JPH09177367A - Base insulation structure - Google Patents

Base insulation structure

Info

Publication number
JPH09177367A
JPH09177367A JP34131495A JP34131495A JPH09177367A JP H09177367 A JPH09177367 A JP H09177367A JP 34131495 A JP34131495 A JP 34131495A JP 34131495 A JP34131495 A JP 34131495A JP H09177367 A JPH09177367 A JP H09177367A
Authority
JP
Japan
Prior art keywords
seismic isolation
hard
isolation structure
plates
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34131495A
Other languages
Japanese (ja)
Inventor
Koji Kubo
孝治 久保
Isao Hagiwara
萩原  勲
Yoshihide Fukahori
美英 深堀
Yoshinori Harada
伊紀 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP34131495A priority Critical patent/JPH09177367A/en
Priority to US08/722,567 priority patent/US5765322A/en
Publication of JPH09177367A publication Critical patent/JPH09177367A/en
Priority to US09/021,845 priority patent/US5884440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain excellent base insulation properties and to ensure durability by packing a hard granular material most closely in a columnar hollow part provided inside a composite laminated body prepared by laminating a plurality of hard plates and soft plates alternately between upper and lower face plates, and by sealing it with a cover. SOLUTION: A plurality of hard plates 16 having rigidity and a plurality of soft plates 18 having viscoelastic properties are laminated alternately between an upper face plate 12 and a lower face plate 14, whereby a composite laminated body is prepared. Next, a columnar hollow part 20 penetrating the laminated body is disposed inside the laminated body and a hard granular material 22 such as glass beads is packed in the hollow part 20. In this case, the ratio in the size between the laminated body and the hollow part 20 is made 0.6>=d/D>=0.15 when the diameter of the former and that of the latter in a plan view are denoted by D and (d) respectively. Besides, the average particle size of the hard granular material 22 is made 0.1-30mm and the Mohs hardness thereof 2 or above. By the friction between the grain surfaces of the granular material 22 being packed in the hollow part 20 and moving in accordance with the shear deformation of a base insulation structure at the time of an earthquake or the like, vibration is damped effectively and a durable base insulation. effect can be given to the structure, according to this constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は免震装置に係り、大
型のビルのみならず、特に風揺れ等の影響を受けやすい
戸建住宅等の軽負荷用としても好適に使用しうる免震装
置に用いられる免震構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device, which can be suitably used not only for a large building but also for a light load of a detached house which is particularly susceptible to wind sway or the like. It relates to the seismic isolation structure used for.

【0002】[0002]

【従来の技術】従来、複数個の鋼板等の剛性を有した硬
質板と、粘弾性的性質を有したゴム等の軟質板とを交互
に積層した免震構造体が、中層、低層のビルや橋梁等の
免震装置のゴム支承片として広く用いられている。この
ような免震構造体の軟質板を構成するゴム等の弾性体
は、下記のようなばね特性を有するように設計されるの
が一般である。即ち、ゴム等の弾性体の横ばね定数KH
、搭載質量をMとして、水平方向の固有振動数fH は
次の条件を満たすように設計する。
2. Description of the Related Art Conventionally, seismic isolation structures in which a plurality of rigid hard plates such as steel plates and soft plates such as rubber having viscoelastic properties are alternately laminated are used for middle and low-rise buildings. It is widely used as a rubber support piece for seismic isolation devices such as bridges and bridges. An elastic body such as rubber constituting a soft plate of such a seismic isolation structure is generally designed to have the following spring characteristics. That is, the lateral spring constant KH of an elastic body such as rubber
, And the mounted mass is M, the horizontal natural frequency fH is designed to satisfy the following conditions.

【0003】[0003]

【数1】 [Equation 1]

【0004】この固有振動数fH は、建物や橋梁などの
重量と、ゴムなどの弾性体の横ばね定数KH との比で決
まるので、ビルや橋梁など搭載重量Mの大きいものの免
震装置の軟質板を構成する弾性体はばね剛性の大きい材
料、高弾性材料が用いられることが一般的である。ま
た、免震構造体の積層部分に鉛等の塑性物を併用したも
のが一般的に用いられていた。
Since the natural frequency fH is determined by the ratio of the weight of a building or bridge to the lateral spring constant KH of an elastic body such as rubber, the seismic isolation device is flexible even if the building or bridge has a large loading weight M. As the elastic body forming the plate, a material having a high spring rigidity or a highly elastic material is generally used. In addition, a structure in which a plastic material such as lead is used together in the laminated portion of the base isolation structure is generally used.

