JPH09170829A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09170829A
JPH09170829A JP7332989A JP33298995A JPH09170829A JP H09170829 A JPH09170829 A JP H09170829A JP 7332989 A JP7332989 A JP 7332989A JP 33298995 A JP33298995 A JP 33298995A JP H09170829 A JPH09170829 A JP H09170829A
Authority
JP
Japan
Prior art keywords
stage
compressor
pressure
refrigerant
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7332989A
Other languages
Japanese (ja)
Inventor
Shinji Watanabe
伸二 渡辺
Yuichi Kusumaru
雄一 薬丸
Yoshinori Kobayashi
義典 小林
Akira Fujitaka
章 藤高
Kanji Haneda
完爾 羽根田
Shigeto Yamaguchi
成人 山口
Yukio Watanabe
幸男 渡邊
Hironao Numamoto
浩直 沼本
Toshio Wakabayashi
寿夫 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7332989A priority Critical patent/JPH09170829A/en
Publication of JPH09170829A publication Critical patent/JPH09170829A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of a compressor, that is, in its turn the efficiency of a system in air conditioning equipment using a non-azeotropic refrigerant. SOLUTION: Refrigerants R32, R125 and R134a herein used are non-azeotropic refrigerants mixed respectively at a ratio of approx. 23, 25 and 52wt.%. A compressor 1, a condenser 2, a decompressor 3 and an evaporator 4 are interconnected in a ring sequentially by a piping to form a refrigerating cycle. Two compression parts 122 and 123, the one for a low stage and the other for a high stage, are arranged inside the compressor 1 and a high pressure type double-stage compressor is used with a high level of delivery pressure in a vessel (shell) 121 of the compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒としてR3
2、R125、R134aをそれぞれ23、25、52
wt%近傍の比率で混合した非共沸混合冷媒を用いた空
気調和機に関するものである。
TECHNICAL FIELD The present invention relates to R3 as a refrigerant.
2, R125, R134a 23, 25, 52 respectively
The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant mixed at a ratio of around wt%.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃されることが決定している。し
たがって、冷媒としてフロンを用いた機器について、そ
の代替冷媒化技術の開発が進められており、オゾン層を
破壊しないHFC(ハイドロフルオロカーボン)が検討
されているが、冷凍機や空調機に用いられているHCF
Cの代替冷媒として単独で用いることのできるものはH
FCの中には見あたらず、したがって2種類以上のHF
C系冷媒を混合させた非共沸の混合冷媒が有望視されて
いる。その中でもR32/R125/R134aをそれ
ぞれ23、25、52wt%で混合したR407Cなど
が特に有望視されている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on chlorofluorocarbons that destroy the ozone layer have been strengthened. In particular, CFC (chlorofluorocarbon), which has a large destructive power, has been completely abolished at the end of 1995. In addition, HCFCs (hydrochlorofluorocarbons), which have relatively small destructive power, have been regulated in total amount since 1996, and it has been decided that they will be totally abolished in the future. Therefore, for devices that use CFCs as a refrigerant, development of alternative refrigerant technology is in progress, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer have been studied, but they have been used in refrigerators and air conditioners. HCF
What can be used alone as a substitute refrigerant for C is H
Not found in FC, therefore more than one type of HF
Non-azeotropic mixed refrigerants mixed with C-based refrigerants are considered promising. Among them, R407C and the like, in which R32 / R125 / R134a are mixed at 23, 25, and 52 wt% respectively, are particularly promising.

【0003】しかしながら、R407Cは従来のHCF
C22より同一温度に対する圧力がやや高くなるため蒸
発器および凝縮器の動作圧も高くなり、圧縮機側からみ
ると圧縮比と圧力差がR22サイクルよりも大きくな
り、シェル内を圧縮機の吐出圧力とする単段圧縮機では
この圧縮比と圧力差増大により圧縮洩れが増大し圧縮機
の効率低下、強いてはシステムの効率低下を引き起こす
問題があった。
However, R407C is a conventional HCF
Since the pressure for the same temperature is slightly higher than that of C22, the operating pressure of the evaporator and condenser is also higher, and the compression ratio and pressure difference from the compressor side are larger than the R22 cycle, and the discharge pressure of the compressor inside the shell is increased. However, in the single-stage compressor, there is a problem that the compression leakage increases due to the increase of the compression ratio and the pressure difference, and the efficiency of the compressor is lowered, and thus the efficiency of the system is lowered.

