JPH09180759A - Battery - Google Patents

Battery

Info

Publication number
JPH09180759A
JPH09180759A JP7336942A JP33694295A JPH09180759A JP H09180759 A JPH09180759 A JP H09180759A JP 7336942 A JP7336942 A JP 7336942A JP 33694295 A JP33694295 A JP 33694295A JP H09180759 A JPH09180759 A JP H09180759A
Authority
JP
Japan
Prior art keywords
electrode sheet
battery
negative electrode
active material
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7336942A
Other languages
Japanese (ja)
Inventor
Masahide Taniguchi
雅英 谷口
Isamu Sakuma
勇 佐久間
Kazuhiko Hashizaka
和彦 橋阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7336942A priority Critical patent/JPH09180759A/en
Publication of JPH09180759A publication Critical patent/JPH09180759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery with a high filling factor, which has the excellent cycle characteristic and high safety, by forming one surface of a wound positive electrode sheet or a wound negative electrode sheet with the active material having a different charging and discharging characteristic from that of the other surface. SOLUTION: An electrode body, which is formed by spirally winding a positive electrode sheet and a negative electrode sheet with a separator, is used, and lithium salt or the like is used as the electrolyte to form a battery. In this battery, one surface of at least one electrode sheet of the positive electrode sheet and the negative electrode sheet is formed with the active material having a different charging and discharging characteristic from that of the other surface, for example, formed with a different kind of active material. As the active materials having a different charging and discharging characteristic form each other, the mixture of two or more kinds of active material, or the active material having a different mean specific surface area, or the active material having a different stored quantity of lithium ion are used. The positive electrode active material, which contains the transition metal compound, is desirable, and the negative electrode active material, which contains the carbonaceous material, especially, polyacrylonitrile carbon fiber, is desirable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極、負極、セパ
レータをスパイラル状に巻いた電極体を用いた電池に関
するものである。
TECHNICAL FIELD The present invention relates to a battery using an electrode body in which a positive electrode, a negative electrode and a separator are spirally wound.

【0002】[0002]

【従来の技術】近年、ビデオカメラ、携帯電話、ノート
型パソコン等のポータブル機器の普及に伴い、小型かつ
軽量で高容量の二次電池に対する需要が高まりつつあ
る。現在使用されている二次電池の多くはアルカリ電解
液を用いたニッケル−カドミウム電池であるが、平均電
池電圧が1.2Vと低いため、エネルギー密度を高くするこ
とは困難である。そのため、負極に金属リチウムを使用
した高エネルギー二次電池の研究が行われてきた。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras, mobile phones, and notebook computers, there is an increasing demand for small, lightweight, high-capacity secondary batteries. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but it is difficult to increase the energy density because the average battery voltage is as low as 1.2V. Therefore, research on high energy secondary batteries using metallic lithium for the negative electrode has been conducted.

【0003】ところが、金属リチウムを負極に使用する
二次電池では充放電の繰り返しによってリチウムが樹枝
状(デンドライト)に成長し、短絡を起こして発火する危
険性がある。また、活性の高い金属リチウムを使用する
ため、本質的に危険性が高く、民生用として使用するに
は問題が多い。近年、このような安全上の問題を解決
し、かつリチウム電極特有の高エネルギーが可能なもの
として、各種炭素質材料を用いたリチウムイオン二次電
池が考案されている。この方法では、充電時、炭素質材
料にリチウムイオンが吸蔵(ドーピング)され、金属リチ
ウムと同電位になり金属リチウムの代わりに負極に使用
することができることを利用したものである。また、放
電時にはドープされたリチウムイオンが負極から放出
(脱ドーピング)されて元の正極材料に戻る。このよう
な、リチウムイオンがドーピングされた炭素質材料を負
極として用いた場合には、デンドライト生成の問題も小
さく、また金属リチウムが存在しないため、安全性にも
優れており、現在、活発に研究が行われている。
However, in a secondary battery using metallic lithium as a negative electrode, there is a risk that lithium will grow in a dendritic form due to repeated charging and discharging, causing a short circuit and ignition. In addition, since highly active metal lithium is used, the risk is inherently high, and there are many problems in using it for consumer use. In recent years, lithium ion secondary batteries using various carbonaceous materials have been devised as a device that solves such a safety problem and enables high energy peculiar to lithium electrodes. This method utilizes the fact that during charging, lithium ions are occluded (doping) in the carbonaceous material to have the same potential as that of metallic lithium, which can be used for the negative electrode instead of metallic lithium. In addition, doped lithium ions are released from the negative electrode during discharge.
(Dedoping) is performed to return to the original positive electrode material. When such a carbonaceous material doped with lithium ions is used as a negative electrode, the problem of dendrite formation is small, and since there is no metallic lithium, the safety is also excellent. Has been done.

【0004】上記の炭素質材料へのリチウムイオンのド
ーピングを利用した電極を利用した二次電池としては、
特開昭57-208079、特開昭58-93176、特開昭58-192266、
特開昭62-90863、特開昭62-122066、特開平2-66856等が
公知であり、リチウムイオン二次電池に用いられる電極
体の形状としては、正極、負極、セパレータをスパイラ
ル状に巻き込んだ形状が一般的である。
As a secondary battery using an electrode using the above-mentioned carbonaceous material doped with lithium ions,
JP-A-57-208079, JP-A-58-93176, JP-A-58-192266,
JP-A-62-90863, JP-A-62-122066, JP-A-2-66856 and the like are known, and as the shape of the electrode body used in the lithium-ion secondary battery, a positive electrode, a negative electrode, and a separator are spirally wound. The shape is generally common.

【0005】しかしながら、スパイラル状の電極体を用
いる場合、正極、負極のそれぞれの電極シートが渦巻き
状に変形し、正極シート、負極シートともに外周面では
電極材料に引張りの力がかかり、反対に内周面は圧縮の
力がかかる。従って、電極材料は平板の状態で塗布され
るにもかかわらず、外周面では電極材料は引き延ばさ
れ、内周面の電極材料は縮められる。
However, when the spiral electrode body is used, the respective electrode sheets of the positive electrode and the negative electrode are deformed in a spiral shape, and a tensile force is applied to the electrode material on the outer peripheral surfaces of both the positive electrode sheet and the negative electrode sheet, and conversely The peripheral surface is compressed. Therefore, although the electrode material is applied in a flat plate state, the electrode material is stretched on the outer peripheral surface and the electrode material on the inner peripheral surface is contracted.

