円/kgと高価であるため、添加率を50%以
下として考慮することとし、更に検討を続けた結果、鉄
鋼製造時に還元材として使用されるフェロシリコン(F
eSi)及び/または金属シリコンを抵抗材に適用すれ
ば、上記目的を達成可能であることを見い出し、本発明
を完成するに至った。
However, these materials have a price of 1
Since it is expensive at 0000 yen / kg, it was decided to consider the addition rate as 50% or less, and as a result of further study, it was found that ferrosilicon (F
It has been found that the above object can be achieved by applying eSi) and / or metallic silicon to the resistance material, and the present invention has been completed.

【0009】フェロシリコン及び金属シリコンは、それ
ぞれJIS(日本工業規格)G2302及びG2312
にて規格され、抵抗率はそれぞれ0.01Ω・cm及び
2.0Ω・cmオーダーと、他の金属系材料に比べ、最
大で1000倍以上高い。また、特にフェロシリコンの
価格は原石で数十円/kgと安価で、溶射用抵抗材に加
工しても約2000円/kgと、他の材料に比べ1/4
〜1/5以下である。更に、フレーム溶射にも適用可能
なため、溶射コストも安価となる。
Ferrosilicon and metallic silicon are classified into JIS (Japanese Industrial Standard) G2302 and G2312, respectively.
The resistivity is 0.01 Ω · cm and 2.0 Ω · cm, respectively, which is 1000 times higher than other metal-based materials at the maximum. In addition, the price of ferrosilicon is low at a few tens of yen / kg for rough stones, and it is about 2,000 yen / kg even if it is processed into a thermal spray resistance material, which is 1/4 that of other materials.
~ 1/5 or less. Further, since it can be applied to flame spraying, the spraying cost can be reduced.

【0010】一方、例えばアルミナのようなセラミック
を絶縁材として使用する場合には、熱膨張率を整合させ
るため、絶縁材上に、まず酸化ニッケル及び/または四
三酸化鉄を溶射し、その後、酸化ニッケル及び/または
四三酸化鉄の含有量を漸次減少させるとともに、フェロ
シリコン及び/または金属シリコンの含有量を漸次増加
させたものを順次溶射し、最後にフェロシリコン及び/
または金属シリコンのみを溶射する。その結果、500
℃程度でも剥離や断線のない、安定した物理的特性を有
するヒーターが得られる。
On the other hand, when a ceramic such as alumina is used as the insulating material, nickel oxide and / or ferrosoferric oxide is first sprayed on the insulating material in order to match the coefficient of thermal expansion, and then, The content of nickel oxide and / or ferrosoferric oxide is gradually decreased, and the content of ferrosilicon and / or metallic silicon is gradually increased.
Alternatively, only the metal silicon is sprayed. As a result, 500
It is possible to obtain a heater having stable physical properties without peeling or disconnection even at about ° C.

【0011】すなわち、本発明は、溶射により基材の表
面を覆い、通電に伴う電気抵抗により発熱するヒーター
用抵抗材であって、特に、フェロシリコン及び/または
金属シリコンを含有することをその特徴とするものであ
る。
That is, the present invention is a resistance material for a heater which covers the surface of a base material by thermal spraying and generates heat due to electric resistance accompanying energization, and particularly, it contains ferrosilicon and / or metallic silicon. It is what

【0012】また、上記抵抗材が、上記フェロシリコン
及び/または金属シリコンに加え、酸化ニッケル及び/
または四三酸化鉄を含有してもよい。ここで、上記酸化
ニッケル及び/または四三酸化鉄の含有比は、1〜50
重量%とすることが望ましく、かつ、上記酸化ニッケル
及び/または四三酸化鉄の含有比は、上記基材から離間
するに従い低下することが望ましい。一方、上記基材と
上記抵抗材との間に、絶縁材が介在されていてもよい。
In addition to the ferrosilicon and / or metallic silicon, the resistance material may be nickel oxide and / or
Alternatively, it may contain ferrosoferric oxide. Here, the content ratio of the nickel oxide and / or the ferrosoferric oxide is 1 to 50.
It is desirable to set the content by weight, and it is desirable that the content ratio of nickel oxide and / or ferrosoferric oxide decreases as the distance from the base material increases. On the other hand, an insulating material may be interposed between the base material and the resistance material.