【0004】そこで、一般的にはこの単段圧縮機におい
て圧縮機構部のクリアランスを小さくすることによって
圧縮洩れを低減させている。
Therefore, generally, in this single-stage compressor, the compression leakage is reduced by reducing the clearance of the compression mechanism portion.

【0005】以下、図面を参照しながら従来の単段圧縮
機の圧縮機構部のクリアランスを小さくした圧縮機を用
いた空気調和機について説明する。
An air conditioner using a compressor in which the clearance of the compression mechanism of a conventional single-stage compressor is reduced will be described below with reference to the drawings.

【0006】図5は、従来の空気調和機の冷凍サイクル
図である。同図において、1は圧縮機、2は凝縮器、3
は絞り弁、4は蒸発器であり、これらは順次環状に連結
されている。
FIG. 5 is a refrigeration cycle diagram of a conventional air conditioner. In the figure, 1 is a compressor, 2 is a condenser, 3
Is a throttle valve, and 4 is an evaporator, which are sequentially connected in an annular shape.

【0007】ここで圧縮機1のシェル121は耐圧性向
上のために肉厚を増して変形しないようにし、かつ圧縮
機構部のクリアランスを小さくしている。
Here, the shell 121 of the compressor 1 has an increased wall thickness so as not to be deformed in order to improve the pressure resistance, and the clearance of the compression mechanism portion is made small.

【0008】次に、この冷凍サイクルの動作について説
明する。図中の矢印は冷媒の流れ方向を示しており、圧
縮機1の吸入口12dより流入した冷媒は圧縮部122
により圧縮され吐出孔120より排出され、シェル12
1内を通って電動機124、125を冷却して吐出管1
27より吐出され、凝縮器2で凝縮液化され、絞り弁3
で減圧膨張され、蒸発器4で蒸発気化され圧縮機1へと
戻る。
Next, the operation of this refrigeration cycle will be described. The arrow in the figure indicates the flow direction of the refrigerant, and the refrigerant flowing from the suction port 12d of the compressor 1 is compressed by the compression portion 122.
And then discharged from the discharge hole 120, and the shell 12
1 to cool the electric motors 124, 125 and discharge pipe 1
It is discharged from 27, condensed and liquefied in the condenser 2, and the throttle valve 3
Then, it is decompressed and expanded, and then evaporated and vaporized by the evaporator 4 and returned to the compressor 1.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、以下のような課題があった。
However, the above conventional structure has the following problems.

【0010】従来の単一冷媒R22を用いた空気調和機
にR32、R125、R134aをそれぞれ23、2
5、52wt%近傍の比率で混合した非共沸混合冷媒を
充填して同一温度条件で運転すると凝縮器、蒸発器の動
作圧力がR22サイクルよりも上昇し、圧縮比、圧力差
はR22冷凍サイクルより増大することにより圧縮洩れ
が増大し、圧縮機の効率低下、強いてはシステムの効率
低下を引き起こす問題があった。この対策として、一般
的には圧縮機の圧縮機構部のクリアランスを小さくする
ことによって圧縮洩れを低減させているが、機械損失と
の兼ね合いで限界があり、圧縮機効率は余り向上しない
という課題があった。
R32, R125 and R134a are respectively used in conventional air conditioners using a single refrigerant R22 at 23 and 2 respectively.
When the non-azeotropic mixed refrigerant mixed at a ratio of about 5, 52 wt% is filled and operated under the same temperature condition, the operating pressure of the condenser and the evaporator rises higher than the R22 cycle, and the compression ratio and the pressure difference are the R22 refrigeration cycle. There is a problem that the compression leakage increases due to the further increase, which causes a decrease in the efficiency of the compressor and, in the worst case, a decrease in the efficiency of the system. As a countermeasure against this, compression leakage is generally reduced by reducing the clearance of the compression mechanism of the compressor, but there is a limit in consideration of mechanical loss, and there is a problem that compressor efficiency does not improve so much. there were.