【0006】また、スパイラル電極では、外周面で引き
延ばされる分を考慮して、スパイラル状態での正極、負
極の充放電特性、とくにイオンの移動速度や電気当量比
(バランス)を適正にする必要があるので、通常、外周
面の塗布量を内周面よりも多くする方法が採られてい
る。しかし、この方法では、電極材料を塗布後、電極シ
ートを高温乾燥する工程、プレスする工程などで、熱膨
張、熱収縮、圧力延伸により電極シートに反りを生じや
すく、その後のスパイラル状への巻き込み時に、巻きず
れを生じたり、電極材料に亀裂が生じ、ひいては、正極
シート、負極シートのエッジ部分による短絡を引き起こ
すことがあった。さらに、スパイラル状電極体では、一
定体積に電極材料をできるだけ多く充填しようとする
と、電極材料の塗布厚みを大きくする必要があるが、厚
みが増すにつれて外周面と内周面にかかる力が大きくな
り、とくに、電極材料の塗布量を内周面より厚くした外
周面では、最悪の場合、電極材料に亀裂が生じるという
問題があった。また、電極材料の塗布厚みが厚い面はイ
オン抵抗や電子抵抗が増大するので、充放電特性、例え
ば、充放電容量や充放電速度が外周面と内周面で異なる
ことになり充放電を繰り返した場合の劣化が早くなる。
Further, in the spiral electrode, it is necessary to make the charge / discharge characteristics of the positive electrode and the negative electrode in the spiral state, especially the ion moving speed and the electric equivalent ratio (balance), in consideration of the amount of expansion on the outer peripheral surface. Therefore, a method of increasing the coating amount on the outer peripheral surface more than the inner peripheral surface is usually adopted. However, in this method, after the electrode material is applied, the electrode sheet is liable to warp due to thermal expansion, thermal contraction, or pressure stretching in the steps of drying the electrode sheet at high temperature and pressing, etc., and then winding into a spiral shape. At times, winding misalignment may occur, or the electrode material may crack, which in turn may cause a short circuit due to the edge portions of the positive electrode sheet and the negative electrode sheet. Furthermore, in the spiral electrode body, when trying to fill the constant volume with the electrode material as much as possible, it is necessary to increase the coating thickness of the electrode material, but as the thickness increases, the force applied to the outer peripheral surface and the inner peripheral surface increases. In particular, in the worst case, the electrode material is cracked on the outer peripheral surface where the applied amount of the electrode material is thicker than the inner peripheral surface. In addition, since the ionic resistance and electronic resistance increase on the surface where the electrode material is applied thickly, charge / discharge characteristics, such as charge / discharge capacity and charge / discharge speed, are different between the outer peripheral surface and the inner peripheral surface, and charge / discharge is repeated. If it does, the deterioration will be faster.

【0007】[0007]

【発明が解決しようとする課題】充填率が高く、高容量
かつサイクル特性が良好で、安全性の高い電池を得るこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a battery having a high filling rate, a high capacity, good cycle characteristics, and high safety.

【0008】[0008]

【課題を解決するための手段】本発明者らは、充填率が
高く、高容量かつサイクル特性が良好で、安全性の高い
電池を検討した結果、本発明を達成した。
The present inventors have achieved the present invention as a result of studying a battery having a high filling rate, a high capacity, good cycle characteristics, and high safety.

【0009】すなわち、本発明は、正極シート、負極シ
ートをスパイラル状に巻回してなる電極体を用いた電池
において、正極シート、負極シートの少なくともひとつ
の電極シート面のひとつの面に他の面と充放電特性の異
なる活物質を用いることを特徴とする電池に関する。
That is, according to the present invention, in a battery using an electrode body formed by spirally winding a positive electrode sheet and a negative electrode sheet, at least one of the positive electrode sheet and the negative electrode sheet has one surface on the other surface. And a battery using active materials having different charge and discharge characteristics.

【0010】[0010]

【発明の実施の形態】本発明者らが鋭意検討を行った結
果、外周面と内周面において充放電特性の異なる電極材
料を用いることにより、スパイラル形状の電極において
電極材料塗布時の外周面と内周面表裏の厚み差を生じさ
せずに、正極、負極の外周面と内周面のバランスを適正
にすることが可能となることを見出した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of intensive studies by the present inventors, by using electrode materials having different charge and discharge characteristics on the outer peripheral surface and the inner peripheral surface, the outer peripheral surface at the time of applying the electrode material in a spiral electrode It was found that the balance between the outer peripheral surface and the inner peripheral surface of the positive electrode and the negative electrode can be made appropriate without causing a difference in thickness between the front and back surfaces of the inner peripheral surface.

【0011】充放電特性は、電池の重要な特性であり、
充放電容量(リチウムイオンのドーピング量、放出
量)、充放電速度、充放電量、充放電電位等が挙げられ
るが、本発明では、その中でも重要な特性である充放電
容量に注目した。
Charging / discharging characteristics are important characteristics of batteries.
The charge / discharge capacity (lithium ion doping amount, release amount), charge / discharge rate, charge / discharge amount, charge / discharge potential, etc. may be mentioned, but in the present invention, attention was paid to the charge / discharge capacity, which is an important characteristic among them.

【0012】本発明において、充放電特性、例えば、充
放電容量を変える方法として、外周面と内周面で種類の
異なる活物質を用いる方法、2種類以上の活物質を混合
する方法、活物質の混合比を変える方法などが挙げら
れ、いずれの方法も本発明を実施する方法として好まし
く用いられる。さらに、同じ活物質であっても、形、粒
径などを変えて平均比表面積を異なるものとし、充放電
特性を変化させるのも好ましい方法である。
In the present invention, as a method of changing charge / discharge characteristics, for example, charge / discharge capacity, a method of using active materials of different kinds on the outer peripheral surface and an inner peripheral surface, a method of mixing two or more kinds of active materials, and an active material And the like, and any method is preferably used as a method for carrying out the present invention. Further, it is also a preferable method that the average specific surface area is changed by changing the shape, the particle diameter and the like even if the same active material is used to change the charge / discharge characteristics.

【0013】さらに、電極材料を片面塗布した後に、熱
処理などを施して充放電特性を変えることも可能であ
る。
It is also possible to change the charge / discharge characteristics by applying heat treatment or the like after applying the electrode material on one side.

【0014】外周面と内周面の電極材料の充放電特性を
異なるものにすることは、正極のみでも負極のみでも有
効であり、また、正極・負極両方の外周面と内周面の電
極材料の充放電特性を異なるものにすることもできる。
Making the charge and discharge characteristics of the electrode material on the outer peripheral surface and the inner peripheral surface different is effective only for the positive electrode only and only for the negative electrode. Further, the electrode material on the outer peripheral surface and the inner peripheral surface of both the positive electrode and the negative electrode is effective. The charging and discharging characteristics of can also be different.

【0015】本発明に用いられる電池は、スパイラル状
に巻回された電極体を使用する電池であれば特に制限は
ないが、高エネルギー密度を要求する携帯用機器搭載用
の電池である、負極材料としてアルカリ金属を用いた電
池や、炭素質材料へのカチオンあるいはアニオンのドー
ピングを利用した二次電池に特に有効である。
The battery used in the present invention is not particularly limited as long as it uses a spirally wound electrode body, but it is a battery for mounting on portable equipment which requires high energy density. It is particularly effective for a battery using an alkali metal as a material and a secondary battery utilizing cation or anion doping of a carbonaceous material.

【0016】本発明では正極に塗布される電極材料とし
て、炭素繊維、人造あるいは天然の黒鉛粉末などの炭素
質材料、フッ化カーボン、金属あるいは金属酸化物など
の無機化合物や有機高分子化合物などを用いることがで
きる。
In the present invention, as the electrode material applied to the positive electrode, carbon fiber, carbonaceous material such as artificial or natural graphite powder, carbon fluoride, inorganic compound such as metal or metal oxide, organic polymer compound and the like are used. Can be used.

