JPH09176729A - Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect - Google Patents

Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect

Info

Publication number
JPH09176729A
JPH09176729A JP34174395A JP34174395A JPH09176729A JP H09176729 A JPH09176729 A JP H09176729A JP 34174395 A JP34174395 A JP 34174395A JP 34174395 A JP34174395 A JP 34174395A JP H09176729 A JPH09176729 A JP H09176729A
Authority
JP
Japan
Prior art keywords
shape memory
texture
memory alloy
orientation
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34174395A
Other languages
Japanese (ja)
Inventor
Osamu Matsumura
理 松村
Hiroaki Otsuka
広明 大塚
Masayuki Okamoto
正幸 岡本
Hiroyuki Tanahashi
浩之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34174395A priority Critical patent/JPH09176729A/en
Publication of JPH09176729A publication Critical patent/JPH09176729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel material or a wire rod having a sufficient shape recovering amt. as-rolled without special operation such as the repetition of thermomechnnical treatment (training treatment) in a shape memory alloy utilizing γ→ε martensitic transformation and to provide a method for allowing the above shape memory alloy to show superelastic effect which has been impossible heretofore. SOLUTION: This is a shape memory alloy contg. iron and manganese and utilizing γ(fcc)→ε(hcp) martensitic transformation. A sheet material having a texture in which the [110] orientation γis preferentially oriented or a wire rod having a texture in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire is applied with strains of <=3% in the [110] orientation of the material in the temp. range of 50 to 175 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属管と金属管ま
たは金属棒を接続したり、金属管とセラミック等の金属
以外の物質からなる管や棒を接続する継ぎ手等として利
用される形状記憶合金、および携帯電話アンテナまたは
下着用ワイヤー等として利用される超弾性合金に関する
ものであり、さらにこれらの合金に超弾性効果を発現さ
せる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape memory used as a joint or the like for connecting a metal tube and a metal tube or a metal rod, or for connecting a metal tube and a tube or a rod made of a substance other than metal such as ceramics. The present invention relates to alloys and superelastic alloys used as mobile phone antennas, underwear wires, and the like, and further to a method for causing these alloys to exhibit a superelastic effect.

【0002】[0002]

【従来の技術】Fe−28重量%Mn−6重量%Si−
5重量%Cr鋼、Fe−14重量%Mn−6重量%Si
−9重量%Cr−5重量%Ni鋼、Fe−8重量%Mn
−6重量%Si−13重量%Cr−6重量%Ni−12
重量%Co鋼等のγ(fcc)→ε(hcp)マルテン
サイト変態を利用した鉄およびマンガンを含む形状記憶
合金では、合金が単結晶の場合、(111)fcc面上
でa/6〔11−2〕(aは格子定数)シアーの内特定
のものが活性化されるような方位、例えば〔44−1〕
方向に引張変形を加えたとき、著しい形状記憶効果が得
られる(A.Sato、E.Chishima、Y.Y
amaji and T.Mori:Acta Me
t.、32、1984、p.593)が、多結晶におい
ては回復できる歪みの量はおよそ1.5%程度にすぎな
い(H.Otsuka:Mat.Res.Soc.Sy
mp.Proc.Vol.246、1992、p.30
9)。これらの合金の形状記憶特性を実用レベルに向上
させるためには、トレーニングと呼ばれる加工と熱処理
の組み合わせ処理を1回から数回施すことが必要であ
る。トレーニング処理とは、数%の変形と600℃前後
での焼鈍の複合処理のことを言う。この処理を施すこと
により、回復歪みの量で3%以上の形状記憶効果が得ら
れる(特開昭62−112720号公報)。
2. Description of the Related Art Fe-28 wt% Mn-6 wt% Si-
5 wt% Cr steel, Fe-14 wt% Mn-6 wt% Si
-9 wt% Cr-5 wt% Ni steel, Fe-8 wt% Mn
-6 wt% Si-13 wt% Cr-6 wt% Ni-12
In a shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation such as wt% Co steel, when the alloy is a single crystal, a / 6 [11] on the (111) fcc plane. -2] (a is a lattice constant) An orientation in which a specific one of the shears is activated, for example, [44-1]
A significant shape memory effect is obtained when tensile deformation is applied in the direction (A. Sato, E. Chishima, Y. Y.
amaji and T.A. Mori: Acta Me
t. 32, 1984, p. 593), but the amount of strain that can be recovered in a polycrystal is only about 1.5% (H. Otsuka: Mat. Res. Soc. Sy.
mp. Proc. Vol. 246, 1992, p. 30
9). In order to improve the shape memory characteristics of these alloys to a practical level, it is necessary to perform a combination of processing and heat treatment called training once to several times. Training treatment refers to a combined treatment of deformation of several percent and annealing at about 600 ° C. By performing this treatment, a shape memory effect of 3% or more can be obtained with the amount of recovery strain (Japanese Patent Laid-Open No. 62-112720).