【0013】[0013]

【発明の実施の形態】以下、図面に基づき、本発明の実
施形態について、更に詳しく説明する。フェロシリコン
2号(Fe・75%Si)の原石を、その粒径が10〜
44μmとなるよう破砕、分級したものを試料とし、図
1に示す試験片を用いて抵抗値測定試験を行った。ま
ず、縦220mm×横50mm×厚さ5mmのステンレ
ス板(基材)1の表面に、プラズマ溶射にて、アルミナ
(絶縁材)4を厚さ200μmで積層し、次いで、アセ
チレンの通常フレーム溶射にて、試料として用意したフ
ェロシリコン3を縦220mm×横20mm×厚さ10
0μmで積層した。更に、その長手方向両端部に、銅2
を、それぞれ縦20mm×横10mm×厚さ50μmで
積層した。
Embodiments of the present invention will be described below in more detail with reference to the drawings. The grain size of ferrosilicon No. 2 (Fe / 75% Si) is 10
A sample obtained by crushing and classifying to 44 μm was used to perform a resistance value measurement test using the test piece shown in FIG. First, alumina (insulating material) 4 having a thickness of 200 μm is laminated on the surface of a stainless steel plate (base material) 1 having a length of 220 mm × width of 50 mm × thickness of 5 mm by plasma spraying, and then a normal flame spraying of acetylene. Then, the ferrosilicone 3 prepared as a sample is 220 mm in length × 20 mm in width × thickness 10
It was laminated at 0 μm. Furthermore, copper 2
Were laminated in a length of 20 mm × width of 10 mm × thickness of 50 μm.

【0014】そして、室温にて銅2間に通電し、銅2間
における抵抗値を、デジタルボルトメータにて測定し
た。その結果、抵抗値は40Ωであった。また、同様の
試験をそれぞれフェロシリコン1号(Fe・50%S
i)及び金属シリコン(97%Si)を試料として行っ
たところ、抵抗値はそれぞれ0.1Ω及び200Ωであ
った。また、抵抗率を計算したところ、図2のような結
果が得られた。
Then, electricity was applied between the copper 2 at room temperature, and the resistance value between the copper 2 was measured by a digital voltmeter. As a result, the resistance value was 40Ω. In addition, the same test was performed on each of Ferrosilicon No. 1 (Fe. 50% S
When i) and metallic silicon (97% Si) were used as samples, the resistance values were 0.1Ω and 200Ω, respectively. When the resistivity was calculated, the results shown in FIG. 2 were obtained.

【0015】一方、上記試験片を試料1とし、別に、試
料2として、上記ステンレス板1にアルミナ4を積層し
た後、プラズマ溶射にて、四三酸化鉄を縦220mm×
横20mm×厚さ30μmで積層し、更に、この四三酸
化鉄の上に、四三酸化鉄を10重量%含有するフェロシ
リコンを厚さ50μmで積層したものを用意した。
On the other hand, the test piece was used as a sample 1, and separately, as a sample 2, alumina 4 was laminated on the stainless steel plate 1 and then plasma spraying was carried out to form ferrosoferric oxide 220 mm long.
A laminate was prepared in which the width was 20 mm and the thickness was 30 μm, and further ferrosilicon containing 10% by weight of tetraferric oxide was laminated on the ferric oxide to a thickness of 50 μm.

【0016】そして、これら試料を電気炉に入れ、50
0℃にて30分保持した後保冷する操作を繰り返すこと
により、熱サイクル試験を行った。その結果、試料1で
は15回目で端部に剥離が見られたが、試料2では異常
が見られなかった。また、熱サイクル試験後における試
料2の抵抗上昇は1%程度に過ぎなかったことから、結
晶構造の変化もほとんどないと考えられる。
Then, these samples were placed in an electric furnace and
A heat cycle test was performed by repeating the operation of keeping at 0 ° C. for 30 minutes and then keeping it cool. As a result, in Sample 1, peeling was found at the end at the 15th time, but in Sample 2, no abnormality was found. Further, since the resistance increase of Sample 2 after the heat cycle test was only about 1%, it is considered that there is almost no change in the crystal structure.

【0017】[0017]

【発明の効果】以上説明した通り、本発明の抵抗材は、
抵抗率が高く、かつ安価である。更に、絶縁材であるセ
ラミックと熱膨張率が同程度である酸化ニッケル及び/
または四三酸化鉄を混合することにより、上記特性に加
え、絶縁材との整合性に優れ、加熱/冷却を繰り返して
も剥離しにくい抵抗材が得られる。その結果、本発明に
よれば、熱効率に優れ、かつ安定した物理的特性を有す
るヒーターを安価に提供することが可能となる。
As described above, the resistance material of the present invention is
It has high resistivity and is inexpensive. Furthermore, nickel oxide and / or nickel oxide, which has a thermal expansion coefficient similar to that of ceramic, which is an insulating material.
Alternatively, by mixing ferrosoferric oxide, it is possible to obtain a resistance material which is excellent in conformity with the insulating material in addition to the above-mentioned characteristics and which is hardly peeled off even if heating / cooling is repeated. As a result, according to the present invention, it is possible to inexpensively provide a heater having excellent thermal efficiency and stable physical characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る抵抗材の特性試験に用いた試験片
を示す上方斜視図である。
FIG. 1 is an upper perspective view showing a test piece used for a characteristic test of a resistance material according to the present invention.