【0017】さらに、本発明では正極に塗布される電極
材料として、通常の二次電池において用いられる正極活
物質を挙げることができる。このような正極活物質とし
ては、アルカリ金属を含む遷移金属酸化物や遷移金属カ
ルコゲンなどの無機化合物、ポリアセチレン、ポリパラ
フェニレン、ポリフェニレンビニレン、ポリアニリン、
ポリピロール、ポリチオフェンなどの共役系高分子、ジ
スルフィド結合を有する架橋高分子、塩化チオニルなど
が挙げられる。本発明では電解質としてリチウム塩が好
ましく用いられるが、この場合には、コバルト、ニッケ
ル、マンガン、モリブデン、バナジウム、クロム、鉄、
銅、チタンなどの遷移金属酸化物や遷移金属カルコゲン
などの遷移金属化合物が好ましく用いられる。特に、L
iCoO2、LiNiO2、LiMn24、LiyNi1-x
x2(M:Ti、V、Mn、Fe のいずれか)、L
1-x-axNi1-y-by2(ただし、Aは少なくとも、
1種類のアルカリもしくはアルカリ土類金属元素、とく
に好ましくは、Mg、Srが挙げられ、Bは少なくとも
1種類の遷移金属元素であり、好ましくはCo、Feで
ある)は、エネルギー密度も大きいために、最も好まし
く使用される。その中で特に、Li1-x-axNi1-y-b
y2は、0<x≦0.1、0≦y≦0.3、-0.1≦a≦0.1、-0.1
5≦b≦0.15(ただし、A、Bが2種類以上の元素からな
る場合は、xはLi を除くアルカリもしくはアルカリ土
類金属の総モル数、yはNiを除く全遷移金 属元素の総
モル数であり、y=0の場合はAは少なくとも1種類以上
のアルカリ土 類金属を含む)場合、優れた特性の正極
材を得ることができる。また、この場合、A、Bの種
類、数、組成を変えたり、x、y、a、bを変えた正極材を
用いることよっても本発明の主旨であるところの特性の
異なる活物質を得ることが可能であるため、非常に好適
である。
Further, in the present invention, as an electrode material applied to the positive electrode, a positive electrode active material used in a usual secondary battery can be mentioned. Examples of such a positive electrode active material include inorganic compounds such as transition metal oxides and transition metal chalcogens containing an alkali metal, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyaniline,
Examples thereof include conjugated polymers such as polypyrrole and polythiophene, crosslinked polymers having a disulfide bond, and thionyl chloride. In the present invention, a lithium salt is preferably used as the electrolyte, but in this case, cobalt, nickel, manganese, molybdenum, vanadium, chromium, iron,
Transition metal oxides such as copper and titanium and transition metal compounds such as transition metal chalcogens are preferably used. In particular, L
iCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li y Ni 1-x
M x O 2 (M: Ti, V, Mn, or Fe), L
i 1-xa A x Ni 1 -yb B y O 2 ( however, A is at least,
Since one kind of alkali or alkaline earth metal element, particularly preferably Mg or Sr, and B is at least one kind of transition metal element, preferably Co or Fe, has a large energy density. , Most preferably used. Among them, especially Li 1-xa A x Ni 1-yb
B y O 2 is, 0 <x ≦ 0.1,0 ≦ y ≦ 0.3, -0.1 ≦ a ≦ 0.1, -0.1
5 ≦ b ≦ 0.15 (however, when A and B consist of two or more elements, x is the total number of moles of alkali or alkaline earth metal except Li, y is the total number of transition metal elements except Ni) It is the number of moles, and when y = 0, A contains at least one or more kinds of alkaline earth metals), and a positive electrode material having excellent characteristics can be obtained. Further, in this case, active materials having different characteristics, which is the gist of the present invention, can be obtained by changing the type, number and composition of A and B, or by using the positive electrode material in which x, y, a and b are changed. Therefore, it is very suitable.

【0018】本発明では負極に塗布される電極材料とし
て、炭素繊維、人造あるいは天然の黒鉛粉末、フッ化カ
ーボンなどの炭素質材料、金属あるいは金属酸化物など
の無機化合物や有機高分子化合物などを用いることがで
きる。
In the present invention, as the electrode material applied to the negative electrode, carbon fiber, artificial or natural graphite powder, carbonaceous material such as fluorocarbon, inorganic compound such as metal or metal oxide, organic polymer compound and the like are used. Can be used.

【0019】本発明では負極に塗布される電極材料とし
ては、好ましくは、炭素質材料、より好ましくは、炭素
繊維が用いられる。この場合、炭素繊維は、特に限定さ
れるものではないが、一般に有機物を繊維状に焼成した
ものが用いられる。本発明で用いられる炭素繊維として
は、例えば、ポリアクリロニトリル(PAN)から得られるP
AN系炭素繊維、石炭もしくは石油などのピッチから得ら
れるピッチ系炭素繊維、セルロースから得られるセルロ
ース系炭素繊維、低分子量有機物の気体から得られる気
相成長炭素繊維、ビニルアルコール、リグニン、ポリ塩
化ビニル、ポリアミド、ポリイミド、フェノール樹脂、
フルフリルアルコールなどを焼成して得られる炭素繊維
などが挙げられ、電極および電池の特性に応じて、その
特性を満たす炭素繊維が適宜選択される。さらに、これ
らの炭素繊維の中では、PAN系炭素繊維、ピッチ系炭素
繊維がより好ましく用いられる。特に、リチウムなどの
アルカリ金属塩を含む非水電解液を用いた二次電池の負
極に使用する場合にはPAN系炭素繊維が特に好ましい。
In the present invention, the electrode material applied to the negative electrode is preferably a carbonaceous material, more preferably carbon fiber. In this case, the carbon fiber is not particularly limited, but a carbon fiber obtained by firing an organic material into a fibrous state is generally used. Examples of the carbon fiber used in the present invention include P obtained from polyacrylonitrile (PAN).
AN-based carbon fiber, pitch-based carbon fiber obtained from pitch such as coal or petroleum, cellulose-based carbon fiber obtained from cellulose, vapor-grown carbon fiber obtained from gas of low molecular weight organic substance, vinyl alcohol, lignin, polyvinyl chloride , Polyamide, polyimide, phenolic resin,
Examples thereof include carbon fibers obtained by firing furfuryl alcohol and the like, and carbon fibers satisfying the characteristics of the electrode and the battery are appropriately selected according to the characteristics of the electrodes and the battery. Further, among these carbon fibers, PAN-based carbon fibers and pitch-based carbon fibers are more preferably used. In particular, PAN-based carbon fiber is particularly preferable when it is used for a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt such as lithium.

【0020】本発明で好ましく使用される炭素繊維の直
径は、それぞれの電極または電池の形態により適宜決め
られるが、一般的には、直径1 〜100μmの炭素繊維が好
ましくは用いられ、直径3〜20μmの炭素繊維がさらに好
ましい。また、必要に応じて直径の異なった炭素繊維を
数種類用いることも可能である。
The diameter of the carbon fiber preferably used in the present invention is appropriately determined according to the form of each electrode or battery, but generally, carbon fiber having a diameter of 1 to 100 μm is preferably used, and a diameter of 3 to 3 is used. More preferred is 20 μm carbon fiber. It is also possible to use several kinds of carbon fibers having different diameters, if necessary.

【0021】さらに、本発明で好ましく使用される炭素
繊維の長さは、特に制限はないが、通例、好ましくは10
0μm以下、さらに好ましくは50μm以下にする。炭素繊
維の長さが、100μmを越えるとはコーターを用いて均一
に塗布しづらくなる傾向がある。また、炭素繊維の長さ
を炭素繊維の直径より短くすると、繊維方向に破壊する
可能性があるので、炭素繊維の長さは炭素繊維直径以上
であることがより好ましい。
Furthermore, the length of the carbon fiber preferably used in the present invention is not particularly limited, but it is usually preferably 10
The thickness is 0 μm or less, more preferably 50 μm or less. When the length of the carbon fiber exceeds 100 μm, it tends to be difficult to apply the carbon fiber uniformly using a coater. Further, if the length of the carbon fiber is shorter than the diameter of the carbon fiber, the carbon fiber may be broken in the fiber direction. Therefore, the length of the carbon fiber is more preferably the carbon fiber diameter or more.

