JPH09171968A - Heat treatment system and heat treatment of semiconductor substrate - Google Patents

Heat treatment system and heat treatment of semiconductor substrate

Info

Publication number
JPH09171968A
JPH09171968A JP33287695A JP33287695A JPH09171968A JP H09171968 A JPH09171968 A JP H09171968A JP 33287695 A JP33287695 A JP 33287695A JP 33287695 A JP33287695 A JP 33287695A JP H09171968 A JPH09171968 A JP H09171968A
Authority
JP
Japan
Prior art keywords
tube
heat treatment
reaction tube
film
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33287695A
Other languages
Japanese (ja)
Inventor
Minako Kaneko
美奈子 金子
Yoshiki Nagai
圭希 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP33287695A priority Critical patent/JPH09171968A/en
Publication of JPH09171968A publication Critical patent/JPH09171968A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent contamination of a semiconductor substrate by metal impurity from a heater and a quartz reaction tube. SOLUTION: An Si3 N4 film 3 is formed on the outer wall of a reaction tube of a heat treatment system, and heat from a heater 5 set around the reaction tube is conducted to the inner side 1c of the reaction tube via the Si3 N4 film 3. By causing the reaction tube to have a double structure including an inner tube 1a and an outer tube 1b, and feeding ammonium gas and dichlorosilane gas to the outer side of the inner tube 1a and the inner side of the outer tube 1b, the Si3 N4 film 3 is deposited on the outer wall of the inner tube 1a and the inner wall of the outer tube 1b of the reaction tube.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体製造装置に
おける熱処理装置及び半導体基板の熱処理方法に関す
る。 【0002】 【従来の技術】従来の熱処理装置では、石英製の反応管
の内部にガス導入口から酸化性ガス及び不活性ガスを導
入し、反応管の外側をヒータで加熱することによって半
導体基板を酸化性雰囲気中で酸化し熱酸化膜を形成す
る。ヒータ材料のカンタルは高純度のCu,Fe等の金
属不純物を含んでいるが、HClガスあるいはTCA、
TCE液体ガスを用いることにより、熱処理中に反応管
を通過して半導体基板中に拡散するCu、Fe等の金属
不純物のうち特にFeを塩化物として排気し、反応管内
の汚染を防止し清浄度を高めている。 【0003】 【発明が解決しようとする課題】従来、ヒータ材料のカ
ンタルは、純度が低く、Al、Fe、Cu等の金属不純
物を高純度に含んでおり、加熱によって拡散係数の大き
なCu、Feが石英製の反応管を通過し、熱処理中の半
導体基板中に拡散してしまうという問題があった。ヒー
タ材料として、カンタルの代わりにMoSi、SiC材
料を使用しても不純物は多少低減されるがまだ不十分で
あり、カンタルと同様の問題が残る。 【0004】また、石英材料中にもCu,Feが含まれ
ており、反応管の内部が汚染されてしまうという問題が
あった。こうした反応管内の汚染を防止する方法として
は、従来、HClガスを反応管内に導入するものがある
が、金属不純物のうちFeに対しては大きな効果が得ら
れるものの、最も悪影響を与えるCuに対しては汚染防
止効果が低いという問題があった。 【0005】本発明は上記のような事情を考慮し、ヒー
タ及び石英製反応管からの半導体基板への金属不純物及
び炭素汚染を防止する熱処理装置及びこの装置を用いた
半導体基板の熱処理方法を提供することを目的としてい
る。 【0006】 【課題を解決するための手段】上記目的を達成するため
に本発明の熱処理装置は、石英製の反応管と、この反応
管の外壁上に形成したSi34膜と、前記反応管の周り
に設置されたヒータとを具備したことを特徴とするもの
である。 【0007】また、前記ヒータからの熱は、前記Si3
4膜を介して反応管の内側に伝導される。この場合用
いられているヒータの材料は、カンタル、MoSi、S
iCのうちいずれかとする。 【0008】さらに、前記反応管を内管と外管を有する
2重構造にし、この反応管の内管の外壁上及び外管の内
壁上にSi34膜を堆積させるとよい。この場合、形成
された2つのSi34膜のあいだには空間があると好ま
しい。 【0009】そして、上記熱処理装置において、石英製
2重構造の反応管の内管の外側と外管の内側にアンモニ
アガスとジクロロシランガスを導入する工程と、前記反
応管の内管の外壁上及び外管の内壁上にSi34膜を形
成する工程と、基板を前記反応管の内側に設置して、前
記反応管の外管の周りより前記Si34膜を介して熱処
理する工程とを具備したことを特徴とする半導体基板の
熱処理方法がある。さらに、前記熱処理する工程の後、
前記反応管の内管の外側と外管の内側にCF4ガス、O2
ガス及びH2Oを導入する工程と、このCF4ガス、O2
ガス及びH2Oと前記Si34膜との反応物を排出しS
34膜を除去する工程とを具備したことを特徴とする
方法がある。また、 CF4ガス、O2ガス及びH2Oの