【0003】[0003]

【発明が解決しようとする課題】特開昭61−2017
24号公報に示されたような、通常の製造方法で作製し
た形状記憶合金においては、熱間圧延材および冷間伸線
材のような材料の組織は様々な方位のものが集まった、
いわゆるランダムな集合組織となっており、このような
材料の回復可能な歪みの量は、トレーニング処理と呼ば
れる加工熱処理法を施さない状態においては、約1.5
%とかなり小さい。パイプの継ぎ手として利用する場
合、パイプサイズの小さいもの(例えば、内径20mm
程度)では、パイプ自体の外径の規格値でさえ1.5%
よりも大きく、このままでは実用に供せないという問題
があった。これに対しては、トレーニング処理を施すこ
とにより3〜4%の歪みの回復が可能となり、実用レベ
ルの回復量がようやく得られている。しかし、トレーニ
ング処理として製造工程数が増加し、製品のコストが高
くなる点、変形と回復を繰り返して製品を作製するた
め、寸法設計が難しい点などの問題があった。
Problems to be Solved by the Invention JP-A-61-2017
In the shape memory alloy produced by the usual production method as shown in Japanese Patent Publication No. 24, the structures of materials such as hot rolled material and cold drawn material have various orientations.
The material has a so-called random texture, and the amount of recoverable strain of such a material is about 1.5 in a state where a thermomechanical treatment method called a training treatment is not applied.
%, Which is quite small. When used as a pipe joint, those with a small pipe size (for example, inner diameter 20 mm
Degree), even the standard value of the outer diameter of the pipe itself is 1.5%
There is a problem that it cannot be put to practical use as it is. On the other hand, it is possible to recover the strain of 3 to 4% by applying the training process, and the recovery amount of the practical level is finally obtained. However, there are problems that the number of manufacturing steps increases as a training process, the cost of the product increases, and the product is manufactured by repeating deformation and recovery, so that dimensional design is difficult.

【0004】また、γ→εマルテンサイト変態を利用し
た形状記憶合金では、変態するマルテンサイトの量が1
00%ではないため、これまで超弾性効果は起こらない
とされ、TiNi系形状記憶合金の応用用途が超弾性効
果を利用したものばかりであるにも関わらず、同様な分
野への応用展開ができないという問題があった。本発明
は、以上の点を鑑みてなされたものであり、材料に特定
方位の集合組織を形成することにより、トレーニング処
理なしでも十分な回復歪みが得られ、またトレーニング
処理を施せば、さらに回復可能な歪みの量を向上させる
ことができる形状記憶合金を提供するものである。さら
に、本発明は、特定方位の集合組織を有する材料を特定
の温度範囲で使用することにより超弾性効果を発現させ
る方法を提供するのである。
Further, in the shape memory alloy utilizing the γ → ε martensite transformation, the amount of martensite transformed is 1 or less.
Since it is not 00%, it is said that the superelastic effect does not occur until now, and although the TiNi-based shape memory alloy is used only for the superelastic effect, it cannot be applied to the same field. There was a problem. The present invention has been made in view of the above points, and by forming a texture of a specific orientation in a material, sufficient recovery strain can be obtained without training processing, and if training processing is performed, further recovery is achieved. It is intended to provide a shape memory alloy capable of improving the amount of possible strain. Furthermore, the present invention provides a method of exhibiting a superelastic effect by using a material having a texture of a specific orientation in a specific temperature range.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
とするところは下記のとおりである。 (1)γ(fcc)→ε(hcp)マルテンサイト変態
を利用した鉄およびマンガンを含む形状記憶合金であっ
て、γの〔110〕方位が優先的に配向した集合組織を
有する板材。
That is, the gist of the present invention is as follows. (1) A plate material which is a shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensitic transformation and has a texture in which the [110] orientation of γ is preferentially oriented.

【0006】(2)γ(fcc)→ε(hcp)マルテ
ンサイト変態を利用した鉄およびマンガンを含む形状記
憶合金であって、線の長手方向にγの〔110〕方位が
優先的に配向した集合組織を有する線材。 (3)γ(fcc)→ε(hcp)マルテンサイト変態
を利用した鉄およびマンガンを含む形状記憶合金であっ
て、γの〔110〕方位が優先的に配向した集合組織を
有する板材を50℃から175℃の温度範囲において材
料の〔110〕方向に3%以下の歪みを与えることを特
徴とする集合組織を有する形状記憶合金に超弾性効果を
発現させる方法。
(2) A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire. A wire rod that has a texture. (3) A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, and a plate material having a texture in which the [110] orientation of γ is preferentially oriented at 50 ° C. To 175 ° C., a method of producing a superelastic effect in a shape memory alloy having a texture, which is characterized by imparting a strain of 3% or less in the [110] direction of the material.

【0007】(4)γ(fcc)→ε(hcp)マルテ
ンサイト変態を利用した鉄およびマンガンを含む形状記
憶合金であって、線の長手方向にγの〔110〕方位が
優先的に配向した集合組織を有する線材を50℃から1
75℃の温度範囲において材料の〔110〕方向に3%
以下の歪みを与えることを特徴とする集合組織を有する
形状記憶合金に超弾性効果を発現させる方法。
(4) A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire. Wires with texture from 50 ℃ to 1
3% in the [110] direction of the material in the temperature range of 75 ° C
A method for producing a superelastic effect in a shape memory alloy having a texture characterized by giving the following strain.