【0022】また、負極活物質の特性を制御する好まし
い方法として、負極活物質である炭素材料を焼成するこ
とが挙げられる。炭素材料は、焼成温度や焼成時間、焼
成回数、雰囲気条件などを変化させることにより充放電
容量、すなわち、リチウムイオンの吸蔵(ドーピング)
量を変化させて最適の特性を示す負極活物質を得ること
ができるので、本発明の適用が非常に好適である。さら
に、炭素材料のうち、特に炭素繊維は繊維長さを変更さ
せることによって比表面積を変えることができ、充放電
特性を制御可能なため、本発明の適用に対し、好適な素
材である。
Further, as a preferable method for controlling the characteristics of the negative electrode active material, firing a carbon material as the negative electrode active material can be mentioned. The carbon material has a charge / discharge capacity, that is, absorption (doping) of lithium ions, by changing the firing temperature, firing time, number of firings, and atmospheric conditions.
The application of the present invention is very suitable because a negative electrode active material exhibiting optimum characteristics can be obtained by changing the amount. Further, among the carbon materials, particularly carbon fiber is a suitable material for application of the present invention because the specific surface area can be changed by changing the fiber length and the charge / discharge characteristics can be controlled.

【0023】本発明で用いられるセパレータは、正極と
負極が短絡することを防止するためのものであれば特に
制限はない。電解液の浸透性がよく、電子やイオンの移
動抵抗にならないことが望ましく、代表的な素材として
は、ポリエステル、ポリアミド、ポリオレフィン、ポリ
アクリレート、ポリメタクリレート、ポリスルホン、ポ
リカーボネート、ポリテトラフルオロエチレンなどが挙
げられる。この中でも、とくに、ポリプロピレン、ポリ
エチレン、ポリスルホンなどが強度、安全性に優れてお
り好ましい。セパレータの形状としては、多孔性膜や不
織布などが一般的にあげられるが、電池缶への充填率を
上げやすいことから、多孔性膜が好ましい。さらに、多
孔性膜は、対称膜,非対称膜が一般的であるが、強度,
安全性を向上させるために、複数種類の膜を積層した複
合膜とすることも可能である。多孔膜の空孔率は、電子
やイオンの透過性を高めるためになるべく高い方がよい
が、膜の強度低下を招く可能性があるため、素材や膜厚
に応じて決定される。一般的には、膜厚は20〜100μm、
空孔率は30〜80%が望ましい。また、孔の径は電極シー
トより脱離した活物質、結着材、導電材が透過しない範
囲であることが望ましく、具体的には、平均孔径が0.01
〜1μmのものが好ましい。
The separator used in the present invention is not particularly limited as long as it prevents short circuit between the positive electrode and the negative electrode. It is desirable that the electrolyte has good permeability and does not become a resistance to transfer of electrons and ions. Typical materials include polyester, polyamide, polyolefin, polyacrylate, polymethacrylate, polysulfone, polycarbonate, and polytetrafluoroethylene. To be Among these, polypropylene, polyethylene, polysulfone and the like are particularly preferable because they are excellent in strength and safety. The shape of the separator is generally a porous film or a non-woven fabric, but a porous film is preferable because the filling rate in the battery can is easily increased. Further, the porous membrane is generally a symmetric membrane or an asymmetric membrane, but the strength,
In order to improve safety, it is also possible to use a composite membrane in which a plurality of types of membranes are laminated. The porosity of the porous film is preferably as high as possible in order to enhance the permeability of electrons and ions, but it may cause a decrease in the strength of the film and is therefore determined according to the material and the film thickness. Generally, the film thickness is 20-100 μm,
A porosity of 30-80% is desirable. Further, the diameter of the pores is preferably a range in which the active material detached from the electrode sheet, the binder, and the conductive material do not permeate, and specifically, the average pore diameter is 0.01
It is preferably about 1 μm.

【0024】本発明の電池に用いられる結着材として
は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよ
く、特に限定されない。また、結着材を溶液やエマルジ
ョンなどの状態で使用することも可能である。結着材と
しての添加量は、電極材料中に通常0.01wt%〜40wt%で
用いられる。結着材としては、例えば、各種エポキシ樹
脂、セルロース樹脂、有機フッ素系ポリマ、およびコポ
リマ、アクリル樹脂、有機クロル系樹脂、ポリイミド、
ポリアミド、ポリカーボネートなどが挙げられる。特
に、安定性の点から有機フッ素系ポリマおよびコポリマ
が好ましく、中でもポリテトラフルオロエチレン、ポリ
フッ化ビニリデン、六フッ化プロピレンポリマおよびコ
ポリマが好ましい結着材として挙げられる。
The binder used in the battery of the present invention may be either a thermoplastic resin or a thermosetting resin and is not particularly limited. It is also possible to use the binder in the form of a solution or emulsion. The amount of the binder added is usually 0.01 wt% to 40 wt% in the electrode material. Examples of the binder include various epoxy resins, cellulose resins, organic fluorine-based polymers, and copolymers, acrylic resins, organic chloro-based resins, polyimides,
Examples thereof include polyamide and polycarbonate. In particular, organic fluorine-based polymers and copolymers are preferable from the viewpoint of stability, and among them, polytetrafluoroethylene, polyvinylidene fluoride, propylene hexafluoride polymer and copolymers are preferable binders.

【0025】本発明の電池に使用可能な導電材として
は、炭素材料、金属粉末などが挙げられ、とくに好まし
い導電材としては、各種カーボンブラック、人工黒鉛が
挙げられる。リチウムイオン電池の場合は、負極の導電
材としては、炭素材料が特に好ましく、リチウムイオン
の吸蔵が可能で、かつ放出量が少ない炭素材料を用いる
ことがより好ましい。本発明において導電材の添加量や
粒径は、正極、負極活物質の材料、形状、粒径、および
結着材の種類、配合量などによって最適値が変化するの
で実験的にが決められるべきであるが、添加量は、好ま
しくは0.5〜30wt%、さらに好ましくは0.7〜20wt%が用
いられる。添加量が0.5wt%未満では、導電効果が乏し
く、20wt%を超えると電極単位重量あたりの容量が低下
する傾向がある。導電材の粒径は、好ましくは、一次粒
子径が1nm〜100μm、さらに好ましくは5nm〜20μmの微
粒子が用いられる。一次粒子径が1nmを下回るものは安
定して製造しにくく、また、100μmを超えるものは添加
効果が小さい傾向がある。
Examples of the conductive material that can be used in the battery of the present invention include carbon materials and metal powders, and particularly preferable conductive materials include various carbon blacks and artificial graphite. In the case of a lithium-ion battery, a carbon material is particularly preferable as the conductive material of the negative electrode, and it is more preferable to use a carbon material capable of absorbing lithium ions and releasing a small amount. In the present invention, the addition amount and particle size of the conductive material should be determined experimentally because the optimum value changes depending on the material, shape, particle size of the positive electrode and the negative electrode active material, and the kind and blending amount of the binder. However, the addition amount is preferably 0.5 to 30 wt%, more preferably 0.7 to 20 wt%. If the added amount is less than 0.5 wt%, the conductivity effect is poor, and if it exceeds 20 wt%, the capacity per unit weight of the electrode tends to decrease. Regarding the particle size of the conductive material, fine particles having a primary particle size of 1 nm to 100 μm, and more preferably 5 nm to 20 μm are preferably used. Those having a primary particle size of less than 1 nm tend to be difficult to produce stably, and those having a primary particle size of more than 100 μm tend to have a small effect of addition.