【0005】このような、例えば、鉛を併用した免震構
造体は、低歪みにおける高弾性及び高歪みにおける低弾
性と、高減衰性とを合わせ持つので、地震や風揺れなど
に効果を発揮することができる。しかしながら、剪断歪
み200%にも及ぶ大きな地震の場合は、免震の効果は
発揮できるものの、高い剪断歪みや歪み応力により内部
に用いた鉛等の塑性物が大きく塑性変型したり、切断破
壊されてしまう虞があり、特に建造物に用いた場合には
免震構造体のみを交換することができないため、大きな
地震等の振動をうけた後においても継続使用しうる、よ
り高い耐久性を有する免震構造体が要望されていた。
Such a seismic isolation structure using lead in combination, for example, has both high elasticity at low strain and low elasticity at high strain, and high damping properties, so it is effective for earthquakes and wind sway. can do. However, in the case of a large earthquake with a shear strain of up to 200%, the effect of seismic isolation can be exhibited, but due to the high shear strain and strain stress, the plastic material such as lead used inside is greatly plastically deformed or cut and fractured. Since it is not possible to replace only the seismic isolation structure when it is used in buildings, it has higher durability that can be used continuously even after it is subjected to vibration such as a large earthquake. A seismic isolation structure was requested.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の技術に鑑みてなされたものであり、免震装置をビ
ルや橋梁等の重量物のみならず、戸建住宅用等の軽量物
に適用した場合にも高性能で、且つ、塑性変型や切断破
壊のない耐久性に優れた免震構造体の提供を目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional techniques, and the seismic isolation device is not only used for heavy objects such as buildings and bridges but also lightweight for detached houses. An object of the present invention is to provide a seismic isolation structure that has high performance even when applied to an object and has excellent durability without plastic deformation or cutting fracture.

【0007】[0007]

【課題を解決するための手段】本発明の免震構造体は、
上下の面板の間に剛性を有した硬質板と粘弾性的性質を
有した軟質板とを、それぞれ複数個、交互に積層した複
合積層体の中心部に、該複合積層体を貫通する柱状の中
空部を設けて、そこに硬質粒状物を充填することを特徴
とする。
The seismic isolation structure of the present invention comprises:
A rigid hard plate and a soft plate having viscoelastic properties between the upper and lower face plates, each having a plurality of columns, each having a columnar shape penetrating the composite laminate at the center of the composite laminate. It is characterized in that a hollow portion is provided and hard particles are filled therein.

【0008】また、本発明の免震構造体においては、こ
の複合積層体に中央に中空部を有する円柱状のものを用
いた場合、前記複合積層体の平面視による直径をD、中
空部の平面視による直径をdとしたとき、Dとdが、下
記式を満たす関係にあることを特徴とする。
Further, in the seismic isolation structure of the present invention, when a cylindrical column having a hollow portion in the center is used for this composite laminate, the diameter of the composite laminate in plan view is D, It is characterized in that D and d have a relationship satisfying the following equation, where d is a diameter in a plan view.

【0009】0.6≧d/D≧0.15 さらに、中空部に充填する前記硬質粒状物の平均粒径は
0.1mm〜30mmであり、且つ、硬質粒状物の硬度
が、モース硬度で2以上であることを特徴とする。
0.6 ≧ d / D ≧ 0.15 Furthermore, the average particle diameter of the hard granules to be filled in the hollow portion is 0.1 mm to 30 mm, and the hardness of the hard granules is Mohs hardness. It is characterized by being 2 or more.

【0010】[0010]

【発明の実施の形態】本発明の免震構造体の粘弾性的性
質を有した軟質板に用いられる材料とは、50%モジュ
ラスが1.5〜10kgf/cm2 、25℃における動
的剪断弾性率Gが、1.5〜10kgf/cm2 の特性
を有するものを指し、50%モジュラスが2〜8kgf
/cm2 、動的剪断弾性率Gが、2〜8kgf/cm2
のものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The material used for the soft plate having the viscoelasticity of the seismic isolation structure of the present invention is a material having a 50% modulus of 1.5 to 10 kgf / cm 2 and a dynamic shear at 25 ° C. An elastic modulus G indicates a property of 1.5 to 10 kgf / cm 2 , and a 50% modulus is 2 to 8 kgf.
/ Cm 2 , dynamic shear modulus G is 2 to 8 kgf / cm 2
Are preferred.

【0011】各種材料の50%モジュラス及び動的剪断
弾性率Gは、例えば、JIS K6301、K6394
に準拠して測定することができる。
The 50% modulus and the dynamic shear modulus G of various materials are, for example, JIS K6301, K6394.
It can be measured according to.

【0012】ここで、粘弾性的性質を有する材料として
は、熱可塑ゴム、ウレタンゴム、各種の加硫ゴム、未加
硫ゴム、微架橋ゴム、プラスチックス等の有機材料、こ
れらの発泡体、アスファルト、粘土等の無機材料、これ
らの混合材料など各種の材料であって、上記粘弾性的性
質を有するものを用いることができる。
Here, examples of the material having viscoelastic properties include organic materials such as thermoplastic rubber, urethane rubber, various vulcanized rubbers, unvulcanized rubbers, slightly crosslinked rubbers, and plastics, foams thereof, Various materials such as inorganic materials such as asphalt and clay, and mixed materials thereof having the above viscoelastic properties can be used.