代わりにHF溶液を導入する工程を具備しても可能であ
る。 【0010】 【発明の実施の形態】以下、図面を参照して本発明の実
施例に係る熱処理装置及び半導体基板の熱処理方法を説
明する。図1は、本発明の第1の実施例に係る熱処理装
置の側面から見た断面図、図2(a)は、本発明の第1
の実施例に係る熱処理装置の上面から見た断面図、図2
(b)は、図2(a)の一部の拡大図である。 【0011】反応管1は、石英製でSiCコートされた
底付円筒形であり、内管1aと外管1bで構成される2
重構造である。ここで、内管1aと外管1bの間隔は3
〜4mmである。反応管1の上部には反応管の内管1a
と外管1bの間にSi34膜3を堆積させるためのガス
供給部2があり、酸化をおこなうためのガス供給部4が
反応管1の内管1aに接続されている。反応管1の側面
の底部には、Si34膜3を除去するためのガス供給部
6を接続することができる。また、反応管1の周りには
ヒータ5が設置されている。 【0012】まず、反応管1のSi34ガス導入口2a
よりアンモニアとジクロルシランを10:1で導入し、
反応管1の下部両側のポンプ7a,7bで真空引きし、
ヒータ5により加熱し、圧力:0.4torr、温度:85
0℃、処理時間:5時間の条件で熱処理をおこなう。こ
れにより、3SiH2Cl2+4NH3→ Si34+6
HCl+6H2Oの反応が生じ、反応管1の内管1aの
外壁の内側および外管1bの内壁の外側の各々の上に、
厚さ2μmのSi34膜3を堆積させる。 【0013】Si34膜3を形成した後、Si34ガス
導入口2aを遮断しポンプ7a,7bを止める。そし
て、半導体基板7の酸化及び拡散をおこなうために酸化
ガス導入口4aからN2ガスを導入し、反応管内1cを
パージしながら、ボート9によって半導体基板8を外部
から反応管の内側に移載する。さらに、酸化ガス導入口
4aより乾燥酸素を導入し、ヒータ5により例えば温
度:950℃、処理時間:30分で熱処理する。 【0014】Si−Nの格子間距離は1.57×10-8
cmであり、Si−Siの格子間距離である2.35×
10-8cmより短く、Si−N結合の膜を形成すること
によって、その膜の外側に位置するヒータ5、石英製で
SiCコートされた反応管の外管1bからの金属不純物
及び炭素をブロックすることができる。従って、反応管
内1cの金属不純物及び炭素汚染のうち大部分を占める
ヒータ5及び反応管の外管1bからの汚染が、Feだけ
でなくCuに関しても防止でき、不純物濃度が極めて低
い熱酸化膜を製造することが可能である。 【0015】ここでSi34膜3の厚さを2μm以上と
すると、より高い効果を得ることができる。更に、バッ
チ処理後ポンプ7aの吸引口の接続を外し、ガス供給部
6を接続する。ガス導入口6aよりCF4+O2+H2
ガスを導入し、ポンプ7bで引きながら汚染されたSi
34膜3と反応させ、10分間で厚さ2μmのSi34
膜3を除去する。 【0016】この方法によれば、Si34膜を除去した
後の反応管1の内管の外壁1aと外管の内壁1bとの間
は乾燥しているので、この後すぐに、前述の方法で再び
Si34膜3を堆積させ熱処理をおこなうことが可能で
ある。 【0017】次に、図1を参照して本発明の第2の実施
例に係る熱処理装置及び半導体基板の熱処理方法を説明
する。第2の実施例では、図1においてガス導入口6a
を薬液導入口として使用する。 この場合、CF4ガス
+O2ガス+H2Oの代わりにHF溶液を使用することも
可能である。薬液導入口より1〜10%のHF溶液を導
入し、ポンプ7bにより引きながら3分間流し汚染され
たSi34膜を溶かして除去する。 【0018】この方法を用いた場合、反応管1の内管の
外壁1aと外管の内壁1bとの間は溶液が残って湿って
いるので、純水を流して十分に洗浄し、薬液導入口より
2ガスを導入し10分間乾燥させる。 【0019】なお、ガス導入口6aよりHClガスを導
入し、ポンプ7bの吸引口に超純水を入れたインピンジ
ャー10を接続し、インピンジャーのポンプで吸引する
ことによって超純水中に不純物を捕集し、フレームレス
原子吸光装置で捕集液中の金属不純物の量と種類を測定
することによって、汚染されたSi 4膜の除去頻度
をモニターすることが可能である。この方法でモニター
した結果、熱処理実施後の基板中の金属不純物量は従来
の1011atoms/cm2 から109atoms/cm2 未満というよ
うに、フレームレス原子吸光装置の検出限界以下まで押
さえることができることが明らかとなった。 【0020】なお、本発明は、上記第1及び第2の実施
例に限定されず、LP(Low Pressure)等
のCVD装置、RTP(Rapid Thermal
Process)装置等半導体分野におけるヒータを用
いる熱処理装置全般に関して実施可能である。 【0021】 【発明の効果】本発明によれば、熱処理工程において反
応管の外側にSi34膜を堆積させることでヒータおよ
び石英製反応管からの半導体基板への金属不純物Cu、
Feの汚染を防止することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus for a semiconductor manufacturing apparatus and a heat treatment method for a semiconductor substrate. In a conventional heat treatment apparatus, an oxidizing gas and an inert gas are introduced into a reaction tube made of quartz from a gas inlet, and the outside of the reaction tube is heated by a heater to form a semiconductor substrate. Is oxidized in an oxidizing atmosphere to form a thermal oxide film. The heater material Kanthal contains high-purity metallic impurities such as Cu and Fe, but HCl gas or TCA,