【0026】ところで、正極材料,負極材料を集電体に
塗布して電極シートを作製する際は、どのような形態を
とっても構わないが、本発明の性質上、結着材や導電材
などとともに溶媒に分散させた溶液を塗布後,乾燥させ
たり、活物質を導電性結着材や導電材と結着材の混合物
を用いて集電体に張り付ける方法が一般的であるが、こ
れに限定されるものではない。
By the way, when the positive electrode material and the negative electrode material are applied to the current collector to form an electrode sheet, it may take any form, but due to the nature of the present invention, it may be used together with a binder or a conductive material. A method in which a solution dispersed in a solvent is applied and then dried, or an active material is attached to a current collector using a conductive binder or a mixture of a conductive material and a binder is generally used. It is not limited.

【0027】正極活物質が、金属あるいは金属酸化物な
どの無機化合物の場合は、カチオンのドープと脱ドープ
による充放電反応が生じ、有機高分子化合物の場合は、
アニオンのドープと脱ドープによる充放電反応が生じる
が、これらは必要とされる電池の正極特性に応じて適宜
選択され、特に限定されることはない。
When the positive electrode active material is an inorganic compound such as a metal or a metal oxide, a charge / discharge reaction occurs due to cation doping and dedoping, and when it is an organic polymer compound,
A charge / discharge reaction occurs due to anion doping and dedoping, but these are appropriately selected according to the required positive electrode characteristics of the battery and are not particularly limited.

【0028】また、これらの電極材料は、各種電池の活
電極として利用可能であり、一次電池、二次電池など、
どのような電池に利用されるかは特に限定されない。
Further, these electrode materials can be used as active electrodes of various batteries, such as primary batteries and secondary batteries.
The type of battery used is not particularly limited.

【0029】アルカリ金属塩を含む非水電解液二次電池
に用いる場合には、アルカリ金属やカチオンがドープさ
れる炭素質材料を負極に、アニオンがドープされる材料
を正極に用いられる。
When used in a non-aqueous electrolyte secondary battery containing an alkali metal salt, a carbonaceous material doped with an alkali metal or a cation is used for the negative electrode, and a material doped with an anion is used for the positive electrode.

【0030】正極材料、負極材料を集電体に塗布して電
極シートを作製する方法は特に限定されないが、本発明
の性質上、結着材や導電材などとともに溶媒に分散させ
た溶液を塗布後、乾燥させたり、活物質を導電性結着材
や導電材と結着材の混合物を用いて集電体に張り付ける
方法が一般的である。
The method of applying the positive electrode material and the negative electrode material to the current collector to prepare an electrode sheet is not particularly limited, but due to the nature of the present invention, a solution dispersed in a solvent together with a binder, a conductive material, etc. is applied. After that, a general method is to dry or attach the active material to the current collector using a conductive binder or a mixture of a conductive material and a binder.

【0031】本発明における集電体は、金属を箔状、網
状、ラス状などの形態で用いることが可能であるが、こ
れらは特に限定されるものではない。
The current collector of the present invention may be made of metal in the form of foil, mesh, lath or the like, but these are not particularly limited.

【0032】正極シート、負極シートは、集電体の片面
もしくは両面に電極材料を塗布することにより得ること
ができる。集電体の片面に電極材料を塗布した場合は、
2枚を集電体同士重ねることによって両面に塗布した場
合と同じ形態をとることが好ましい。しかし、片面塗布
の場合電極シートの熱処理やプレスをおこないにくく、
また、スパイラル状に巻回する際に巻きずれを起こしや
すいので、集電体の両面に電極材料を塗布することが望
ましい。
The positive electrode sheet and the negative electrode sheet can be obtained by applying an electrode material on one side or both sides of the current collector. If the electrode material is applied to one side of the current collector,
It is preferable to take the same form as in the case where two current collectors are overlapped with each other to coat both surfaces. However, in the case of single-sided coating, it is difficult to heat or press the electrode sheet,
In addition, it is desirable to apply the electrode material to both surfaces of the current collector because winding deviation easily occurs when the material is spirally wound.

【0033】本発明に用いられる電池は、スパイラル状
に巻回された電極体を使用する電池であれば特に制限は
ないが、高エネルギー密度を要求する携帯用機器搭載用
の電池としては、負極材料としてアルカリ金属を用いた
電池や、炭素質材料へのカチオンあるいはアニオンのド
ーピングを利用した二次電池が効果的である。
The battery used in the present invention is not particularly limited as long as it is a battery using an electrode body wound in a spiral shape, but as a battery for mounting on portable equipment requiring high energy density, a negative electrode is used. A battery using an alkali metal as a material and a secondary battery using cation or anion doping to a carbonaceous material are effective.

【0034】このようにして得られた電極材料は、各種
の電池の電極として利用可能であり、電池の種類は特に
限定されないが、好ましくは二次電池の電極に用いられ
る。特に好ましい二次電池としては、過塩素酸リチウ
ム、硼フッ化リチウム、6フッ化リン・リチウムのよう
にアルカリ金属塩を含む非水電解液を用いた二次電池を
挙げることができる。
The electrode material thus obtained can be used as an electrode for various batteries, and the type of battery is not particularly limited, but is preferably used as an electrode for a secondary battery. Particularly preferable secondary batteries include secondary batteries using a non-aqueous electrolyte solution containing an alkali metal salt such as lithium perchlorate, lithium borofluoride, and phosphorus hexafluoride / lithium.

【0035】本発明の電池に使用される電解液に含まれ
る電解質としては、アルカリ金属のハロゲン化物、過塩
素酸塩、チオシアン塩、ホウフッ化塩、リンフッ化塩、
砒素フッ化塩、アルミニウムフッ化塩、トリフルオロメ
チル硫酸塩などが好ましく用いられる。特にリチウム塩
は、標準電極電位が最も低いので、大きな電位差を得る
ことができるので、電解液に含まれる電解質としては、
リチウム塩を使用することがより好ましい。
The electrolyte contained in the electrolytic solution used in the battery of the present invention includes alkali metal halides, perchlorates, thiocyanates, borofluorides, and phosphorus fluorides.
Arsenic fluoride, aluminum fluoride, trifluoromethyl sulfate, etc. are preferably used. Lithium salt, in particular, has the lowest standard electrode potential, and therefore a large potential difference can be obtained. Therefore, as the electrolyte contained in the electrolytic solution,
More preferably, a lithium salt is used.

【0036】本発明に使用される電解液に用いられる溶
媒は、特に限定されず、従来の溶媒が用いられ、例えば
酸あるいはアルカリ水溶液、または非水溶媒などが挙げ
られる。この中で、アルカリ金属塩を含む非水電解液か
らなる二次電池の電解液の溶媒としては、プロピレンカ
ーボネート、エチレンカーボネート、ジメチルカーボネ
ート、γ- ブチロラクトン、N-メチルピロリドン、アセ
トニトリル、N,N-ジメチルホルムアミド、ジメチルスル
フォキシド、テトラヒドロフラン、1,3-ジオキソラン、
ギ酸メチル、スルホラン、オキサゾリドン、塩化チオニ
ル、1,2-ジメトキシエタン、ジエチレンカーボネート、
及びこれらの誘導体や混合物などが好ましく用いられ
る。
The solvent used in the electrolytic solution used in the present invention is not particularly limited, and a conventional solvent is used, and examples thereof include an acid or alkaline aqueous solution, or a non-aqueous solvent. Among these, as a solvent for the electrolyte of the secondary battery comprising a non-aqueous electrolyte containing an alkali metal salt, propylene carbonate, ethylene carbonate, dimethyl carbonate, γ- butyrolactone, N-methylpyrrolidone, acetonitrile, N, N- Dimethylformamide, dimethylsulfoxide, tetrahydrofuran, 1,3-dioxolane,
Methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate,
And derivatives and mixtures of these are preferably used.