【0013】これらの材料は、平板状に成形され、軟質
板として用いられる。軟質板の形状は特に制限はない
が、本発明の免震構造体においては、柱状の中空部を有
することから、中央に中空部を有することが必要であ
る。通常は、中央に中空部を有する所謂円柱状のものが
使用され、個々の軟質板はドーナツ盤状の形状を有す
る。軟質板の厚みには特に制限はなく、使用される材料
及び所望の免震性能によって選択できるが、一般には、
重量物に用いる場合には、5〜10mm、軽量物に用い
る場合には、1〜4mm程度の厚みのものが使用され
る。
These materials are formed into a flat plate and used as a soft plate. The shape of the soft plate is not particularly limited, but since the seismic isolation structure of the present invention has a columnar hollow portion, it is necessary to have a hollow portion at the center. Usually, a so-called columnar one having a hollow portion in the center is used, and each soft plate has a donut disc shape. The thickness of the soft plate is not particularly limited and can be selected depending on the material used and the desired seismic isolation performance, but in general,
When it is used for heavy objects, it has a thickness of 5 to 10 mm, and when it is used for lightweight objects, it has a thickness of about 1 to 4 mm.

【0014】これらの材料は単独で用いても、複数種を
混合して用いてもよく、全体が均一な材料で形成されて
いてもよいが、内側部分に高ダンピング材料、外側部分
にクリープ性能の良くかつ柔らかい材料等と二種類以上
を組み合わせて使用してもよい。
These materials may be used singly or as a mixture of two or more kinds, and may be formed of a uniform material as a whole, but a high damping material is used for the inner part and a creep performance is used for the outer part. You may use it in combination of 2 or more types with a good and soft material.

【0015】また、本発明の免震構造体における硬質板
としては、金属、セラミックス、プラスチックス、FR
P、ポリウレタン、木材、紙板、スレート板、化粧板等
所要の剛性を有する各種の材料を使用することができ
る。ここで、所要の剛性とは、設計条件により大きく変
わるが、剪断変型した特許、座屈現象が生じにくい剛性
を意味する。
Further, as the hard plate in the seismic isolation structure of the present invention, metal, ceramics, plastics, FR
Various materials having required rigidity, such as P, polyurethane, wood, paper board, slate board, decorative board, etc., can be used. Here, the required rigidity means a rigidity of a patent with shear deformation or a buckling phenomenon, although it varies greatly depending on design conditions.

【0016】硬質板の厚み、形状には特に制限はなく、
使用される材料及び所望の免震性能によって選択できる
が、その厚みは、一般には、重量物に用いる場合には、
2〜4mm、軽量物に用いる場合には、0.5〜2mm
程度の厚みのものが使用される。また、形状は、積層さ
れる軟質板と同様、中央に中空部を有することの他は任
意であるが、通常は、併用する軟質板と同じ形状のもの
を用いる。
There is no particular limitation on the thickness and shape of the hard plate,
It can be selected depending on the material used and the desired seismic isolation performance, but its thickness is generally
2 to 4 mm, 0.5 to 2 mm when used for lightweight items
It is of a moderate thickness. The shape is arbitrary as well as the soft plate to be laminated, except that it has a hollow portion at the center, but usually the same shape as the soft plate used together is used.

【0017】前記軟質板と硬質板とを交互に複数段積層
して複合積層体を構成するものである。軟質板及び硬質
板、それぞれの形状、面積及び厚さは前記した如く要求
される免震性能によって異なるが、通常は、複合積層体
は前記した如く、中空部を有する円柱状を示し、軟質板
及び硬質板両者の形状が同じドーナツ盤状をなし、且
つ、表面積も同じであるものが汎用されている。
A plurality of layers of the soft plate and the hard plate are alternately laminated to form a composite laminate. The shape, area, and thickness of each of the soft plate and the hard plate differ depending on the seismic isolation performance required as described above, but normally, as described above, the composite laminate exhibits a columnar shape having a hollow portion, It is widely used that both the hard plate and the hard plate have the same donut shape and have the same surface area.

【0018】これらの免震構造体においては、剛性を有
する硬質板と粘弾性的性質を有する軟質板としてドーナ
ツ盤状のものを用いることが一般的であり、その場合、
前記軟質板の平面視による直径をD、軟質板の中空部の
平面視による直径をdとしたとき、Dとdが、下記式を
満たす関係にあることが好ましい。
In these seismic isolation structures, it is common to use a rigid hard plate and a doughnut-shaped soft plate having viscoelastic properties. In that case,
When the diameter of the soft plate in plan view is D and the diameter of the hollow portion of the soft plate in plan view is d, it is preferable that D and d satisfy the following formula.

【0019】0.6≧d/D≧0.15 d/Dが0.6を超えると周囲に存在する複合積層体の
バネ剛性と中空部に充填された粒状物同志の摩擦力との
バランスがくずれ、地震等で大変型を受けた後に、もと
の位置に戻らなくなる虞があり、d/Dが0.15未満
であると摩擦力の効果が小さく、所望の減衰効果が得ら
れないため、いずれも好ましくない。用いられる複合積
層体が中空部を有する円柱状でない場合においても、複
合積層体と中空部との面積比が前記の式より導かれる範
囲にあることが好ましい。
0.6 ≧ d / D ≧ 0.15 When d / D exceeds 0.6, the balance between the spring rigidity of the composite laminate existing around and the frictional force of the granular materials filled in the hollow portion. There is a risk that it will not return to its original position after being severely deformed due to crushing, earthquakes, etc. If d / D is less than 0.15, the effect of frictional force is small and the desired damping effect cannot be obtained. Therefore, neither is preferable. Even when the composite laminate to be used is not cylindrical having a hollow portion, it is preferable that the area ratio between the composite laminate and the hollow portion is in a range derived from the above equation.