【0008】ここで、請求項1の板材とは、例えば(0
01)〔110〕集合組織を有する板材のごとく、圧延
面に平行に(001)面があり、板の特定方向、この場
合圧延方向および幅方向が〔110〕および〔1−1
0〕と等価な方位を持った板(図1参照)のことであ
り、同様に請求項2の線材とは、例えば線の表面が(0
01)面であり、長手方向が〔110〕の方位を持った
線のことを言う。また、ここで言う集合組織とは、集合
組織を形成する結晶粒が、板面内または線の長手方向の
特定方向に、およそ11°の分散範囲で〔110〕方向
を向いているような組織の集合のことを指している。ま
た、ここで言う集合組織では、全ての結晶粒が上記分散
範囲にある場合もあるが、体積比で25%以上、望まし
くは50%以上が上記分散範囲内にある場合も含めてい
る。さらにまた、全板厚をtとすると、板の表面からt
/4の深さまでの板表面層、すなわち表裏合わせて全板
厚のt/2の層において、体積比25%以上、望ましく
は50%以上の結晶粒が上記分散範囲内にある場合も含
めている。
Here, the plate material of claim 1 is, for example, (0
01) A plate material having a [110] texture has a (001) plane parallel to the rolling surface, and the specific direction of the plate, in this case, the rolling direction and the width direction are [110] and [1-1].
[0] is a plate having an orientation equivalent to that of the wire (see FIG. 1). Similarly, the wire rod of claim 2 is, for example, a wire whose surface is (0
It is the (01) plane, and the longitudinal direction is a line having an orientation of [110]. The term "texture" used herein means a structure in which crystal grains forming the texture are oriented in the [110] direction within a dispersion range of about 11 ° in a specific direction in the plate plane or the longitudinal direction of the line. Refers to the set of. Further, in the texture referred to here, all the crystal grains may be in the above dispersion range, but the case where 25% or more, preferably 50% or more by volume ratio is within the above dispersion range is also included. Furthermore, assuming that the total plate thickness is t, the plate surface is t
In a plate surface layer up to a depth of / 4, that is, in a layer of t / 2 of the total plate thickness with the front and back sides combined, including the case where 25% or more by volume, preferably 50% or more of crystal grains are within the above dispersion range. There is.

【0009】Fe−28重量%Mn−6重量%Si−5
重量%Cr鋼やFe−14重量%Mn−6重量%Si−
9重量%Cr−5重量%Ni鋼、Fe−8重量%Mn−
6重量%Si−13重量%Cr−6重量%Ni−12重
量%Co鋼等のγ(fcc)→ε(hcp)マルテンサ
イト変態を利用した(001)〔110〕集合組織を有
する形状記憶合金を製造する方法としては、まず熱間圧
延を500℃以上900℃以下の低い温度で仕上げるこ
とが必要である。つまり、再結晶はしないが、材料がロ
ールに十分馴染む程度に高い温度で仕上げることが必要
である。その他に集合組織を有効に形成させる手段とし
て適しているのは、(1)圧延のトータル圧下率を大き
くする(30〜95%とする)こと、(2)圧延の最終
パス圧下率を大きくする(10%以上とする)こと、
(3)圧延ロール径を大きくする(200mm以上とす
る)こと、(4)表面の粗いロールを用いるなどして、
ロールと材料間の摩擦力を高めること、などがある。圧
延仕上温度の制御を併せて行うことにより、γの〔11
0〕方位が優先的に配向した集合組織を形成しやすくす
ることができる。同様に、γ(fcc)→ε(hcp)
マルテンサイト変態を利用した形状記憶合金の線引き加
工においても、500〜900℃の温度で伸線すること
により、線の長手方向にγの〔110〕方位が優先的に
配向した集合組織を有する線材が得られる。
Fe-28 wt% Mn-6 wt% Si-5
Wt% Cr steel or Fe-14 wt% Mn-6 wt% Si-
9 wt% Cr-5 wt% Ni steel, Fe-8 wt% Mn-
6 wt% Si-13 wt% Cr-6 wt% Ni-12 wt% Co Shape memory alloy having (001) [110] texture utilizing the γ (fcc) → ε (hcp) martensite transformation of steel etc. As a method of manufacturing, it is first necessary to finish hot rolling at a low temperature of 500 ° C. or higher and 900 ° C. or lower. In other words, it is not recrystallized, but it is necessary to finish at a temperature high enough for the material to fit the roll well. Other suitable means for effectively forming a texture are (1) increasing the total rolling reduction of rolling (30 to 95%) and (2) increasing the final pass rolling reduction of rolling. (10% or more),
(3) By increasing the diameter of the rolling roll (200 mm or more), (4) using a roll with a rough surface,
Increasing the friction between the roll and the material. By also controlling the rolling finishing temperature, the γ [11
It is possible to easily form a texture in which the [0] orientation is preferentially oriented. Similarly, γ (fcc) → ε (hcp)
Also in the wire drawing of a shape memory alloy utilizing martensitic transformation, a wire rod having a texture in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire by drawing at a temperature of 500 to 900 ° C. Is obtained.

【0010】一方、従来の製造法では、熱間圧延は11
00℃から1200℃の温度で加熱保定した直後に行わ
れ、通常900℃以上の温度で仕上げられる。製品は、
本板材から切削して切り出されるか、あるいは熱間圧延
後冷間圧延を施され、その後熱処理されて作製される。
こうして作製された材料の結晶組織は様々な方位の結晶
が集合した組織であり、特定方位の集合組織を持たな
い。
On the other hand, in the conventional manufacturing method, hot rolling is 11
Immediately after heat retention at a temperature of 00 ° C to 1200 ° C, it is carried out and usually finished at a temperature of 900 ° C or higher. Products,
It is manufactured by cutting and cutting from the plate material, or by performing hot rolling followed by cold rolling and then heat treatment.
The crystal structure of the material thus produced is a structure in which crystals of various orientations are aggregated and does not have a texture of a specific orientation.