【0037】また、スパイラル状電極体を装填する電池
缶は、特に限定されるものではないが、耐腐食のため鉄
にメッキを施した電池缶、ステンレス鋼製電池缶など
が、強度、耐食性、加工性に優れるので好ましい。ま
た、各種エンジニアリングプラスチックスを使用して軽
量化をはかることも可能であり、各種エンジニアリング
プラスチックスと金属との併用も可能である。
The battery can loaded with the spiral electrode body is not particularly limited, but a battery can plated with iron for corrosion resistance, a battery can made of stainless steel, and the like have strength, corrosion resistance, It is preferable because it is excellent in workability. Further, it is possible to reduce the weight by using various engineering plastics, and it is also possible to use various engineering plastics and metal together.

【0038】さらに、本発明におけるスパイラルの形状
は、必ずしも真円筒形である必要はなく、スパイラル断
面が楕円である長円筒形やスパイラル断面が長方形をは
じめとする角柱の様な形状をとってもかまわない。この
場合、電池缶も電極体の形状に応じた形状をとることが
可能である。代表的な使用形態としては、筒状で底のあ
る電池缶にスパイラル状電極体と電解液を装填し、電極
シートから取り出したリードがキャップと電池缶に溶接
された状態で封がされている形態が最も一般的な形態と
して挙げられるが、この形態に限定されない。
Further, the shape of the spiral in the present invention does not necessarily have to be a true cylindrical shape, and may be an oblong cylindrical shape having an elliptical spiral cross section or a prismatic shape such as a rectangular spiral cross section. . In this case, the battery can can also take a shape corresponding to the shape of the electrode body. As a typical use form, a spirally-shaped electrode body and an electrolytic solution are loaded into a cylindrical battery can having a bottom, and leads taken out from the electrode sheet are sealed in a state of being welded to the cap and the battery can. The form is mentioned as the most common form, but is not limited to this form.

【0039】[0039]

【実施例】以下実施例をもって本発明をさらに具体的に
説明する。ただし、本発明はこれにより限定されるもの
ではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by this.

【0040】実施例1 正極活物質にLiCoO2を80wt%、結着材としてポリ
フッ化ビニリデン(呉羽化学株式会社製、SP-20)を5wt
%、導電材として人造黒鉛(日本黒鉛工業株式会社製)15
%、集電体としてアルミニウム箔(厚さ20μm)を用い、
外周面、内周面ともに活物質量220g/m2となるように電
極材料を塗布し、150℃の熱処理を行った後、500kgf/cm
の圧力でプレスを行い、正極シートを得た。
Example 1 80 wt% of LiCoO 2 was used as a positive electrode active material, and 5 wt% of polyvinylidene fluoride (Kureha Chemical Co., Ltd., SP-20) was used as a binder.
%, Artificial graphite (manufactured by Nippon Graphite Industry Co., Ltd.) as a conductive material 15
%, Using aluminum foil (thickness 20 μm) as a current collector,
500 kgf / cm after coating the electrode material so that the amount of active material is 220 g / m 2 on both the outer and inner surfaces and heat treatment at 150 ° C
Pressing was carried out at a pressure of 1 to obtain a positive electrode sheet.

【0041】つづいて負極活物質としてPAN系炭素繊維
(東レ株式会社製、トレカT300)とPAN系炭素繊維(東レ株
式会社製、トレカT700SC)とを窒素雰囲気下1000℃で2時
間焼成し、それぞれ平均長30μmに短繊維化した。この
時の充放電容量(リチウムイオン最大吸蔵量)は、トレ
カT300が580mAh当量/gであり、トレカT700が500mAh当量
/gであった。
Subsequently, PAN-based carbon fiber was used as the negative electrode active material.
(Toray Industries, Inc., Torayca T300) and PAN-based carbon fiber (Toray Industries, Inc., Torayca T700SC) were fired at 1000 ° C. for 2 hours in a nitrogen atmosphere to reduce the average fiber length to 30 μm. At this time, the charging / discharging capacity (maximum lithium ion storage capacity) is 580 mAh equivalent / g for trading card T300 and 500 mAh equivalent for trading card T700.
/ g.

【0042】負極外周面用電極材料として、トレカT300
に正極と同じ結着材、導電材を正極と同じ比率で混練し
たものを用い、集電体として銅箔(厚さ10μm)に活物質
塗布量が80g/m2となるように塗布した。負極内周面用電
極材料として、トレカT700SCに正極と同じ結着材、導電
材を正極と同じ比率で混練したものを用い、外周面と同
様に塗布した。さらに、正極と同様に熱処理、プレスを
行い、負極シートを得た。
As an electrode material for the negative electrode outer peripheral surface, trading card T300
The same binder as the positive electrode and a conductive material were kneaded in the same ratio as the positive electrode, and were applied to a copper foil (thickness 10 μm) as a current collector so that the active material application amount was 80 g / m 2 . As the electrode material for the inner surface of the negative electrode, a material obtained by kneading Torayca T700SC with the same binder and conductive material as the positive electrode in the same ratio as the positive electrode was used and applied in the same manner as the outer peripheral surface. Further, heat treatment and pressing were performed in the same manner as the positive electrode to obtain a negative electrode sheet.

【0043】これらの正極シート、負極シートを、多孔
質ポリプロピレンフィルム(ダイセル化学株式会社製、
セルガード#2500)のセパレータを介して重ね合わせ、巻
回することによって円筒状の電極体100個を得た。これ
らの電極体に発生した内部短絡は0個であった。
A porous polypropylene film (manufactured by Daicel Chemical Co., Ltd.,
100 pieces of cylindrical electrode bodies were obtained by stacking with a separator of Celguard # 2500) and winding. The number of internal short circuits that occurred in these electrode bodies was zero.

【0044】さらに、この電極体を内容積5ccの電池缶
に装填し、電解液として1M硼弗化リチウムを含有する
ジメチルカーボネートを用いた電池を作製した。この電
池を、充電電流400mA、定電圧値4.2V、充電時間2.5時間
で定電流定電圧充電し、放電電流200mA、放電終止電圧
2.5Vで容量試験を行ったところ、電池容量は初回395mAh
で、100サイクル経過後の容量保持率は83%であった。
さらに、100サイクルの充放電試験終了後、電池を解体
し、Li高速MAS固体NMRを用いて負極シート上の金属リチ
ウムの検出を行ったところ、金属リチウムの析出は認め
られなかった。
Further, this electrode body was loaded into a battery can having an internal volume of 5 cc, and a battery using dimethyl carbonate containing 1M lithium borofluoride as an electrolyte was prepared. This battery is charged at a constant current and constant voltage with a charging current of 400 mA, a constant voltage value of 4.2 V, and a charging time of 2.5 hours, and a discharge current of 200 mA and a discharge end voltage.
When a capacity test was performed at 2.5V, the battery capacity was 395mAh for the first time.
The capacity retention rate after 100 cycles was 83%.
Further, when the battery was disassembled after completion of the 100-cycle charge / discharge test and metallic lithium on the negative electrode sheet was detected using Li high-speed MAS solid-state NMR, deposition of metallic lithium was not observed.