【0020】具体的には、例えば、重量物に用いる場
合、前記Dが500〜1500mm、dが75〜900
mm、軽量物に用いる場合、前記Dが50〜300m
m、dが7.5〜180mm程度のものが好ましい。
Specifically, for example, when used in a heavy object, D is 500 to 1500 mm and d is 75 to 900.
mm, when used for lightweight objects, the D is 50 to 300 m
It is preferable that m and d are about 7.5 to 180 mm.

【0021】本発明の免震構造体に耐候性を付与するた
め、免震構造体の外側を耐候性の優れた材料で被覆して
も良い。この被覆材料としては、例えば、ブチルゴム、
アクリルゴム、ポリウレタン、シリコンゴム、フッ素ゴ
ム、多硫化ゴム、エチレンプロピレンゴム(ERP及び
EPDM)、クロロスルホン化ポリエチレン、塩素化ポ
リエチレン、エチレン酢酸ビニルゴム、クロロプレンゴ
ムなどを用いることができる。これらの材料は単独で
も、二種類以上をブレンドしても良い。また、天然ゴ
ム、イソプレンゴムスチレンブタジエンゴム、ブタジエ
ンゴム、ニトリルゴム等とブレンドしても良い。
In order to impart weather resistance to the seismic isolation structure of the present invention, the outside of the seismic isolation structure may be coated with a material having excellent weather resistance. As this coating material, for example, butyl rubber,
Acrylic rubber, polyurethane, silicone rubber, fluorine rubber, polysulfide rubber, ethylene propylene rubber (ERP and EPDM), chlorosulfonated polyethylene, chlorinated polyethylene, ethylene vinyl acetate rubber, chloroprene rubber, and the like can be used. These materials may be used alone or as a blend of two or more. Further, it may be blended with natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber and the like.

【0022】本発明の免震構造体において柱状の中空部
に充填される硬質粒状物としては、圧縮充填することに
より、粒状物同志の摩擦力によって免震構造体の過剰な
変型を防止しうるものであれば、特に制限はないが、モ
ース硬度にて2以上の値を有する材料で形成されている
ものが好ましい。好適な材料としては、例えば、銅(モ
ース硬度:2)、鉄(モース硬度:4)、サンドブラス
ト用砂(モース硬度:9)、ガラス(モース硬度:
6)、石英(モース硬度:7)等が挙げられ、さらに、
前記好ましい硬度を有する繊維強化プラスチック、各種
セラミック等も使用することができる。
In the seismic isolation structure of the present invention, the hard granular material to be filled in the columnar hollow portion can be compressed and filled to prevent excessive deformation of the seismic isolation structure due to the frictional force between the granular materials. The material is not particularly limited as long as it is a material, but a material formed of a material having a Mohs hardness of 2 or more is preferable. Examples of suitable materials include copper (Mohs hardness: 2), iron (Mohs hardness: 4), sand for sandblasting (Mohs hardness: 9), glass (Mohs hardness:
6), quartz (Mohs hardness: 7), and the like.
Fiber reinforced plastics having various preferable hardnesses, various ceramics, etc. can also be used.

【0023】粒状物の大きさは、0.1〜30mmの範
囲のものが好ましく、0.1mm未満であると充填時に
十分な応力をかけることができず、30mmを超える
と、粒状物同志の接触面積が小さくなり、いずれも所望
の摩擦力を得難いため、好ましくない。
The size of the granules is preferably in the range of 0.1 to 30 mm. If it is less than 0.1 mm, sufficient stress cannot be applied at the time of filling, and if it exceeds 30 mm, the size of the granules is the same. This is not preferable because the contact area becomes small and it is difficult to obtain a desired frictional force in either case.

【0024】この硬質粒状物の具体例としては、ガラス
ビーズ、鉄球、銅球等の金属球、砂、石英粉、Al2
3 を主成分とするサンドブラスト用砂等が挙げられる。
Specific examples of this hard granular material include glass beads, metal balls such as iron balls and copper balls, sand, quartz powder, and Al 2 O.
Sand blasting sand containing 3 as a main component.

【0025】粒状物の形状については、前記のサイズを
有するものであれば特に制限はないく、球状、紡錘状、
不定型等のいずれであってもよく、粒状物の表面も平滑
であっても、微細な凹凸を有するものであってもよい
が、変型緩和効果及び摩擦力の観点から、平板状のもの
よりもアスペクト比が3以下程度の球に近い形状を有す
るものが好ましく用いられる。
The shape of the granular material is not particularly limited as long as it has the above-mentioned size, and it is spherical, spindle-shaped,
It may be an irregular shape or the like, and the surface of the granular material may be smooth or may have fine irregularities, but from the viewpoint of the deformation mitigating effect and frictional force, it is more preferable than the flat shape. Also, those having a shape close to a sphere with an aspect ratio of about 3 or less are preferably used.