【0011】本発明はこのような従来の課題を解決する
ものであり、冷媒としてR32、R125、R134a
をそれぞれ23、25、52wt%近傍の比率で混合し
た非共沸混合冷媒を用いた空気調和機において、圧縮機
の効率向上、強いてはシステムの効率向上を図るもので
ある。
The present invention solves the above-mentioned conventional problems and uses R32, R125, and R134a as refrigerants.
In an air conditioner using a non-azeotropic mixed refrigerant in which the above components are mixed in the ratios of about 23, 25, and 52 wt%, respectively, the efficiency of the compressor is improved and the efficiency of the system is improved.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明の空気調和機は、冷媒としてR32、R12
5、R134aをそれぞれ23、25、52wt%近傍
の比率で混合した非共沸混合冷媒を用い、圧縮機、凝縮
器、減圧器、蒸発器を順次配管にて環状に連結して冷凍
サイクルを構成し、前記圧縮機内部に低段用と高段用の
2つの圧縮部を設けた2段圧縮機を用いるものである。
In order to solve the above problems, the air conditioner of the present invention uses R32 and R12 as refrigerants.
5, a non-azeotropic mixed refrigerant in which R134a is mixed at a ratio of 23, 25, and 52 wt% respectively, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape to form a refrigeration cycle. However, a two-stage compressor in which two low-stage and high-stage compressors are provided inside the compressor is used.

【0013】[0013]

【発明の実施の形態】請求項1に記載の発明は、冷媒と
してR32、R125、R134aをそれぞれ23、2
5、52wt%近傍の比率で混合した非共沸混合冷媒を
用い、圧縮機、凝縮器、減圧器、蒸発器を順次配管にて
環状に連結して冷凍サイクルを構成し、前記圧縮機内部
に低段用と高段用の2つの圧縮部を設けるとともに、シ
ェル内を高段の吐出圧力とする高圧型2段圧縮機を用い
ることにより、従来の単段圧縮機と比較して、各段当た
りの圧縮比を小さくするとともに圧力差を小さくするこ
とができ、R22のような比較的低圧冷媒で用いるよ
り、R32、R125、R134aをそれぞれ23、2
5、52wt%近傍の比率で混合した比較的高圧冷媒で
用いる方が効果的に圧縮洩れの低減を図ることができ、
圧縮機の効率向上強いてはシステムの効率向上を図るこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the invention described in claim 1, R32, R125, and R134a are used as refrigerants 23 and 2, respectively.
Using a non-azeotropic mixed refrigerant mixed at a ratio of about 5, 52 wt%, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape to form a refrigeration cycle, and a refrigeration cycle is formed. By using a high-pressure two-stage compressor that has two low-stage and high-stage compression parts and uses a high-stage discharge pressure inside the shell, each stage is compared to conventional single-stage compressors. The compression ratio per hit can be reduced and the pressure difference can be reduced. R32, R125, and R134a are 23 and 2 respectively, compared with the case of using a relatively low-pressure refrigerant such as R22.
The use of a relatively high-pressure refrigerant mixed at a ratio of about 5,52 wt% can effectively reduce compression leakage,
Improving the efficiency of the compressor It is possible to improve the efficiency of the system.