By using TCE liquid gas, Fe among metal impurities such as Cu and Fe that pass through the reaction tube and diffuse into the semiconductor substrate during the heat treatment is exhausted as chloride, thereby preventing contamination in the reaction tube and improving cleanliness. Is increasing. Conventionally, Kanthal as a heater material has low purity and contains metal impurities such as Al, Fe and Cu in high purity, and Cu and Fe having a large diffusion coefficient by heating. However, there is a problem in that the carbon passes through the quartz reaction tube and diffuses into the semiconductor substrate during the heat treatment. Even if MoSi or SiC material is used as the heater material instead of Kanthal, impurities are reduced to some extent, but it is still insufficient and the same problem as Kanthal remains. Further, since the quartz material also contains Cu and Fe, there is a problem that the inside of the reaction tube is contaminated. As a method of preventing such contamination in the reaction tube, conventionally, there is a method of introducing HCl gas into the reaction tube. However, there is a problem that the effect of preventing pollution is low. In view of the above circumstances, the present invention provides a heat treatment apparatus for preventing metal impurities and carbon contamination from a heater and a quartz reaction tube to a semiconductor substrate and a heat treatment method for a semiconductor substrate using this apparatus. The purpose is to do. In order to achieve the above object, a heat treatment apparatus of the present invention comprises a reaction tube made of quartz, a Si 3 N 4 film formed on the outer wall of the reaction tube, and And a heater installed around the reaction tube. Further, the heat from the heater is the Si 3
It is conducted inside the reaction tube through the N 4 membrane. The material of the heater used in this case is Kanthal, MoSi, S
Either of iC. Further, it is preferable that the reaction tube has a double structure having an inner tube and an outer tube, and a Si 3 N 4 film is deposited on the outer wall of the inner tube and the inner wall of the outer tube of the reaction tube. In this case, it is preferable that there is a space between the two formed Si 3 N 4 films. In the heat treatment apparatus, a step of introducing ammonia gas and dichlorosilane gas into the outer side of the inner tube and the inner side of the outer tube of the quartz double-structured reaction tube, and on the outer wall of the inner tube of the reaction tube and A step of forming a Si 3 N 4 film on the inner wall of the outer tube, and a step of placing a substrate inside the reaction tube and performing a heat treatment from around the outer tube of the reaction tube through the Si 3 N 4 film. There is a heat treatment method for a semiconductor substrate, which comprises: Further, after the heat treatment step,
CF 4 gas, O 2 are added to the outside of the inner tube and the inside of the outer tube of the reaction tube.
The step of introducing gas and H 2 O, and the CF 4 gas, O 2
The reaction product of the gas and H 2 O and the Si 3 N 4 film is discharged and S