【0026】これらの硬質粒状物を前記免震構造体の中
空部に充填する際には、タッピングを行うなどして、最
密充填し、さらに、蓋体等により応力が掛かるように封
入することが好ましい。中空部に最密充填された硬質粒
状物同志の摩擦力が減衰効果に寄与するため、硬質粒状
物が互いに自由に振動しうるような空間を有する充填状
態では所望の減衰効果が得られず好ましくない。
When filling the hollow portion of the seismic isolation structure with these hard granular materials, it is necessary to perform the closest packing by tapping or the like, and further to enclose so that a stress is applied by a lid or the like. Is preferred. Since the frictional force between the hard particles closely packed in the hollow portion contributes to the damping effect, the desired damping effect cannot be obtained in the filled state having a space where the hard particles can freely vibrate with each other, which is preferable. Absent.

【0027】本発明の免震構造体は、軟質板及び硬質板
のサイズ、積層枚数、中空部の体積、充填する粒状物の
特性を選択することにより、橋、ビル等の重量物から、
戸建住宅の如き、比較的軽量(軽負荷)物についても、
優れた免震性能を示す免震構造体を得ることができる。
ここで、軽負荷物とは、面圧50kgf/cm2 未満、
更には面圧30kgf/cm2 以下、更に好ましくは面
圧20kgf/cm2以下のものを指す。
The seismic isolation structure of the present invention can be selected from heavy objects such as bridges and buildings by selecting the size of the soft and hard plates, the number of laminated sheets, the volume of the hollow part, and the characteristics of the granular material to be filled.
For relatively lightweight (light load) objects such as detached houses,
It is possible to obtain a seismic isolation structure having excellent seismic isolation performance.
Here, the light load means a surface pressure of less than 50 kgf / cm 2 ,
Furthermore, the surface pressure is 30 kgf / cm 2 or less, and more preferably the surface pressure is 20 kgf / cm 2 or less.

【0028】本発明の構成は、免震構造体の上下の面板
の間に剛性を有した硬質板と粘弾性的性質を有した軟質
板とを、それぞれ複数個、交互に積層した複合積層体を
設け、該複合積層体の内部に、該複合積層体を貫通する
柱状の中空部を設けて、そこに硬質の粒状物を充填して
なるものである。
The structure of the present invention is a composite laminate in which a plurality of rigid hard plates and soft plates having viscoelastic properties are alternately laminated between the upper and lower face plates of the seismic isolation structure. And a column-shaped hollow portion penetrating the composite laminate is provided inside the composite laminate, and a hard granular material is filled therein.

【0029】地震時などには、この免震構造体に大変形
が加わるが、剪断変形に合わせて移動する中空部に最密
充填された硬質粒状物の粒子表面同志の摩擦によって、
振動が効果的に減衰され、積層構造体にいわゆる塑性変
型を引き起こす程のダメージが起こることがない。この
ため、一度の地震で免震効果が失われることなく、耐久
性のある免震効果を有する。
During an earthquake or the like, a large deformation is applied to the seismic isolation structure, but due to the friction between the particle surfaces of the hard granules that are most closely packed in the hollow portion that moves according to the shear deformation,
The vibration is effectively damped, and the laminated structure is not damaged so much as to cause so-called plastic deformation. Therefore, the seismic isolation effect is not lost in one earthquake, and has a durable seismic isolation effect.

【0030】[0030]

【実施例】以下に本発明を図面を参照して実施例につい
て具体的に説明する。表1に実施例と比較例の条件と試
験結果をまとめて示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. Table 1 collectively shows the conditions and test results of Examples and Comparative Examples.

【0031】(実施例1)図1は本発明の実施例1に係
る免震構造体10の断面図を示している。図1に示す免
震構造体10において、上面板12(鉄板)と下面板1
4(鉄板)の間に硬質板16として外径160mm、内
径30mm、厚さ1mmの鋼板20枚、軟質板18とし
て、50%モジュラスが1.9kgf/cm2 、引張り
強度が70kgf/cm2 、破断時の伸びが700%の
ゴム材料を用い、軟質板18(1枚の厚さ1.6mm)
を21層用いた。この免震構造体10の積層体中央部に
設けた中空部20に、直径1mmのガラスビーズ(球
形)22をタッピングを行いながら充填できる最大量を
充填し、その上部にM30のネジを切ったフタ24をト
ルク1kgmでねじ込むことにより中のガラスビーズ2
2が圧縮状態になるように充填、封入した。さらに、こ
の積層体の外周を天然ゴム系ゴム材料を用いた外被ゴム
26で被覆して免震構造体を得て、実施例1とした。
(Embodiment 1) FIG. 1 shows a sectional view of a seismic isolation structure 10 according to Embodiment 1 of the present invention. In the seismic isolation structure 10 shown in FIG. 1, a top plate 12 (iron plate) and a bottom plate 1
4 outside diameter as the rigid plate 16 between the (iron plate) 160 mm, an inner diameter of 30 mm, 20 sheets steel plate having a thickness of 1 mm, as the soft sheet 18, 50% modulus of 1.9kgf / cm 2, a tensile strength of 70 kgf / cm 2, A soft plate 18 (thickness 1.6 mm per sheet) made of a rubber material whose elongation at break is 700%
21 layers were used. The hollow portion 20 provided in the central portion of the laminated body of the seismic isolation structure 10 was filled with the maximum amount of glass beads (spherical) 22 having a diameter of 1 mm that could be filled while tapping, and the upper portion thereof was threaded with M30. Glass beads 2 inside by screwing the lid 24 with a torque of 1 kgm
It was filled and sealed so that 2 was in a compressed state. Further, the outer periphery of this laminated body was covered with the outer rubber 26 made of a natural rubber-based rubber material to obtain a seismic isolation structure, which was Example 1.