【0011】γの〔100〕方位が優先的に配向した集
合組織を有するγ→ε型の形状記憶合金が優れた形状記
憶効果を有する理由は、以下のとおりである。γ(fc
c)→ε(hcp)マルテンサイト変態を利用して形状
記憶効果を発現させる形状記憶合金単結晶においては、
Schmid因子cosφ・cosλの値が最も大きい
〔144〕方向に引張変形を加えたときに、形状記憶効
果が大きいと言われている。ここで、φは単結晶のすべ
り面とすべり方向のなす角度、λはすべり面とすべり面
の法線のなす角度である。Schmid因子が大きい
と、すべり系が早く臨界値に達して最初にすべりを生じ
る。なお、この場合、すべり変形はマルテンサイト変態
にとっては都合の良い変形を指している。〔011〕方
向(〔110〕と等価)に引張変形を加えたときには、
Schmid因子の等しい2つの等価なすべり系が誘発
されるが、たまたまこのうちの1つ((−111)面上
のa/6〔211〕)が優先的に活動した場合は、〔1
44〕方向に結晶回転が起こり、すべった方の転移のS
chmid因子は大きく、すべらなかった方の転位のS
chmid因子は小さいままであり、その後のすべり変
形において、他のすべり系よりも優先して活動する。そ
の結果、実質的に〔144〕方向への引張りと同等の効
果が得られ、形状記憶効果を発現するために有利な方位
となる。
The reason why the γ → ε type shape memory alloy having a texture in which the [100] direction of γ is preferentially oriented has an excellent shape memory effect is as follows. γ (fc
c) → ε (hcp) In the shape memory alloy single crystal that exhibits the shape memory effect by utilizing the martensitic transformation,
It is said that the shape memory effect is large when tensile deformation is applied in the [144] direction in which the values of the Schmid factors cos φ and cos λ are the largest. Here, φ is the angle between the slip plane of the single crystal and the slip direction, and λ is the angle between the slip plane and the normal to the slip plane. When the Schmid factor is large, the slip system reaches a critical value quickly and slip occurs first. In this case, the slip deformation is a convenient deformation for the martensitic transformation. When tensile deformation is applied in the [011] direction (equivalent to [110]),
Two equivalent slip systems with the same Schmid factor were induced, but if one of them happened to preferentially activate (a / 6 [211] on the (-111) plane), [1
44] crystal rotation occurs, and the S of the sliding transition
The chmid factor is large and the S of the dislocation that did not slip was
The chmid factor remains small and predominates over other slip systems in subsequent slip deformations. As a result, substantially the same effect as pulling in the [144] direction can be obtained, and the orientation is advantageous for expressing the shape memory effect.

【0012】次に、γ(fcc)→ε(hcp)マルテ
ンサイト変態を利用した形状記憶合金で超弾性効果を発
現させる方法について、以下に説明する。γ→ε型の鉄
およびマンガンを含む形状記憶合金では、電気抵抗法他
で測定される逆変態温度(As点)よりも低い温度で回
復を始め、しかもMd点(応力でマルテンサイト変態が
起こらなくなる温度)はAf点(逆変態終了温度)より
高い。このため、原理的には超弾性現象(変形すると同
時に逆変態が起こり形状を元に戻す)が起こる可能性を
持っていた。しかし、結晶が様々な方位を向いているた
め、超弾性的な性質があっても顕著に現れないでいた。
ところが、本発明のγの〔110〕方位が優先的に配向
した集合組織を有する材料では、マルテンサイト変態に
都合の良い方位の変形を起こすことができるため、超弾
性効果が顕著に現れる。本現象は、50℃から175℃
の範囲において、歪み量3%以下の変形を〔110〕方
向またはそれと等価な方向に加えた場合に起こり、特に
線材でコイル形状にしたものではその効果を顕著に見る
ことができる。
Next, a method for exhibiting a superelastic effect in a shape memory alloy utilizing the γ (fcc) → ε (hcp) martensite transformation will be described below. In the γ → ε type shape memory alloy containing iron and manganese, recovery starts at a temperature lower than the reverse transformation temperature (As point) measured by the electric resistance method or the like, and further, the Md point (the martensitic transformation occurs due to stress). The disappearance temperature) is higher than the Af point (reverse transformation end temperature). Therefore, in principle, there is a possibility that a superelastic phenomenon (the reverse transformation occurs at the same time as the deformation occurs and the shape is restored). However, because the crystals are oriented in various directions, they did not appear remarkably even if they had superelastic properties.
However, in the material of the present invention having a texture in which the [110] orientation of γ is preferentially oriented, it is possible to cause the transformation of the orientation that is convenient for the martensitic transformation, so that the superelastic effect is prominent. This phenomenon is from 50 ℃ to 175 ℃
In the range of 3, the deformation occurs when a strain amount of 3% or less is applied in the [110] direction or a direction equivalent thereto, and the effect can be remarkably seen especially in the case of a wire-shaped coil.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕30kgのFe−28重量%Mn−6重量
%Si−5重量%Cr−0.04重量%C鋼を900℃
で1時間保定した後に圧延し、仕上温度850℃で厚さ
4.2mmの板を作製した。この板から、圧延方向、4
5°方向および幅方向に平行な向きに全長120mm、
平行部長さ50mm、平行部幅10mm、板厚1mmの
板状引張試験片を圧延表層部から0.5mmの位置、お
よび表層部を除去した板中心の位置から採取した。ま
た、同様の材料を1100℃で1時間保定し、仕上温度
950℃で厚さ4.2mmまで仕上げた材料からも、同
様の方向および位置の板状引張試験片を採取して比較材
とした。
[Example 1] 30 kg of Fe-28 wt% Mn-6 wt% Si-5 wt% Cr-0.04 wt% C steel at 900 ° C.
After holding for 1 hour, it was rolled and a plate having a thickness of 4.2 mm was prepared at a finishing temperature of 850 ° C. From this plate, rolling direction, 4
120 mm in total length in a direction parallel to the 5 ° direction and the width direction,
A plate-shaped tensile test piece having a parallel part length of 50 mm, a parallel part width of 10 mm, and a plate thickness of 1 mm was sampled from a position 0.5 mm from the rolling surface layer part and a position of the plate center from which the surface layer part was removed. Further, a plate-like tensile test piece in the same direction and position was sampled from a material which was held at 1100 ° C. for 1 hour and finished at a finishing temperature of 950 ° C. to a thickness of 4.2 mm as a comparative material. .