and a step of removing the i 3 N 4 film. It is also possible to provide a step of introducing an HF solution instead of CF 4 gas, O 2 gas and H 2 O. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat treatment apparatus and a semiconductor substrate heat treatment method according to embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a heat treatment apparatus according to a first embodiment of the present invention seen from a side surface, and FIG.
2 is a cross-sectional view seen from the top of the heat treatment apparatus according to the embodiment of FIG.
FIG. 2B is an enlarged view of a part of FIG. The reaction tube 1 is made of quartz and has a bottomed cylindrical shape coated with SiC, and is composed of an inner tube 1a and an outer tube 1b.
It has a heavy structure. Here, the distance between the inner pipe 1a and the outer pipe 1b is 3
44 mm. An inner tube 1a of the reaction tube is provided above the reaction tube 1.
The gas supply unit 2 for depositing the Si 3 N 4 film 3 is provided between the outer pipe 1b and the outer pipe 1b, and the gas supply unit 4 for performing oxidation is connected to the inner pipe 1a of the reaction pipe 1. A gas supply unit 6 for removing the Si 3 N 4 film 3 can be connected to the bottom of the side surface of the reaction tube 1. A heater 5 is installed around the reaction tube 1. First, the Si 3 N 4 gas inlet 2a of the reaction tube 1
More ammonia and dichlorosilane were introduced at a ratio of 10: 1,
Vacuum is drawn by the pumps 7a and 7b on both sides of the lower part of the reaction tube 1,
Heated by heater 5, pressure: 0.4 torr, temperature: 85
Heat treatment is performed under the conditions of 0 ° C. and treatment time: 5 hours. Thereby, 3SiH 2 Cl 2 + 4NH 3 → Si 3 N 4 +6
A reaction of HCl + 6H 2 O occurs, and on each of the inside of the outer wall of the inner tube 1a and the outside of the inner wall of the outer tube 1b of the reaction tube 1,
A Si 3 N 4 film 3 having a thickness of 2 μm is deposited. After forming the Si 3 N 4 film 3, the Si 3 N 4 gas inlet 2a is shut off and the pumps 7a and 7b are stopped. Then, in order to oxidize and diffuse the semiconductor substrate 7, N2 gas is introduced from the oxidizing gas inlet 4a and the inside of the reaction tube 1c is purged while the boat 9 transfers the semiconductor substrate 8 from the outside to the inside of the reaction tube. . Further, dry oxygen is introduced through the oxidizing gas introduction port 4a, and heat treatment is performed by the heater 5 at a temperature of 950 ° C. and a treatment time of 30 minutes, for example. The interstitial distance of Si-N is 1.57 × 10 -8
cm, which is the inter-lattice distance of Si-Si 2.35 ×
By forming a Si—N bond film shorter than 10 −8 cm, the heater 5 located outside the film and the metal impurities and carbon from the outer tube 1 b of the reaction tube coated with SiC made of quartz are blocked. can do. Therefore, the contamination from the heater 5 and the outer tube 1b of the reaction tube, which occupy most of the metallic impurities and carbon contamination in the reaction tube 1c, can be prevented not only in Fe but also in Cu, and a thermal oxide film having an extremely low impurity concentration can be formed. It is possible to manufacture. If the thickness of the Si 3 N 4 film 3 is 2 μm or more, a higher effect can be obtained. Further, after the batch processing, the suction port of the pump 7a is disconnected and the gas supply unit 6 is connected. CF 4 + O 2 + H 2 O from the gas inlet 6a