【0014】請求項2に記載の発明は、冷媒としてR3
2、R125、R134aをそれぞれ23、25、52
wt%近傍の比率で混合した非共沸混合冷媒を用い、圧
縮機、凝縮器、減圧器、蒸発器を順次配管にて環状に連
結して冷凍サイクルを構成し、前記圧縮機内部に低段用
と高段用の2つの圧縮部を設けるとともに、シェル内を
低段の吐出または高段の吸入の圧力とする中間圧型2段
圧縮機を用いることにより、圧縮機シェル内が吐出圧力
となる高圧型2段圧縮機と比較して、各段の吸入あるい
は吐出圧力とシェルの最大圧力差を小さくすることがで
き、圧縮洩れのさらなる低減を図ることができ、圧縮機
の効率向上、強いてはシステムの効率向上をさらに図る
ことができる。
In the invention described in claim 2, R3 is used as the refrigerant.
2, R125, R134a 23, 25, 52 respectively
Using a non-azeotropic mixed refrigerant mixed at a ratio of about wt%, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular fashion to form a refrigeration cycle, and a low-stage inside the compressor. By using an intermediate pressure type two-stage compressor that has two compression parts for high-stage and high-stage suction, and has a low-stage discharge pressure or a high-stage suction pressure inside the shell, the discharge pressure is inside the compressor shell. Compared to the high-pressure two-stage compressor, the suction or discharge pressure of each stage and the maximum pressure difference of the shell can be made smaller, and the compression leakage can be further reduced, improving the efficiency of the compressor, The efficiency of the system can be further improved.

【0015】[0015]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1において、本発明の第1
の実施例における高圧型2段圧縮機を用いた空気調和機
の冷凍サイクル図である。
(Embodiment 1) Referring to FIG. 1, the first embodiment of the present invention will be described.
FIG. 6 is a refrigeration cycle diagram of an air conditioner using the high-pressure two-stage compressor in the example of FIG.

【0017】同図において、1は圧縮機、2は凝縮器、
3は第1絞り弁、4は蒸発器であり、順次接続して冷凍
サイクルを構成し、さらに凝縮器2と第1絞り弁3の配
管と圧縮機1の中間インジェクションポート129を第
2絞り弁5を介して接続しインジェクション回路を構成
している。冷媒としては非共沸混合冷媒を用いている。
In the figure, 1 is a compressor, 2 is a condenser,
Reference numeral 3 is a first throttle valve, and 4 is an evaporator, which are sequentially connected to form a refrigeration cycle. Further, the condenser 2 and the piping of the first throttle valve 3 and the intermediate injection port 129 of the compressor 1 are connected to the second throttle valve. 5 to connect to form an injection circuit. A non-azeotropic mixed refrigerant is used as the refrigerant.

【0018】また、前記圧縮機1はシェル121の内部
に低段圧縮部122と高段圧縮部123などを含んで構
成される圧縮機構部と、この圧縮機構部を駆動する電動
機124、125と、この電動機の回転力を圧縮機構部
に伝達する主軸126などで構成されている。主軸12
6は圧縮機構部のシリンダ127、128に支持されて
いる。そして外周部に複数個の切り欠きを持った電動機
のステータ125はシーム溶接によって形成されたシェ
ル121の内周面に固定されている。また、シェル12
1にはインジェクションポート129が設けられている
構成である。
Further, the compressor 1 includes a compression mechanism section including a low-stage compression section 122 and a high-stage compression section 123 inside a shell 121, and electric motors 124 and 125 for driving the compression mechanism section. The main shaft 126 for transmitting the rotational force of the electric motor to the compression mechanism portion and the like. Spindle 12
Reference numeral 6 is supported by cylinders 127 and 128 of the compression mechanism section. The stator 125 of the electric motor having a plurality of notches on the outer peripheral portion is fixed to the inner peripheral surface of the shell 121 formed by seam welding. Also, the shell 12
1 is provided with an injection port 129.

【0019】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、冷媒の流れ方向を実線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは凝縮器2
で凝縮液化され、減圧弁3で減圧膨張され、蒸発器5で
蒸発気化され圧縮機1へと戻る。また、凝縮器2で凝縮
された液冷媒の一部を第2絞り弁5により流量制御して
圧縮機1のインジェクションポート129にインジェク
ションすることにより高段圧縮部122で圧縮した冷媒
ガスを冷却する構成になっている。
Next, the specific operation of this refrigeration cycle will be described. First, the flow direction of the refrigerant is shown by solid arrows, and the refrigerant gas compressed by the compressor 1 is stored in the condenser 2
Is condensed and liquefied by the pressure reducing valve 3, expanded under reduced pressure by the pressure reducing valve 3, evaporated by the evaporator 5, and returned to the compressor 1. Further, a part of the liquid refrigerant condensed in the condenser 2 is flow controlled by the second throttle valve 5 and injected into the injection port 129 of the compressor 1 to cool the refrigerant gas compressed in the high-stage compression section 122. It is configured.