【0014】ディフラクトメーター法によるX線回折
(カリティX線回折要論、松村源太郎訳、(株)アグ
ネ、1961年、p.286)の結果、本発明の850
℃で仕上げた圧延材料の(111)極図形は、図2のよ
うになった。図中(111)極の集積する位置(△)か
ら、この板は極度に発達した(001)〔110〕集合
組織を有することが分かる。すなわち、図1に示したよ
うに、板面内圧延方向(RD)と幅方向(TD)にそれ
ぞれ〔110〕および〔1−10〕が形成されていたこ
とが分かる。一方、比較材の950℃で仕上げた圧延材
料には、そのような集合組織は形成されていなかった。
As a result of X-ray diffraction by the diffractometer method (Karit X-ray diffraction, translated by Gentaro Matsumura, Agne Co., 1961, p.286), 850 of the present invention was obtained.
The (111) polar pattern of the rolled material finished at ℃ was as shown in FIG. It can be seen from the position (Δ) where the (111) poles are accumulated in the figure that this plate has an extremely developed (001) [110] texture. That is, as shown in FIG. 1, it can be seen that [110] and [1-10] were formed in the in-plane rolling direction (RD) and the width direction (TD), respectively. On the other hand, such a texture was not formed in the rolled material finished at 950 ° C. as the comparative material.

【0015】次に、これらの試験片を引張変形し、歪み
8%を導入して、350℃で10分加熱した後、回復し
た歪みの量を測定した。引張変形前・後および加熱後の
試験片の長さをLo、Ld、Lrとすると、変形して導
入した歪みと回復した歪みは以下の式で表される量であ
る。 導入歪み=(Ld−Lo)/Lo×100% ……(式1) 回復歪み=(Ld−Lr)/Lo×100% ……(式2) 表1に3%および8%変形後加熱した材料の回復歪みの
量を示す。
Next, these test pieces were tensile deformed, introduced with 8% strain, heated at 350 ° C. for 10 minutes, and the amount of recovered strain was measured. When the lengths of the test pieces before and after tensile deformation and after heating are Lo, Ld, and Lr, the strain introduced by deformation and the strain recovered are the amounts represented by the following formulas. Introduction strain = (Ld−Lo) / Lo × 100% (Equation 1) Recovery strain = (Ld−Lr) / Lo × 100% (Equation 2) In Table 1, 3% and 8% were deformed and then heated. The amount of recovery strain of the material is shown.

【0016】[0016]

【表1】 [Table 1]

【0017】850℃仕上げの板の表層から0.5mm
の位置から採取した1mm厚の板を丸めて溶接し、内径
20mmφの円筒継ぎ手を作製し、マンドレルを挿入し
て内径を7%拡径した。なお、作製した円筒継ぎ手の周
方向は圧延方向に一致させているので、拡径時には変形
は圧延方向の引張変形となる。これを350℃で加熱し
たところ、4.8%の収縮があった。一方、950℃仕
上げの板から同様の円筒継ぎ手を作製し、同じく7%拡
径して350℃で加熱したところ、3.2%の収縮しか
得られなかった。
0.5 mm from the surface of the plate finished at 850 ° C.
A 1 mm thick plate sampled from the position was rolled and welded to produce a cylindrical joint having an inner diameter of 20 mmφ, and a mandrel was inserted to expand the inner diameter by 7%. Since the circumferential direction of the produced cylindrical joint is aligned with the rolling direction, the deformation is tensile deformation in the rolling direction when the diameter is increased. When this was heated at 350 ° C., there was 4.8% shrinkage. On the other hand, when a similar cylindrical joint was prepared from a plate finished at 950 ° C., the diameter was similarly expanded by 7% and heated at 350 ° C., only shrinkage of 3.2% was obtained.

【0018】〔実施例2〕100kgのFe−28重量
%Mn−6重量%Si−5重量%Cr−0.04重量%
C鋼を1150℃で1時間保定した後に圧延し、仕上温
度780℃で厚さ2.8mmの板を作製した。この板を
酸洗し、圧延方向、45°方向および幅方向に平行な向
きに全長120mm、平行部長さ50mm、平行部幅1
0mm、板厚は圧延まま2.8mmの板状引張試験片を
採取した。また、同様の材料を1200℃で1時間保定
し、仕上温度950℃で厚さ2.8mmまで圧延した材
料からも、同様の方向および位置の板状引張試験片を採
取して比較材とした。
Example 2 100 kg of Fe-28 wt% Mn-6 wt% Si-5 wt% Cr-0.04 wt%
C steel was held at 1150 ° C. for 1 hour and then rolled to produce a plate having a finishing temperature of 780 ° C. and a thickness of 2.8 mm. This plate is pickled, and the length is 120 mm in the direction parallel to the rolling direction, the 45 ° direction and the width direction, the parallel part length is 50 mm, and the parallel part width is 1.
A plate-shaped tensile test piece having a thickness of 0 mm and a plate thickness of 2.8 mm as rolled was sampled. Further, the same material was held at 1200 ° C. for 1 hour and rolled at a finishing temperature of 950 ° C. to a thickness of 2.8 mm, and a plate-shaped tensile test piece in the same direction and position was sampled as a comparative material. .