【0032】この免震構造体に、荷重3t、振動数f=
0.2Hzで剪断歪100%で震動を与えた時の剪断剛
性(G)、tanδを測定した。結果を下記表1に示し
た。
A load of 3 t and a frequency f =
Shear rigidity (G) and tan δ when a vibration was applied at a shear strain of 100% at 0.2 Hz were measured. The results are shown in Table 1 below.

【0033】また、この積層体の中空部20にガラスビ
ーズ22を充填しなかったこと以外は実施例1と同様に
して、免震構造体を作製して比較例1とした。この比較
例1の免震構造体について、実施例1と同様の評価を行
い、結果を下記表1に示した。
A seismic isolation structure was produced in the same manner as in Example 1 except that the hollow portion 20 of this laminated body was not filled with the glass beads 22, and Comparative Example 1 was obtained. The seismic isolation structure of Comparative Example 1 was evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】表1に明らかなごとく、本発明の免震構造
体である実施例1は中空部にガラスビーズを充填しなか
った比較例1の免震構造体に比べて、著しく減衰効果が
向上していた。
As is apparent from Table 1, the damping effect of Example 1 which is the seismic isolation structure of the present invention is remarkably improved as compared with the seismic isolation structure of Comparative Example 1 in which the hollow portion is not filled with glass beads. Was.

【0036】また、この結果をみるに、剪断剛性(G)
が2.5kgf/cm2 、tanδが0.37という数
値は、例えば、戸建用免震構造体として十分なレベルで
あることが確認された。
Further, looking at this result, the shear rigidity (G)
It was confirmed that the numerical values of 2.5 kgf / cm 2 and tan δ of 0.37 are, for example, sufficient levels for a seismic isolation structure for detached houses.

【0037】(実施例2)図2は本発明の実施例2に係
る免震構造体28の断面図を示している。図2に示す免
震構造体28において、上面板12(鉄板)と下面板1
4(鉄板)の間に硬質板16として外径160mm、内
径60mm、厚さ1mmの鋼板20枚、軟質板18とし
て、50%モジュラスが6.0kgf/cm2 、引張り
強度が200kgf/cm2 、破断時の伸びが650%
のゴム材料を用い、軟質板(1枚の厚さ1.6mm)を
21層用いた。この免震構造体28の積層体中央部に設
けた中空部20に、直径1mmのガラスビーズ(球形)
22をタッピングを行いながら充填できる最大量を充填
し、その最上部に厚さ1.5mmのナイロン板30をク
ッション材として配置し、その上から上ブタ32をボル
トで締めて固定することにより、中のガラスビーズ22
が圧縮状態になるように充填、封入した。さらに、この
積層体の外周を天然ゴム系ゴム材料を用いた外被ゴム2
6で被覆して免震構造体を得て、実施例1とした。
(Second Embodiment) FIG. 2 is a sectional view of a seismic isolation structure 28 according to a second embodiment of the present invention. In the seismic isolation structure 28 shown in FIG. 2, the upper plate 12 (iron plate) and the lower plate 1
Between 4 (iron plates), 20 hard steel plates 16 having an outer diameter of 160 mm, an inner diameter of 60 mm and a thickness of 1 mm, and a soft plate 18 having a 50% modulus of 6.0 kgf / cm 2 and a tensile strength of 200 kgf / cm 2 , 650% elongation at break
21 layers of soft plates (one sheet having a thickness of 1.6 mm) were used. Glass beads (spherical) having a diameter of 1 mm are provided in the hollow portion 20 provided at the center of the laminated body of the seismic isolation structure 28.
22 is filled while tapping the maximum amount that can be filled, a nylon plate 30 having a thickness of 1.5 mm is arranged as a cushioning material on the uppermost portion, and the upper lid 32 is fixed by bolting it from above. Glass beads 22 inside
Was filled and sealed so that the powder was in a compressed state. Further, the outer circumference of this laminated body is covered with a rubber 2 using a natural rubber type rubber material.
A seismic isolation structure was obtained by coating with No.6, and this was taken as Example 1.