Contaminated Si while introducing gas and pulling with pump 7b
After reacting with 3 N 4 film 3, Si 3 N 4 having a thickness of 2 μm was formed in 10 minutes.
The film 3 is removed. According to this method, the space between the outer wall 1a of the inner tube and the inner wall 1b of the outer tube of the reaction tube 1 after the removal of the Si 3 N 4 film is dry. It is possible to deposit the Si 3 N 4 film 3 again and heat-treat it. Next, a heat treatment apparatus and a semiconductor substrate heat treatment method according to a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the gas inlet 6a in FIG.
Is used as a chemical solution inlet. In this case, it is also possible to use an HF solution instead of CF 4 gas + O 2 gas + H 2 O. An HF solution of 1 to 10% is introduced from the chemical solution inlet port, and is flowed for 3 minutes while being pulled by the pump 7b to dissolve and remove the contaminated Si 3 N 4 film. When this method is used, the solution remains wet between the outer wall 1a of the inner tube of the reaction tube 1 and the inner wall 1b of the outer tube, so that pure water is flowed to thoroughly wash and introduce the chemical solution. N 2 gas is introduced from the mouth and dried for 10 minutes. The HCl gas is introduced through the gas inlet 6a.
Impinge with ultra pure water in the suction port of pump 7b
10 is connected and suction is performed by the impinger pump.
By collecting impurities in ultrapure water, it is frameless
Measure the amount and type of metallic impurities in the collected liquid with an atomic absorption spectrometer
By doing so, it is possible to monitor the removal frequency of the contaminated Si 3 N 4 film. As a result of monitoring by this method, the amount of metal impurities in the substrate after the heat treatment is suppressed from the conventional 10 11 atoms / cm 2 to less than 10 9 atoms / cm 2 to below the detection limit of the flameless atomic absorption spectrometer. It became clear that The present invention is not limited to the first and second embodiments described above, but a CVD apparatus such as LP (Low Pressure) or RTP (Rapid Thermal).
The present invention can be applied to all heat treatment apparatuses using a heater in the semiconductor field such as a process apparatus. According to the present invention, by depositing a Si 3 N 4 film on the outside of the reaction tube in the heat treatment step, metal impurities Cu from the heater and the quartz reaction tube to the semiconductor substrate,
It is possible to prevent Fe contamination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例の熱処理装置を側面から見た
断面図である。
FIG. 1 is a cross-sectional view of a heat treatment apparatus of an embodiment of the present invention viewed from a side surface.