【0019】実施例1と同様のディフラクトメーター法
によるX線回折の結果、780℃で仕上げた圧延材料の
(111)極図形から、この板は極度に発達した(00
1)〔110〕集合組織を有することが分かった。一
方、比較材の950℃で仕上げた圧延材料には、そのよ
うな集合組織は形成されていなかった。次に、これらの
試験片を引張変形し、歪み8%を導入して、350℃で
10分加熱した後、回復した歪みの量を測定した。導入
歪みおよび回復歪みの定義は、実施例1で示したものと
同じである。1回目の回復歪み測定後、さらにこれらの
試料を600℃で10分間熱処理(いわゆるトレーニン
グ処理)し、再度同様の引張変形を行って350℃で加
熱し回復歪み量を測定した。表2に8%変形後加熱した
材料の回復歪みの量とトレーニング処理後の回復歪みの
量を示す。
As a result of X-ray diffraction by the same diffractometer method as in Example 1, this plate was extremely developed (00) from the (111) polar pattern of the rolled material finished at 780 ° C.
1) It was found to have a [110] texture. On the other hand, such a texture was not formed in the rolled material finished at 950 ° C. as the comparative material. Next, these test pieces were subjected to tensile deformation, 8% strain was introduced, and after heating at 350 ° C. for 10 minutes, the amount of recovered strain was measured. The definitions of the introduction strain and the recovery strain are the same as those shown in the first embodiment. After the first measurement of the recovery strain, these samples were further heat-treated at 600 ° C. for 10 minutes (so-called training treatment), subjected to the same tensile deformation again and heated at 350 ° C. to measure the recovery strain amount. Table 2 shows the amount of recovery strain of the material heated after 8% deformation and the amount of recovery strain after the training treatment.

【0020】[0020]

【表2】 [Table 2]

【0021】〔実施例3〕30kgのFe−14重量%
Mn−6重量%Si−9重量%Cr−5重量%Ni鋼を
900℃で1時間保定した後に直径20mmの丸棒に鍛
造し、600℃に加熱してスエージングおよび線引き加
工により仕上温度500℃で厚さ1mmの線を作製し
た。この線により内径10mm、長さ40mmのコイル
を作製し、600℃で30分間保定して記憶処理を行
い、コイル形状を記憶させた。また、比較例として、同
じく30kgのFe−13重量%Mn−6重量%Si−
15重量%Cr−10重量%Ni鋼を1100℃で1時
間保定した後に直径20mmの丸棒に鍛造し、400℃
に加熱してスエージングおよび線引き加工により仕上温
度300℃で厚さ1mmの線を作製し、この線から中心
径10mm、長さ40mm、有効巻数7.0巻きのコイ
ルを作製し、600℃で30分間保定して記憶処理を行
った。
[Example 3] 30 kg of Fe-14% by weight
Mn-6 wt% Si-9 wt% Cr-5 wt% Ni steel was held at 900 ° C. for 1 hour, then forged into a round bar with a diameter of 20 mm, heated to 600 ° C., and swaging and drawn to obtain a finishing temperature of 500. A wire having a thickness of 1 mm was prepared at 0 ° C. A coil having an inner diameter of 10 mm and a length of 40 mm was produced from this wire, held at 600 ° C. for 30 minutes, and subjected to a memory treatment to memorize the coil shape. Further, as a comparative example, similarly, 30 kg of Fe-13 wt% Mn-6 wt% Si-
After holding 15 wt% Cr-10 wt% Ni steel at 1100 ° C. for 1 hour, it was forged into a round bar with a diameter of 20 mm and 400 ° C.
A wire with a thickness of 1 mm is manufactured at a finishing temperature of 300 ° C. by swaging and wire drawing, and a coil having a center diameter of 10 mm, a length of 40 mm and an effective winding number of 7.0 is manufactured from this wire at 600 ° C. It was held for 30 minutes and stored.

【0022】これらのコイルに対し、室温、50℃、7
5℃、100℃、125℃、150℃、175℃、20
0℃において引張変形試験を行い、1%の負荷歪み量を
導入し、弾性的な回復歪み量を調べた。負荷歪み量γ
(%)とは次式で表される。 γ(%)=δd/πnD2 ×100 ……(式3) ここで、δはたわみ、dは線径、nは有効巻き数、Dは
コイル中心径である。
For these coils, room temperature, 50 ° C., 7
5 ° C, 100 ° C, 125 ° C, 150 ° C, 175 ° C, 20
A tensile deformation test was performed at 0 ° C., a load strain amount of 1% was introduced, and an elastic recovery strain amount was investigated. Load distortion amount γ
(%) Is represented by the following formula. γ (%) = δd / πnD 2 × 100 (Equation 3) where δ is the deflection, d is the wire diameter, n is the effective number of turns, and D is the coil center diameter.