【図2】本発明に係る抵抗材の抵抗率の例を示すグラフ
である。
FIG. 2 is a graph showing an example of resistivity of a resistance material according to the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス板(基材) 2 銅 3 フェロシリコン(抵抗材) 4 アルミナ(絶縁材) 1 Stainless steel plate (base material) 2 Copper 3 Ferrosilicon (resistive material) 4 Alumina (insulating material)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶射により基材の表面を覆い、通電に伴
う電気抵抗により発熱するヒーター用抵抗材であって、 フェロシリコン及び/または金属シリコンを含有するこ
とを特徴とするヒーター用抵抗材。
1. A resistance material for a heater, which covers the surface of a base material by thermal spraying and generates heat due to electric resistance upon energization, wherein the resistance material for a heater contains ferrosilicon and / or metallic silicon.
【請求項2】 上記フェロシリコン及び/または金属シ
リコンに加え、酸化ニッケル及び/または四三酸化鉄を
含有することを特徴とする請求項1記載のヒーター用抵
抗材。
2. The resistance material for a heater according to claim 1, further comprising nickel oxide and / or ferric tetroxide in addition to the ferrosilicon and / or metallic silicon.
【請求項3】 上記酸化ニッケル及び/または四三酸化
鉄の含有比が、1〜50重量%であることを特徴とする
請求項2記載のヒーター用抵抗材。
3. The resistance material for a heater according to claim 2, wherein the content ratio of the nickel oxide and / or the triiron tetraoxide is 1 to 50% by weight.
【請求項4】 上記酸化ニッケル及び/または四三酸化
鉄の含有比が、上記基材から離間するに従い低下するこ
とを特徴とする請求項2または3記載のヒーター用抵抗
材。
4. The resistance material for a heater according to claim 2, wherein the content ratio of the nickel oxide and / or the triiron tetraoxide decreases as the distance from the base material increases.
【請求項5】 上記基材と上記ヒーター用抵抗材との間
に、絶縁材が介在されていることを特徴とする請求項
1,2,3または4記載のヒーター用抵抗材。
5. The resistance material for the heater according to claim 1, wherein an insulating material is interposed between the base material and the resistance material for the heater.
JP35164595A 1995-12-26 1995-12-26 Heater resistance material Pending JPH09180865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35164595A JPH09180865A (en) 1995-12-26 1995-12-26 Heater resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35164595A JPH09180865A (en) 1995-12-26 1995-12-26 Heater resistance material

Publications (1)

Publication Number Publication Date
JPH09180865A true JPH09180865A (en) 1997-07-11

Family

ID=18418658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35164595A Pending JPH09180865A (en) 1995-12-26 1995-12-26 Heater resistance material

Country Status (1)

Country Link
JP (1) JPH09180865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517436A (en) * 2004-10-23 2008-05-22 2ディー ヒート リミテッド Electric heating resistance wire composition method by flame spraying of metal / metal oxide base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517436A (en) * 2004-10-23 2008-05-22 2ディー ヒート リミテッド Electric heating resistance wire composition method by flame spraying of metal / metal oxide base material

Similar Documents

Publication Publication Date Title
Chung et al. Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics
US4859835A (en) Electrically resistive tracks
CA2231924C (en) Heater-sensor complex
JP4028149B2 (en) Heating device
JPH07282961A (en) Heater
CN109874185A (en) A kind of heat generating device and heat-producing device
JPH09180865A (en) Heater resistance material
WO2017133067A1 (en) Thick film element coated with substrate and having high heat-conduction capability
JP3140883B2 (en) Panel heater using PTC
JP3216737B2 (en) Spray heating element for composite particles and its manufacturing method
TW201242412A (en) Nanometer ceramic electrothermal spraying device and manufacturing method thereof
Kim Electrical properties of CrSix, Cr/CrSix/Cr/CrSix, and CrSix/Si/CrSix/Si sputtered on alumina plates
JP3846615B2 (en) Thin film gas sensor
JPS60160925A (en) Electric liquid heating machinery
JP2874204B2 (en) Heating element
JPH08315964A (en) Heating element, electric heater, and its manufacture
WO2002043439A1 (en) A method of producing electrically resistive heating elements having self-regulating properties
Kang et al. Thickness Dependence of the Electrical Properties of CuNi Thin Film Resistors Grown on AlN Substrates for Π-Type Attenuator Application
US20110132896A1 (en) Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity
JP3824836B2 (en) Actuator
JPH05315053A (en) Ptc thermistor heating device
JPH1025532A (en) Aluminum-chromium alloy, its production, and its use
Willkens et al. High-voltage miniature igniter development
JPH06151043A (en) Ceramic sheet shape resistance heat generation element
JP2021510004A (en) Heating element