【0020】次に、圧縮機の内部の冷媒の流れについて
説明する。電動機124、125が駆動されると、主軸
126の回転によってシェル121に設けられた吸入管
(低段吸入孔)12dから冷媒ガスは低段圧縮部122
に吸い込まれ圧縮されて低段吐出孔120より吐出カバ
ー131で被われた密閉空間130内に吐出される。こ
こで低段吐出孔120と高段吸入孔12aの途中に設け
られたインジェクションポート129から気液混合冷媒
がインジェクションされ、低段吐出孔120からの冷媒
ガスと混合されて高段圧縮部123の吸入孔12aより
高段圧縮部123に吸い込まれ圧縮されて高段吐出孔1
2bよりシェル121内に吐出され、電動機124、1
25を冷却して吐出管12cを通ってシェル121外へ
吐出される。
Next, the flow of the refrigerant inside the compressor will be described. When the electric motors 124 and 125 are driven, the refrigerant gas flows from the suction pipe (low-stage suction hole) 12d provided in the shell 121 by the rotation of the main shaft 126 to the low-stage compression unit 122.
It is sucked into and compressed by and is discharged from the low-stage discharge hole 120 into the closed space 130 covered with the discharge cover 131. Here, the gas-liquid mixed refrigerant is injected from an injection port 129 provided in the middle of the low-stage discharge hole 120 and the high-stage suction hole 12a, mixed with the refrigerant gas from the low-stage discharge hole 120, and mixed in the high-stage compression section 123. The high-stage discharge hole 1 is sucked and compressed by the high-stage compression portion 123 through the suction hole 12a.
2b is discharged into the shell 121, and the electric motors 124, 1
25 is cooled and discharged through the discharge pipe 12c to the outside of the shell 121.

【0021】このように、一旦冷媒ガスを低段圧縮部で
中間圧まで昇圧し、次に高段圧縮部で高圧まで昇圧した
後、シェル内に吐出することにより高圧型2段圧縮機を
構成する。
Thus, the refrigerant gas is once boosted to the intermediate pressure in the low-stage compression section, then to the high pressure in the high-stage compression section, and then discharged into the shell to form a high-pressure two-stage compressor. To do.

【0022】次に、R22とR407Cの冷凍サイクル
について図2、(表1)を参照して説明する。
Next, the refrigerating cycle of R22 and R407C will be described with reference to FIG. 2 (Table 1).

【0023】(表1)は同一温度条件における飽和圧力
P、圧縮比ε(Ph/Pl)、圧力差△P(Ph−P
l)を示し、図2はR22を用いた単段圧縮冷凍サイク
ルと2段圧縮冷凍サイクルの圧縮比εに対するシステム
効率COPを示す。
Table 1 shows the saturation pressure P, compression ratio ε (Ph / Pl) and pressure difference ΔP (Ph-P) under the same temperature condition.
2) shows the system efficiency COP with respect to the compression ratio ε of the single-stage compression refrigeration cycle using R22 and the two-stage compression refrigeration cycle.

【0024】[0024]

【表1】 [Table 1]

【0025】図2からわかるように、2段圧縮機を用い
た2段圧縮冷凍サイクルは高圧縮比条件でのみ単段圧縮
冷凍サイクルより優位性が有るため、一般的には圧縮比
εが大きくなる低温冷凍機などに用いられるが、比較的
圧縮比εが小さい空調機には使われない。
As can be seen from FIG. 2, since the two-stage compression refrigeration cycle using the two-stage compressor is superior to the single-stage compression refrigeration cycle only under the high compression ratio condition, the compression ratio ε is generally large. However, it is not used for air conditioners with a relatively small compression ratio ε.