【0045】実施例2 正極活物質として、外周面はLiCoO2:LiNiO2
=80%:20%混合物(対リチウム電位4.2Vにおけるリチ
ウムイオン放出量156mAh当量/g)、内周面はLiCoO
2単品(対リチウム電位4.2Vにおけるリチウムイオン放
出量140mAh当量/g)を用い、負極活物質として、内周
面、外周面ともトレカT300を用いた他は実施例1と同様
にして電極体100個を作製し、内部短絡試験を行ったと
ころ、短絡は0個であった。
Example 2 As the positive electrode active material, the outer peripheral surface was LiCoO 2 : LiNiO 2
= 80%: 20% mixture (lithium ion release amount 156mAh equivalent / g at 4.2V against lithium potential), LiCoO on inner surface
Electrode body 100 was prepared in the same manner as in Example 1 except that 2 single products (amount of lithium ion released at 4.2 V against lithium potential of 140 mAh equivalent / g) were used and Torayca T300 was used for both the inner and outer peripheral surfaces as the negative electrode active material. When an internal short circuit test was carried out on each piece, there were no short circuits.

【0046】この電極体を用いて実施例1と同様にして
電池を作製し、実施例1と同条件で容量試験を行ったと
ころ、電池容量は初回400mAhで、100サイクル経過後の
容量保持率は82%であった。さらに100サイクルの充放
電試験終了後、電池を解体し、負極シート上の金属リチ
ウムの検出を行ったところ、金属リチウムの析出は認め
られなかった。
A battery was produced using this electrode body in the same manner as in Example 1, and a capacity test was conducted under the same conditions as in Example 1. The battery capacity was 400 mAh for the first time, and the capacity retention ratio after 100 cycles had elapsed. Was 82%. After the completion of the 100-cycle charge / discharge test, the battery was disassembled and metallic lithium was detected on the negative electrode sheet. No deposition of metallic lithium was observed.

【0047】実施例3 負極活物質として外周面にトレカT300を平均長さ30μm
に短繊維化したもの(平均比表面積0.71m2/m3)を用
い、内周面にはトレカT300を平均長さ130μmに短繊維化
したもの(平均比表面積0.65m2/m3)を用いた他は、実
施例1と同様の電極体100個を作製し、内部短絡試験を
行ったところ、短絡は0個であった。
Example 3 Torayca T300 was used as the negative electrode active material on the outer peripheral surface in an average length of 30 μm.
The short fiber (average specific surface area 0.71 m 2 / m 3 ) is used for the inner peripheral surface, and the TORAYCA T300 short fiber with an average length of 130 μm (average specific surface area 0.65 m 2 / m 3 ) is used. Except for using 100, the same 100 electrode bodies as in Example 1 were prepared and subjected to an internal short circuit test. As a result, 0 short circuits were found.

【0048】この電極体を用いて実施例1と同様にして
電池を作製し、実施例1と同条件で容量試験を行ったと
ころ、電池容量は初回388mAhで、100サイクル経過後の
容量保持率は86%であった。さらに100サイクルの充放
電試験終了後、電池を解体し、負極シート上の金属リチ
ウムの検出を行ったところ、金属リチウムの析出は認め
られなかった。
A battery was manufactured using this electrode body in the same manner as in Example 1, and a capacity test was conducted under the same conditions as in Example 1. The battery capacity was 388 mAh for the first time, and the capacity retention ratio after 100 cycles had elapsed. Was 86%. After the completion of the 100-cycle charge / discharge test, the battery was disassembled and metallic lithium was detected on the negative electrode sheet. No deposition of metallic lithium was observed.

【0049】実施例4 負極活物質として外周面にトレカT300を窒素雰囲気下10
00℃で2時間焼成し、平均長さ30μmに短繊維化したもの
(リチウムイオン最大吸蔵量:580mAh当量/g)を用い、
内周面にはトレカT300を窒素雰囲気下1200℃で2時間焼
成し、平均長さ30μmに短繊維化したもの(リチウムイ
オン最大吸蔵量:490mAh当量/g)を用いた他は、実施例
1と同様の電極体100個を作製し、内部短絡試験を行っ
たところ、 短絡は0個であった。
Example 4 Torayca T300 was used as a negative electrode active material on the outer peripheral surface under nitrogen atmosphere.
Using a fiber that has been made into short fibers with an average length of 30 μm by firing at 00 ° C for 2 hours (maximum lithium ion storage capacity: 580 mAh equivalent / g),
Example 1 was repeated except that TORAYCA T300 was fired in a nitrogen atmosphere at 1200 ° C. for 2 hours on the inner peripheral surface to shorten the fibers to an average length of 30 μm (lithium ion maximum storage amount: 490 mAh equivalent / g). When 100 electrode bodies similar to the above were produced and an internal short circuit test was conducted, no short circuit was found.

【0050】この電極体を用いて実施例1と同様にして
電池を作製し、実施例1と同条件で容量試験を行ったと
ころ、電池容量は初回385mAhで、100サイクル経過後の
容量保持率は87%であった。さらに100サイクルの充放
電試験終了後、電池を解体し、負極シート上の金属リチ
ウムの検出を行ったところ、金属リチウムの析出は認め
られなかった。
A battery was manufactured using this electrode body in the same manner as in Example 1, and a capacity test was conducted under the same conditions as in Example 1. The battery capacity was 385 mAh for the first time, and the capacity retention ratio after 100 cycles had elapsed. Was 87%. After the completion of the 100-cycle charge / discharge test, the battery was disassembled and metallic lithium was detected on the negative electrode sheet. No deposition of metallic lithium was observed.

【0051】比較例1 負極の活物質に両面ともトレカT300を窒素雰囲気下1000
℃で2時間焼成したものを用い、負極の活物質塗布量を
外周面80g/m2、内周面70g/m2にした他は実施例1と同様
の電極体100個を作製し、内部短絡試験を行ったとこ
ろ、短絡は6個であった。
Comparative Example 1 Torayca T300 was used as the negative electrode active material on both sides in a nitrogen atmosphere at 1000
Used after calcined for 2 hours at ° C., the outer circumferential surface 80 g / m 2 of active material coating amount of the negative electrode, except that the inner circumferential surface 70 g / m 2 was prepared 100 similar electrode assembly as in Example 1, internal When a short circuit test was performed, there were 6 short circuits.

【0052】この電極体を用いて実施例1と同様にして
電池を作製し、実施例1と同条件で容量試験を行ったと
ころ、電池容量は初回393mAhで、100サイクル経過後の
容量保持率は84%であった。さらに100サイクルの充放
電試験終了後、電池を解体し、負極シート上の金属リチ
ウムの検出を行ったところ、金属リチウムの析出は認め
られなかった。
A battery was prepared using this electrode body in the same manner as in Example 1, and a capacity test was conducted under the same conditions as in Example 1. The battery capacity was 393 mAh for the first time, and the capacity retention ratio after 100 cycles had elapsed. Was 84%. After the completion of the 100-cycle charge / discharge test, the battery was disassembled and metallic lithium was detected on the negative electrode sheet. No deposition of metallic lithium was observed.

【0053】比較例2 負極の活物質に両面ともトレカT300を窒素雰囲気下1000
℃で2時間焼成したものを用いた他は実施例1と同様の
電極体100個を作製し、内部短絡試験を行ったところ、
短絡は0個であった。
Comparative Example 2 Torayca T300 was used as the negative electrode active material on both sides under a nitrogen atmosphere at 1000
When 100 pieces of electrode bodies similar to those in Example 1 were produced and used for the internal short circuit test except that the ones fired at 2 ° C. for 2 hours were used,
There were no short circuits.

【0054】この電極体を用いて電池を作製し、実施例
1と同条件で容量試験を行ったところ、電池容量は初回
368mAhで、100サイクル経過後の容量保持率は73%であ
った。さらに100サイクルの充放電試験終了後、電池を
解体し、負極シート上の金属リ チウムの検出を行った
ところ、負極シート外周面上に金属リチウムの析出が認
められた。
A battery was prepared using this electrode assembly, and a capacity test was conducted under the same conditions as in Example 1.
At 368 mAh, the capacity retention rate after 100 cycles was 73%. Further, after completion of the 100-cycle charge / discharge test, the battery was disassembled, and metallic lithium was detected on the negative electrode sheet. As a result, deposition of metallic lithium was observed on the outer peripheral surface of the negative electrode sheet.