【図2】 (a)本発明の実施例の熱処理装置を上面か
ら見た断面図である。 (b)図2(a)の一部の拡大図である。
FIG. 2 (a) is a cross-sectional view of the heat treatment apparatus of the embodiment of the present invention seen from above. (B) It is a partially enlarged view of FIG.

【符号の説明】 1…石英製2重構造の反応管、1a…内管の外壁、1b
…外管の内壁、1c…反応管内、2…Si34を堆積さ
せるためのガス供給部、2a… Si34ガス導入口、
3… Si34膜、4…酸化をおこなうためのガス供給
部、4a…酸化ガス導入口、5…ヒータ、8…半導体基
板、9…ボート
[Explanation of Codes] 1 ... Quartz double structure reaction tube, 1a ... Outer wall of inner tube, 1b
... the inner wall of the outer tube, 1c ... reaction tube, 2 ... Si 3 N 4 gas supply unit for depositing, 2a ... Si 3 N 4 gas inlet,
3 ... Si 3 N 4 film, 4 ... Gas supply part for performing oxidation, 4a ... Oxidizing gas inlet, 5 ... Heater, 8 ... Semiconductor substrate, 9 ... Boat

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 H01L 21/324 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 21/324 H01L 21/324 D

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内部で半導体基板を熱処理する石英製の
反応管と、この反応管の外壁上に形成したSi34
と、前記反応管の周りに設置されたヒータとを具備した
ことを特徴とする熱処理装置。
1. A reaction tube made of quartz for internally heat-treating a semiconductor substrate, a Si 3 N 4 film formed on an outer wall of the reaction tube, and a heater installed around the reaction tube. A heat treatment apparatus characterized by.
【請求項2】 前記ヒータからの熱は、前記Si34
を介して前記反応管の内側に伝導されることを特徴とす
る請求項1記載の熱処理装置。
2. The heat treatment apparatus according to claim 1, wherein the heat from the heater is conducted to the inside of the reaction tube through the Si 3 N 4 film.
【請求項3】 前記ヒータの材料はカンタル、MoS
i、SiCのうちいずれかであることを特徴とする請求
項1記載の熱処理装置。
3. The material of the heater is Kanthal, MoS
The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus is one of i and SiC.
【請求項4】 前記反応管は内管と外管とを有する2重
構造であり、この反応管の内管の外壁上及び外管の内壁
上にSi34膜を堆積させることを特徴とする請求項1
記載の熱処理装置。
4. The reaction tube has a double structure having an inner tube and an outer tube, and a Si 3 N 4 film is deposited on the outer wall of the inner tube and the inner wall of the outer tube of the reaction tube. Claim 1
The heat treatment apparatus according to the above.
【請求項5】 前記反応管の内管の外壁上に堆積したS
34膜と、外管の内壁上に堆積したSi34膜のあい
だに空間があることを特徴とする請求項4記載の熱処理
装置。
5. S deposited on the outer wall of the inner tube of the reaction tube
The heat treatment apparatus according to claim 4, wherein there is a space between the i 3 N 4 film and the Si 3 N 4 film deposited on the inner wall of the outer tube.
【請求項6】 石英製2重構造の反応管の内管の外側と
外管の内側にアンモニアガスとジクロロシランガスを導
入し、前記反応管の内管の外壁上及び外管の内壁上にS
34膜を形成する工程と、前記反応管の内側に半導体
基板を設置し前記反応管の外管の周りより前記Si34
膜を介して熱処理する工程とを具備したことを特徴とす
る半導体基板の熱処理方法。
6. An ammonia gas and a dichlorosilane gas are introduced into the outer side of the inner tube and the inner side of the outer tube of the quartz double-structured reaction tube, and S is introduced onto the outer wall of the inner tube of the reaction tube and the inner wall of the outer tube.
a step of forming an i 3 N 4 film, a semiconductor substrate is installed inside the reaction tube, and the Si 3 N 4 film is formed around the outer tube of the reaction tube.
And a step of performing heat treatment through the film.