【0026】ここで、(表1)よりR22とR407C
の冷房、暖房の条件における圧縮比、圧力差をみると、
ともに大きくなっている。このように、R407Cでは
圧縮比、圧力差が増大するため、R22とR407Cの
単段、2段圧縮冷凍サイクルの特性は図2に示すように
なり、R22の単段圧縮冷凍サイクルとR22の2段圧
縮冷凍サイクルのクロスポイントA点はR407Cにす
るとさらに左のA’点へ移る。従って、より低圧縮比領
域まで2段圧縮冷凍サイクルの優位性がでることにな
り、空調機のように比較的低い圧縮比領域でも2段圧縮
冷凍サイクルの効率が単段に対して上回ることになる。
Here, according to (Table 1), R22 and R407C
Looking at the compression ratio and pressure difference under the cooling and heating conditions of
Both are getting bigger. Thus, since the compression ratio and the pressure difference increase in R407C, the characteristics of the single-stage and double-stage compression refrigeration cycle of R22 and R407C are as shown in FIG. When the cross point A of the stage compression refrigeration cycle is set to R407C, the point further moves to the left A'point. Therefore, the superiority of the two-stage compression refrigeration cycle can be obtained even in the lower compression ratio region, and the efficiency of the two-stage compression refrigeration cycle is higher than that of the single stage even in a relatively low compression ratio region such as an air conditioner. Become.

【0027】以上説明したように請求項1に記載の発明
は、冷媒としてR32、R125、R134aをそれぞ
れ23、25、52wt%近傍の比率で混合した非共沸
混合冷媒を用い、圧縮機、凝縮器、減圧器、蒸発器を順
次配管にて環状に連結して冷凍サイクルを構成し、前記
圧縮機内部に低段用と高段用の2つの圧縮部を設けると
ともに、シェル内を高段の吐出圧力とする高圧型2段圧
縮機を用いることにより、従来の単段圧縮機と比較し
て、各段当たりの圧縮比を小さくするとともに圧力差を
小さくすることができ、R22のような比較的低圧冷媒
で用いるより、R32、R125、R134aをそれぞ
れ23、25、52wt%近傍の比率で混合した比較的
高圧冷媒で用いる方が効果的に圧縮洩れの低減を図るこ
とができ、圧縮機の効率向上強いてはシステムの効率向
上を図ることができる。
As described above, the invention according to claim 1 uses a non-azeotropic mixed refrigerant in which R32, R125, and R134a are mixed at a ratio of around 23, 25, and 52 wt%, respectively, as a refrigerant, and a compressor and a condenser are used. A refrigeration cycle is formed by sequentially connecting a compressor, a decompressor, and an evaporator in an annular shape with pipes, and two compression parts for a low stage and a high stage are provided inside the compressor, and the inside of the shell has a high stage. By using a high-pressure type two-stage compressor with discharge pressure, it is possible to reduce the compression ratio for each stage and the pressure difference compared to a conventional single-stage compressor. It is possible to effectively reduce the compression leak by using a relatively high pressure refrigerant in which R32, R125, and R134a are mixed at a ratio of around 23, 25, and 52 wt%, respectively, rather than by using a low pressure refrigerant. Is a strong rate increase can improve the efficiency of the system.

【0028】次に、本発明の第2の実施例について、図
面を参考に説明する。図3は、本発明の第2の実施例に
おける中間圧型2段圧縮機を用いた空気調和機の冷凍サ
イクル図である。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a refrigeration cycle diagram of an air conditioner using an intermediate pressure type two-stage compressor according to the second embodiment of the present invention.