【0038】この免震構造体28に、荷重10t、振動
数f=0.2Hzで剪断歪100%で震動を与えた時の
剪断剛性(G)、tanδを測定した。結果を下記表2
に示した。
Shear rigidity (G) and tan δ when a vibration was applied to this seismic isolation structure 28 at a load of 10 t and a frequency f = 0.2 Hz and a shear strain of 100% were measured. The results are shown in Table 2 below.
It was shown to.

【0039】また、この積層体の中空部にガラスビーズ
を充填しなかったこと以外は実施例2と同様にして、免
震構造体を作製して比較例1とした。この比較例2の免
震構造体について、実施例2と同様の評価を行い、結果
を下記表2に示した。
A seismic isolation structure was prepared as Comparative Example 1 in the same manner as in Example 2 except that the hollow portion of this laminate was not filled with glass beads. The seismic isolation structure of Comparative Example 2 was evaluated in the same manner as in Example 2, and the results are shown in Table 2 below.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に明らかなごとく、本発明の免震構造
体である実施例2は中空部にガラスビーズを充填しなか
った比較例2の免震構造体に比べて、著しく減衰効果が
向上していた。
As is clear from Table 2, the damping effect of Example 2 which is the seismic isolation structure of the present invention is remarkably improved as compared with the seismic isolation structure of Comparative Example 2 in which the hollow portion is not filled with glass beads. Was.

【0042】[0042]

【発明の効果】以上の説明から明らかなごとく、本発明
の免震構造体は、ビルや橋梁等の重量物のみならず、戸
建住宅用等の軽重量物に適用した場合にも高性能で、且
つ、塑性変型や切断破壊がなく、かつ、耐久性に優れた
免震構造体を得ることができた。
As is apparent from the above description, the seismic isolation structure of the present invention has high performance when applied to not only heavy objects such as buildings and bridges but also light objects such as detached houses. In addition, it was possible to obtain a seismic isolation structure with excellent durability and without plastic deformation or cutting fracture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1に係る免震構造体の断面図
である。
FIG. 1 is a cross-sectional view of a seismic isolation structure according to a first embodiment of the present invention.

【図2】 本発明の実施例2に係る免震構造体の断面図
である。
FIG. 2 is a sectional view of a seismic isolation structure according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:免震構造体 12:上面板(鉄板) 14:下面板(鉄板) 16:硬質板 18:軟質板 20:柱状の中空部 22:ガラスビーズ(硬質の粒状物) 24:フタ 26:外被ゴム 28:免震構造体 30:ナイロン板(クッション材) 32:上ブタ 10: Seismic isolation structure 12: Top plate (iron plate) 14: Bottom plate (iron plate) 16: Hard plate 18: Soft plate 20: Columnar hollow part 22: Glass beads (hard granular material) 24: Lid 26: Outside Rubberized 28: Seismic isolation structure 30: Nylon plate (cushion material) 32: Upper pig

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上下の面板の間に、剛性を有した硬質板
と粘弾性的性質を有した軟質板とを、それぞれ複数個、
交互に積層した複合積層体を設け、該複合積層体の内部
に、該複合積層体を貫通する柱状の中空部を有する免震
構造体であって、 該柱状の中空部に硬質粒状物を充填したことを特徴とす
る免震構造体。
1. A plurality of hard plates having rigidity and a plurality of soft plates having viscoelastic properties are provided between the upper and lower face plates, respectively.
A seismic isolation structure having a composite laminated body that is alternately laminated, and having a columnar hollow portion that penetrates the composite laminated body inside, wherein the columnar hollow portion is filled with hard particulate matter. A seismic isolation structure characterized by the above.
【請求項2】 前記複合積層体が中央に中空部を有する
円柱状をなしており、複合積層体の平面視による直径を
D、中空部の平面視による直径をdとしたとき、Dとd
とが、下記式を満たす関係にあることを特徴とする請求
項1記載の免震構造体。 0.6≧d/D≧0.15
2. The composite laminate has a columnar shape having a hollow portion in the center, where D is the diameter of the composite laminate in plan view and D is the diameter of the hollow portion in plan view.
2. The seismic isolation structure according to claim 1, wherein and satisfy the following formula. 0.6 ≧ d / D ≧ 0.15
【請求項3】 前記硬質粒状物の平均粒径が0.1mm
〜30mmであり、且つ、硬質粒状物の硬度が、モース
硬度で2以上であることを特徴とする請求項1又は2に
記載の免震構造体。
3. The average particle size of the hard granules is 0.1 mm.
The seismic isolation structure according to claim 1 or 2, wherein the seismic isolation structure has a hardness of -30 mm and a hardness of the hard granular material of 2 or more in Mohs' hardness.
JP34131495A 1995-09-29 1995-12-27 Base insulation structure Pending JPH09177367A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP34131495A JPH09177367A (en) 1995-12-27 1995-12-27 Base insulation structure
US08/722,567 US5765322A (en) 1995-09-29 1996-09-27 Seismic isolation apparatus
US09/021,845 US5884440A (en) 1995-09-29 1998-02-11 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34131495A JPH09177367A (en) 1995-12-27 1995-12-27 Base insulation structure

Publications (1)