【0023】コイルの弾性的回復には、コイルのばね性
として有している回復を含んでいる。これは室温におけ
る弾性的回復に相当する。コイルの初期長さをLo、室
温における弾性的な回復長さをLe、負荷時のコイル長
をLd、除荷後のコイル長をLlとすると、超弾性的な
回復量Lseと超弾性的回復率Rseは、 Lse=(Ld−Ll)−Le ……(式4) Rse=Lse/{(Ld−Lo)−Le}……(式5) で表される。
The elastic recovery of the coil includes the recovery of the elasticity of the coil. This corresponds to elastic recovery at room temperature. Let Lo be the initial length of the coil, Le be the elastic recovery length at room temperature, Ld be the coil length under load, and Ll be the coil length after unloading, then the superelastic recovery amount Lse and the superelastic recovery are obtained. The rate Rse is expressed by Lse = (Ld-Ll) -Le (Equation 4) Rse = Lse / {(Ld-Lo) -Le} (Equation 5).

【0024】本発明と比較例の各温度における超弾性回
復歪量および超弾性的回復率の測定結果を表3、表4に
示す。50℃から175℃の温度領域における変形で
は、超弾性的回復歪みの大きさが大きく、100℃にお
ける変形後の除荷では、変形した量に相当する歪みが回
復している。コイルの弾性歪み限界を超えて回復するこ
の現象は、いわゆる超弾性効果であり、本コイルは50
℃から175℃の温度領域で超弾性的性質を示し、特に
100℃付近で効果が顕著になっていた。
Tables 3 and 4 show the measurement results of the superelastic recovery strain amount and the superelastic recovery rate at each temperature of the present invention and the comparative example. In the deformation in the temperature range of 50 ° C. to 175 ° C., the magnitude of superelastic recovery strain is large, and in the unloading after deformation at 100 ° C., the strain corresponding to the deformed amount is recovered. This phenomenon of recovering beyond the elastic strain limit of the coil is a so-called superelastic effect.
In the temperature range from ℃ to 175 ℃, it showed super elastic property, and the effect was remarkable especially near 100 ℃.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】実施例1と同じ方法でX線回折を行った結
果、本発明の線材には長手方向に(001)〔110〕
集合組織が形成されていたが、比較の線材には特定方位
の配向はなかった。
As a result of X-ray diffraction performed in the same manner as in Example 1, the wire rod of the present invention was (001) [110] in the longitudinal direction.
Although a texture was formed, the comparative wire did not have a specific orientation.

【0028】[0028]

【発明の効果】γ→εマルテンサイト変態を利用した形
状記憶合金であって、γの〔110〕方位が優先的に配
向した集合組織を有する板材は、圧延ままの状態で約5
%の歪みを回復できた。これにより、トレーニング処理
という工程を増やさずに、低コストで鋼管継ぎ手などの
応用製品を作製することができた。さらに、本発明材料
にトレーニング処理を施すことにより6%以上の歪みを
回復できた。
EFFECT OF THE INVENTION A shape memory alloy utilizing the γ → ε martensite transformation and having a texture in which the [110] orientation of γ is preferentially oriented is about 5 in the as-rolled state.
% Distortion was recovered. As a result, it was possible to manufacture applied products such as steel pipe joints at low cost without increasing the process of training. Further, by subjecting the material of the present invention to the training treatment, the strain of 6% or more could be recovered.

【0029】また、γ→εマルテンサイト変態を利用し
た形状記憶合金であって、γの〔110〕方位が優先的
に配向した集合組織を長手方向に有する線材は、50℃
から175℃の温度領域で顕著な超弾性効果を示した。
これにより、これまでγ→εマルテンサイト変態を利用
した形状記憶合金では不可能であった超弾性効果を応用
した製品を作ることが可能になった。
Further, a wire rod which is a shape memory alloy utilizing the γ → ε martensite transformation and has a texture in which the [110] direction of γ is preferentially oriented in the longitudinal direction is 50 ° C.
To 175 ° C showed a remarkable superelastic effect.
As a result, it has become possible to manufacture products that apply the superelastic effect, which has been impossible with shape memory alloys that utilize the γ → ε martensite transformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板材の(001)〔110〕方位を示す概略図
である。
FIG. 1 is a schematic view showing a (001) [110] orientation of a plate material.