【0029】同図において、1は圧縮機、2は凝縮器、
3は第1絞り弁、4は蒸発器であり、順次接続して冷凍
サイクルを構成し、さらに凝縮器2と第1絞り弁3の配
管と圧縮機1の中間インジェクションポート129を第
2絞り弁5を介して接続しインジェクション回路を構成
している。冷媒としては非共沸混合冷媒を用いている。
In the figure, 1 is a compressor, 2 is a condenser,
Reference numeral 3 is a first throttle valve, and 4 is an evaporator, which are sequentially connected to form a refrigeration cycle. Further, the condenser 2 and the piping of the first throttle valve 3 and the intermediate injection port 129 of the compressor 1 are connected to the second throttle valve. 5 to connect to form an injection circuit. A non-azeotropic mixed refrigerant is used as the refrigerant.

【0030】また、前記圧縮機1はシェル121の内部
に低段圧縮部122と高段圧縮部123などを含んで構
成される圧縮機構部と、この圧縮機構部を駆動する電動
機124、125と、この電動機の回転力を圧縮機構部
に伝達する主軸126などで構成されている。主軸12
6は圧縮機構部のシリンダ127、128に支持され
る。そして外周部に複数個の切り欠きを持った電動機の
ステータ125はシーム溶接によって形成されたシェル
121の内周面に固定されている。また、シェル121
にはインジェクションポート129が設けられている構
成である。
Further, the compressor 1 includes a compression mechanism section including a low-stage compression section 122 and a high-stage compression section 123 inside a shell 121, and electric motors 124 and 125 for driving the compression mechanism section. The main shaft 126 for transmitting the rotational force of the electric motor to the compression mechanism portion and the like. Spindle 12
6 is supported by cylinders 127 and 128 of the compression mechanism section. The stator 125 of the electric motor having a plurality of notches on the outer peripheral portion is fixed to the inner peripheral surface of the shell 121 formed by seam welding. Also, the shell 121
Is provided with an injection port 129.

【0031】次に、この冷凍サイクルの具体的な動作に
ついて説明する。まず、冷媒の流れ方向を実線の矢印で
示しており、圧縮機1で圧縮された冷媒ガスは凝縮器2
で凝縮液化され、減圧弁3で減圧膨張され、蒸発器5で
蒸発気化され圧縮機1へと戻る。また、凝縮器2で凝縮
された液冷媒の一部を第2絞り弁5により流量制御して
圧縮機1のインジェクションポート129にインジェク
ションすることにより高段圧縮部122で圧縮した冷媒
ガスを冷却する構成になっている。
Next, the specific operation of this refrigeration cycle will be described. First, the flow direction of the refrigerant is shown by solid arrows, and the refrigerant gas compressed by the compressor 1 is stored in the condenser 2
Is condensed and liquefied by the pressure reducing valve 3, expanded under reduced pressure by the pressure reducing valve 3, evaporated by the evaporator 5, and returned to the compressor 1. Further, a part of the liquid refrigerant condensed in the condenser 2 is flow controlled by the second throttle valve 5 and injected into the injection port 129 of the compressor 1 to cool the refrigerant gas compressed in the high-stage compression section 122. It is configured.

【0032】次に、圧縮機の内部の冷媒の流れについて
説明する。電動機124、125が駆動されると主軸1
26の回転によって、シェル121に設けられた吸入管
(低段吸入孔)12dから冷媒ガスは低段圧縮部122
に吸い込まれ圧縮されて低段吐出孔120よりシェル1
21内に吐出される。ここでインジェクションポート1
29よりインジェクションされ電動機124、125を
冷却した冷媒と混合されて高段圧縮部123の吸入孔1
2aより高段圧縮部123に吸い込まれ圧縮されて高段
吐出孔12bより吐出管12cを通ってされシェル12
1外へ吐出される。
Next, the flow of the refrigerant inside the compressor will be described. When the electric motors 124 and 125 are driven, the spindle 1
Due to the rotation of 26, the refrigerant gas from the suction pipe (low-stage suction hole) 12d provided in the shell 121 flows to the low-stage compression section 122.
Is sucked into and compressed by the low-stage discharge hole 120
21 is discharged. Injection port 1 here
The injection hole 1 of the high-stage compression section 123 is mixed with the refrigerant that has been injected from 29 and has cooled the electric motors 124 and 125.
2a is sucked into the high-stage compression section 123 and compressed, and is passed through the high-stage discharge hole 12b and the discharge pipe 12c to form the shell 12
1 is discharged to the outside.