【請求項7】 前記熱処理する工程の後、前記石英製2
重構造の反応管の内管の外側と外管の内側にCF4
ス、O2ガス及びH2Oを導入する工程と、このCF4
ス、O2ガス及びH2Oと前記Si34膜との反応物を排
出しSi34膜を除去する工程とを具備したことを特徴
とする請求項6記載の半導体基板の熱処理方法。
7. The quartz-made 2 after the heat treatment step
A step of introducing CF 4 gas, O 2 gas and H 2 O to the outside of the inner tube and the inside of the outer tube of the heavy structure reaction tube, and the CF 4 gas, O 2 gas and H 2 O and the Si 3 N 4 film and the heat treatment method of semiconductor substrate according to claim 6, characterized by including a step of removing the discharged the Si 3 N 4 film of the reaction.
【請求項8】 前記熱処理する工程の後、前記石英製2
重構造の反応管の内管の外側と外管の内側にHF溶液を
導入する工程と、前記Si34膜を溶かしSi34膜を
除去する工程とを具備したことを特徴とする請求項6記
載の半導体基板の熱処理方法。
8. The quartz-made 2 after the heat treatment step
Introducing a HF solution inside the outer and the outer tube of the inner tube of the reaction tube of heavy construction, characterized by comprising a step of removing the Si 3 N 4 film was dissolved the the Si 3 N 4 film The method for heat treating a semiconductor substrate according to claim 6.
JP33287695A 1995-12-21 1995-12-21 Heat treatment system and heat treatment of semiconductor substrate Withdrawn JPH09171968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33287695A JPH09171968A (en) 1995-12-21 1995-12-21 Heat treatment system and heat treatment of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33287695A JPH09171968A (en) 1995-12-21 1995-12-21 Heat treatment system and heat treatment of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH09171968A true JPH09171968A (en) 1997-06-30

Family

ID=18259799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33287695A Withdrawn JPH09171968A (en) 1995-12-21 1995-12-21 Heat treatment system and heat treatment of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH09171968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964516B2 (en) 2008-03-14 2011-06-21 Tokyo Electron Limited Film formation apparatus for semiconductor process and method for using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964516B2 (en) 2008-03-14 2011-06-21 Tokyo Electron Limited Film formation apparatus for semiconductor process and method for using same

Similar Documents

Publication Publication Date Title
JP2804700B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
TWI336492B (en)
JP2000058543A (en) Method and device for oxidation
JP3297291B2 (en) Method for manufacturing semiconductor device
US5238871A (en) Method of manufacturing a semiconductor device
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
US20060166516A1 (en) Nitride film forming method, semiconductor device fabrication method, capacitor fabrication method and nitride film forming apparatus
JPH09171968A (en) Heat treatment system and heat treatment of semiconductor substrate
JP3484480B2 (en) Method for manufacturing semiconductor device
JP2821264B2 (en) Gas cleaning method for silicon devices
JPS6286731A (en) Laser beam irradiation si surface treating device
JP2896005B2 (en) Wafer cleaning method
JP2001250785A (en) Washing method of member for semiconductor heat treatment covered with silicon carbide
JPS5975629A (en) Manufacture of semiconductor device
JPH02106927A (en) Manufacture of semiconductor device
JP3398904B2 (en) Dry cleaning of substrate surface
JPH09283509A (en) Wafer processing apparatus and processing thereof
JP3686163B2 (en) Manufacturing method of semiconductor integrated circuit device and manufacturing apparatus thereof
JPS63199434A (en) Forming method for insulating film
JPH0684865A (en) Dry cleaning of semiconductor device
JPS59227128A (en) Oxidation method for semiconductor substrate
JP3018029B2 (en) Metal passivation treatment method
JPH04196533A (en) Method and equipment for treating semiconductor substrate
JPS60227415A (en) Vapor growth apparatus
JPH06349801A (en) Surface treatment method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304