【図2】X線回折により得られた板材の(111)極図
形であり、R.D.は圧延方向、T.Dは幅方向を示
し、数字はランダム試料に対する比率を示す(ランダム
比4以上は省略)。
FIG. 2 is a (111) polar diagram of a plate material obtained by X-ray diffraction. D. Is the rolling direction, T. D indicates the width direction, and the numbers indicate the ratio to the random sample (random ratio of 4 or more is omitted).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 棚橋 浩之 川崎市中原区井田1618番地 新日本製鐵株 式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Tanahashi Inventor Hiroyuki Tanahashi 1618 Ida, Nakahara-ku, Kawasaki City Nippon Steel Corp. Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 γ(fcc)→ε(hcp)マルテンサ
イト変態を利用した鉄およびマンガンを含む形状記憶合
金であって、γの〔110〕方位が優先的に配向した集
合組織を有する板材。
1. A shape memory alloy containing iron and manganese utilizing a γ (fcc) → ε (hcp) martensite transformation, and having a texture in which the [110] orientation of γ is preferentially oriented.
【請求項2】 γ(fcc)→ε(hcp)マルテンサ
イト変態を利用した鉄およびマンガンを含む形状記憶合
金であって、線の長手方向にγの〔110〕方位が優先
的に配向した集合組織を有する線材。
2. A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire. A wire rod having a structure.
【請求項3】 γ(fcc)→ε(hcp)マルテンサ
イト変態を利用した鉄およびマンガンを含む形状記憶合
金であって、γの〔110〕方位が優先的に配向した集
合組織を有する板材を50℃から175℃の温度範囲に
おいて材料の〔110〕方向に3%以下の歪みを与える
ことを特徴とする集合組織を有する形状記憶合金に超弾
性効果を発現させる方法。
3. A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, and having a texture having a [110] orientation of γ preferentially oriented. A method for producing a superelastic effect in a shape memory alloy having a texture, which comprises imparting a strain of 3% or less in a [110] direction of a material in a temperature range of 50 ° C to 175 ° C.
【請求項4】 γ(fcc)→ε(hcp)マルテンサ
イト変態を利用した鉄およびマンガンを含む形状記憶合
金であって、線の長手方向にγの〔110〕方位が優先
的に配向した集合組織を有する線材を50℃から175
℃の温度範囲において材料の〔110〕方向に3%以下
の歪みを与えることを特徴とする集合組織を有する形状
記憶合金に超弾性効果を発現させる方法。
4. A shape memory alloy containing iron and manganese utilizing the γ (fcc) → ε (hcp) martensite transformation, in which the [110] orientation of γ is preferentially oriented in the longitudinal direction of the wire. Wires with texture from 50 ° C to 175
A method of exhibiting a superelastic effect in a shape memory alloy having a texture, characterized by applying strain of 3% or less in the [110] direction of a material in a temperature range of ° C.
JP34174395A 1995-12-27 1995-12-27 Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect Pending JPH09176729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34174395A JPH09176729A (en) 1995-12-27 1995-12-27 Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34174395A JPH09176729A (en) 1995-12-27 1995-12-27 Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect

Publications (1)

Publication Number Publication Date
JPH09176729A true JPH09176729A (en) 1997-07-08

Family

ID=18348428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34174395A Pending JPH09176729A (en) 1995-12-27 1995-12-27 Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect

Country Status (1)

Country Link
JP (1) JPH09176729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075618A (en) * 2005-09-13 2007-03-29 Sportswire Llc Method of preparing nitinol for use in manufacturing instruments with improved fatigue resistance
WO2007055155A1 (en) 2005-11-09 2007-05-18 Japan Science And Technology Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
WO2008139829A1 (en) 2007-05-09 2008-11-20 Japan Science And Technology Agency Guide wire and stent
JP2009279633A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Method for manufacturing rail fishplate for connection without expansion gap

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075618A (en) * 2005-09-13 2007-03-29 Sportswire Llc Method of preparing nitinol for use in manufacturing instruments with improved fatigue resistance
JP2014087691A (en) * 2005-09-13 2014-05-15 Sportswire Llc Method of preparing nitinol for use in manufacturing instruments with improved fatigue resistance
WO2007055155A1 (en) 2005-11-09 2007-05-18 Japan Science And Technology Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
EP1961830A1 (en) * 2005-11-09 2008-08-27 Japan Science and Technology Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
EP1961830A4 (en) * 2005-11-09 2008-12-31 Japan Science & Tech Agency Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
US8083990B2 (en) 2005-11-09 2011-12-27 Japan Science And Technology Agency Iron-based alloy having shape memory properties and superelasticity and its production method
JP5065904B2 (en) * 2005-11-09 2012-11-07 独立行政法人科学技術振興機構 Iron-based alloy having shape memory and superelasticity and method for producing the same
WO2008139829A1 (en) 2007-05-09 2008-11-20 Japan Science And Technology Agency Guide wire and stent
US8052620B2 (en) 2007-05-09 2011-11-08 Japan Science And Technology Agency Guide wire and stent
US8568470B2 (en) 2007-05-09 2013-10-29 Japan Science And Technology Agency Guide wire and stent
JP2009279633A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Method for manufacturing rail fishplate for connection without expansion gap

Similar Documents

Publication Publication Date Title
EP0176272B1 (en) Shape memory alloy and method for producing the same
US3860456A (en) Hot-rolled high-strength low-alloy steel and process for producing same
JP4691240B2 (en) Structure control method for duplex structure steel
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
JPH05263191A (en) Hot rolled steel sheet high in young&#39;s modulus in width direction and its manufacture
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
JPH09176729A (en) Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JPS60197824A (en) Production of hot rolled two-phase stainless steel strip having high toughness
JP3970645B2 (en) Method for producing iron-based shape memory alloy
JP3823338B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP2596860B2 (en) Method for manufacturing ERW oil well pipe with high Young&#39;s modulus in circumferential direction of steel pipe and excellent crush characteristics
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JP2596861B2 (en) Method for manufacturing ERW oil well pipe with high Young&#39;s modulus in circumferential direction of steel pipe and excellent crush characteristics
JP2001131703A (en) High strength steel tube and producing method therefor
JPH02301514A (en) Method for allowing shape memory stainless steel to memorize shape
JPH10102140A (en) Strain induced transformation method for austenitic stainless steel, and production of magnetic member
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JP3597906B2 (en) Method of improving shape recovery characteristics of shape memory alloy
JPH02149651A (en) Manufacture of ti-ni series superelastic alloy
JPH1088301A (en) Production of iron-cobalt alloy sheet
JPH0356622A (en) Production of ferrite single-phase stainless steel sheet
JPH09256103A (en) Hot rolled steel plate capable of providing steel plate member of low yield ratio after hot forming, and the hot rolled steel plate member
JPH0448030A (en) Hot working method for martensitic stainless steel excellent in ductility at high temperature

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907