【0055】[0055]

【発明の効果】正極シート、負極シートの少なくともひ
とつの電極シート面のひとつの面に他の面と充放電特性
の異なる活物質を用いることにより、スパイラル状態で
の正極、負極の充放電特性、とくにイオンの移動速度や
電気当量比(バランス)を適正にすることができ、充填
率が高く、高容量かつサイクル特性が良好で、安全性の
高い電池が得られる。
EFFECT OF THE INVENTION By using an active material having different charge / discharge characteristics from one surface of at least one electrode sheet surface of the positive electrode sheet and the negative electrode sheet, the charge / discharge characteristics of the positive electrode and the negative electrode in a spiral state, In particular, it is possible to obtain a battery with high ionization speed and electric equivalence ratio (balance), high packing rate, high capacity and good cycle characteristics, and high safety.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 正極シート、負極シートをスパイラル状
に巻回してなる電極体を用いた電池において、正極シー
ト、負極シートの少なくともひとつの電極シートのひと
つの面に他の面と充放電特性の異なる活物質を用いるこ
とを特徴とする電池。
1. A battery using an electrode body formed by spirally winding a positive electrode sheet and a negative electrode sheet, wherein at least one electrode sheet of the positive electrode sheet and the negative electrode sheet has a charge and discharge characteristic which is different from that of the other surface. A battery characterized by using different active materials.
【請求項2】 正極シート、負極シートの少なくともひ
とつの電極シートのひとつの面に他の面と種類の異なる
活物質を用いることを特徴とする請求項1に記載の電
地。
2. The electric field according to claim 1, wherein an active material different in kind from other surfaces is used for one surface of at least one electrode sheet of the positive electrode sheet and the negative electrode sheet.
【請求項3】 充放電特性の異なる活物質が、2種類以
上の活物質の混合物であることを特徴とする請求項1に
記載の電地。
3. The electric field according to claim 1, wherein the active materials having different charge / discharge characteristics are a mixture of two or more kinds of active materials.
【請求項4】 充放電特性の異なる活物質が、平均比表
面積の異なる活物質であることを特徴とする請求項1に
記載の電地。
4. The electric field according to claim 1, wherein the active materials having different charge / discharge characteristics are active materials having different average specific surface areas.
【請求項5】 充放電特性の異なる活物質が、リチウム
イオン吸蔵量の異なる活物質であることを特徴とする請
求項1に記載の電地。
5. The electric field according to claim 1, wherein the active materials having different charge / discharge characteristics are active materials having different lithium ion storage amounts.
【請求項6】 充放電特性の異なる活物質が、リチウム
イオン放出量の異なる活物質であることを特徴とする請
求項1に記載の電地。
6. The electric field according to claim 1, wherein the active materials having different charge / discharge characteristics are active materials having different amounts of released lithium ions.
【請求項7】 リチウム塩を電解質とすることを特徴と
する請求項1に記載の電池。
7. The battery according to claim 1, wherein a lithium salt is used as an electrolyte.
【請求項8】 正極に塗布される活物質に遷移金属化合
物を含有することを特徴とする請求項1に記載の電池。
8. The battery according to claim 1, wherein the active material applied to the positive electrode contains a transition metal compound.
【請求項9】 負極に塗布される活物質に炭素質材料を
含有することを特徴とする請求項1に記載の電池。
9. The battery according to claim 1, wherein the active material applied to the negative electrode contains a carbonaceous material.
【請求項10】 炭素質材料が炭素繊維であることを特
徴とする請求項9に記載の電池。
10. The battery according to claim 9, wherein the carbonaceous material is carbon fiber.
【請求項11】 炭素繊維がポリアクリロニトリル系炭
素繊維であることを特徴とする請求項10に記載の電
池。
11. The battery according to claim 10, wherein the carbon fiber is a polyacrylonitrile-based carbon fiber.
【請求項12】 負極シートのひとつの面に他の面で、
焼成条件の異なる炭素質材料を用いることを特徴とする
請求項9に記載の電池。
12. A negative electrode sheet having one surface on another surface,
The battery according to claim 9, wherein carbonaceous materials having different firing conditions are used.
JP7336942A 1995-12-25 1995-12-25 Battery Pending JPH09180759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7336942A JPH09180759A (en) 1995-12-25 1995-12-25 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7336942A JPH09180759A (en) 1995-12-25 1995-12-25 Battery

Publications (1)

Publication Number Publication Date
JPH09180759A true JPH09180759A (en) 1997-07-11

Family

ID=18304055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7336942A Pending JPH09180759A (en) 1995-12-25 1995-12-25 Battery

Country Status (1)

Country Link
JP (1) JPH09180759A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
KR100393654B1 (en) * 2000-01-27 2003-08-06 삼성에스디아이 주식회사 Lithium ion secondary battery and charge-discharge circuit thereof
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2010015852A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Secondary battery
WO2011074098A1 (en) * 2009-12-17 2011-06-23 トヨタ自動車株式会社 Lithium secondary battery
JP2018170145A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2022165727A1 (en) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
KR100393654B1 (en) * 2000-01-27 2003-08-06 삼성에스디아이 주식회사 Lithium ion secondary battery and charge-discharge circuit thereof
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2010015852A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Secondary battery
WO2011074098A1 (en) * 2009-12-17 2011-06-23 トヨタ自動車株式会社 Lithium secondary battery
CN102742065A (en) * 2009-12-17 2012-10-17 丰田自动车株式会社 Lithium secondary battery
US8460812B2 (en) 2009-12-17 2013-06-11 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP5472759B2 (en) * 2009-12-17 2014-04-16 トヨタ自動車株式会社 Lithium secondary battery
JP2018170145A (en) * 2017-03-29 2018-11-01 Tdk株式会社 Positive electrode and lithium ion secondary battery
WO2022165727A1 (en) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly
EP4068414A4 (en) * 2021-02-04 2022-10-05 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly

Similar Documents

Publication Publication Date Title
US8338026B2 (en) Positive electrode active material, and positive electrode and lithium secondary battery including the same
KR102192082B1 (en) Anode active material, anode including the anode active material, and lithium secondary battery including the anode
KR102570263B1 (en) Electrode for lithium battery, lithium battery including the same, and method for manufacturing the lithium battery
JPH09204936A (en) Battery
JP7282925B2 (en) Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JPH09180704A (en) Battery and manufacture thereof
JP2013157318A (en) Anode, method for manufacturing the same, and lithium battery including the same
JPH09199177A (en) Battery
CN115298852A (en) Negative electrode and secondary battery comprising same
JPH09161768A (en) Battery
JP2007273313A (en) Electrode plate for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JPH09180759A (en) Battery
JPH1167214A (en) Lithium secondary battery
KR100693397B1 (en) Negative electrodes for rechargeable batteries
JPH09161838A (en) Battery
JPH1092415A (en) Electrode and secondary battery using it
JPH10284082A (en) Electrode for battery and secondary battery using it
JPH08287953A (en) Battery
JPH1064546A (en) Electrode and secondary battery using it
CN113646946A (en) Secondary battery
JPH09161847A (en) Battery
JPH103947A (en) Battery
JP3618022B2 (en) Electric double layer capacitor and EL element
JPH09167613A (en) Battery
KR20200033511A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising the same