Publication Number Publication Date
JPH09177367A true JPH09177367A (en) 1997-07-08

Family

ID=18345103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34131495A Pending JPH09177367A (en) 1995-09-29 1995-12-27 Base insulation structure

Country Status (1)

Country Link
JP (1) JPH09177367A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220691A (en) * 1999-01-29 2000-08-08 Oiles Ind Co Ltd Vibration energy absorbing device
JP2010096243A (en) * 2008-10-15 2010-04-30 Polsys Kenkyusho:Kk Base isolation structure and method for manufacturing the same
JP6064075B1 (en) * 2016-08-23 2017-01-18 株式会社ビービーエム Seismic isolation device for structure and manufacturing method of seismic isolation device for structure
CN106401255A (en) * 2016-10-09 2017-02-15 中国建筑第八工程局有限公司 Combined lead-particle rubber damper
CN106567592A (en) * 2016-11-09 2017-04-19 中国建筑第八工程局有限公司 Low-yield point steel energy dissipation and particle energy dissipation damper
CN107816125A (en) * 2017-10-26 2018-03-20 叶长青 The structure of basement and superstructure synchronous construction
CN109098289A (en) * 2018-08-27 2018-12-28 苏州海德新材料科技股份有限公司 Shock isolating pedestal core material, friction core shock isolating pedestal and its preparation method and application
CN109403499A (en) * 2018-12-19 2019-03-01 苏州海德新材料科技股份有限公司 Viscoelastic damper and its construction and installation structure
WO2022103356A1 (en) * 2020-11-13 2022-05-19 Yildiz Teknik Universitesi A seismic combination apparatus with elastomer and with friction particularly for use in buildings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220691A (en) * 1999-01-29 2000-08-08 Oiles Ind Co Ltd Vibration energy absorbing device
JP2010096243A (en) * 2008-10-15 2010-04-30 Polsys Kenkyusho:Kk Base isolation structure and method for manufacturing the same
JP6064075B1 (en) * 2016-08-23 2017-01-18 株式会社ビービーエム Seismic isolation device for structure and manufacturing method of seismic isolation device for structure
CN106401255A (en) * 2016-10-09 2017-02-15 中国建筑第八工程局有限公司 Combined lead-particle rubber damper
CN106567592B (en) * 2016-11-09 2020-05-22 中国建筑第八工程局有限公司 Damper for low yield point steel energy consumption and particle energy consumption
CN106567592A (en) * 2016-11-09 2017-04-19 中国建筑第八工程局有限公司 Low-yield point steel energy dissipation and particle energy dissipation damper
CN107816125A (en) * 2017-10-26 2018-03-20 叶长青 The structure of basement and superstructure synchronous construction
CN107816125B (en) * 2017-10-26 2024-06-07 临沂锋立建筑劳务有限公司 Structure for synchronous construction of basement and superstructure
CN109098289A (en) * 2018-08-27 2018-12-28 苏州海德新材料科技股份有限公司 Shock isolating pedestal core material, friction core shock isolating pedestal and its preparation method and application
WO2020042390A1 (en) * 2018-08-27 2020-03-05 苏州海德新材料科技股份有限公司 Core material for shock insulation support, shock insulation support having friction core and preparation method therefor
US12031601B2 (en) 2018-08-27 2024-07-09 Suzhou Haider New Material Technology Co., Ltd. Core material for shock insulation support, shock insulation support having friction core and preparation method therefor
CN109403499A (en) * 2018-12-19 2019-03-01 苏州海德新材料科技股份有限公司 Viscoelastic damper and its construction and installation structure
WO2022103356A1 (en) * 2020-11-13 2022-05-19 Yildiz Teknik Universitesi A seismic combination apparatus with elastomer and with friction particularly for use in buildings

Similar Documents

Publication Publication Date Title
US4899323A (en) Anti-seismic device
US5765322A (en) Seismic isolation apparatus
US4923034A (en) Vibration-controlling member
JPH03163231A (en) Peripheral restraint type earthquakeproof support
JPH09177367A (en) Base insulation structure
JP2615639B2 (en) Seismic isolation structure
JP2855605B2 (en) Seismic isolation device
JP3851386B2 (en) Seismic isolation structure
JP4994338B2 (en) Seismic isolation structure and manufacturing method thereof
JPH0784815B2 (en) Seismic isolation device
JPH11210091A (en) Base isolation structure
JP2570340B2 (en) Seismic isolation structure
JPS62184256A (en) Vibration isolating device
JP2008121822A (en) Vibration-isolation structure and its manufacturing method
JPH11125306A (en) Base isolation system
JP2615626B2 (en) Seismic isolation structure
JPH09177368A (en) Vibration isolator
EP0931813A1 (en) Highly damping rubber composition
JPH09177370A (en) Vibration isolation structure
JPH011843A (en) Seismic isolation structure
NZ228924A (en) Vibration damper containing slightly crosslinked rubber
JPH0729395B2 (en) Seismic isolation structure
JPH08260753A (en) Base isolation device
JPH1037212A (en) Vibration-isolation ground
JPH09177369A (en) Vibration isolation structure