【0033】次に、高圧型2段圧縮機と中間圧型2段圧
縮機の違いについて、図4を参照して説明する。
Next, the difference between the high pressure type two-stage compressor and the intermediate pressure type two-stage compressor will be described with reference to FIG.

【0034】ここで、高圧型2段圧縮機における低段、
高段の吸入あるいは吐出圧力とシェルの最大圧力差a、
bとし、中間圧型2段圧縮機における低段、高段の吸入
あるいは吐出圧力とシェルの最大圧力差c、dとする
と、高段側の圧力差はb=dであるが、低段側圧力差は
a>cであり、中間圧型2段圧縮機にすると高圧型より
圧縮洩れのさらなる低減を図ることができる。この効果
については実施例1で述べたようにR22よりR407
Cの圧縮比、圧力差が大きくなることより、R407C
に用いる方が効果的に圧縮機効率向上を図ることができ
る。
Here, the low stage of the high pressure type two stage compressor,
Maximum pressure difference a between high-stage suction or discharge pressure and shell,
Let b be the suction or discharge pressure of the low and high stages in the intermediate pressure type two-stage compressor and the maximum pressure difference c and d of the shell, the pressure difference on the high stage side is b = d, but the pressure on the low stage side is The difference is a> c, and when the intermediate pressure type two-stage compressor is used, the compression leakage can be further reduced as compared with the high pressure type. Regarding this effect, as described in the first embodiment, R407 to R407
Since the compression ratio and pressure difference of C become large, R407C
It is possible to effectively improve the efficiency of the compressor by using the above.

【0035】以上説明したように請求項2に記載の発明
は、冷媒としてR32、R125、R134aをそれぞ
れ23、25、52wt%近傍の比率で混合した非共沸
混合冷媒を用い、圧縮機、凝縮器、減圧器、蒸発器を順
次配管にて環状に連結して冷凍サイクルを構成し、前記
圧縮機内部に低段用と高段用の2つの圧縮部を設けると
ともに、シェル内を低段の吐出または高段の吸入の圧力
とする中間圧型2段圧縮機を用いることにより、圧縮機
シェル内が吐出圧力となる高圧型2段圧縮機と比較し
て、各段の吸入あるいは吐出圧力とシェルの最大圧力差
を小さくすることができ、圧縮洩れのさらなる低減を図
ることができ、圧縮機の効率向上、強いてはシステムの
効率向上をさらに図ることができる。
As described above, the invention according to claim 2 uses a non-azeotropic mixed refrigerant in which R32, R125, and R134a are mixed at a ratio of around 23, 25, and 52 wt%, respectively, as a refrigerant, a compressor, and a condenser. A refrigeration cycle is constructed by sequentially connecting a compressor, a decompressor, and an evaporator in an annular shape with pipes, and two compression parts for a low stage and a high stage are provided inside the compressor, and the inside of the shell has a low stage. By using an intermediate pressure type two-stage compressor that uses discharge or high-stage suction pressure, compared with a high-pressure two-stage compressor in which the discharge pressure is inside the compressor shell, the suction or discharge pressure and shell of each stage The maximum pressure difference can be reduced, compression leakage can be further reduced, the efficiency of the compressor can be improved, and the efficiency of the system can be further improved.

【0036】なお、本発明の空気調和機は、フロン系冷
媒に限らず高圧冷媒であれば、他の冷媒にも適用可能で
ある。また、2段圧縮サイクルとして中間冷却器等を用
いた他の2段圧縮サイクルでも適用可能である。
The air conditioner of the present invention is not limited to the CFC type refrigerant, but can be applied to other refrigerants as long as it is a high pressure refrigerant. Further, other two-stage compression cycle using an intercooler or the like can be applied as the two-stage compression cycle.

【0037】[0037]

【発明の効果】上記実施例より明らかなように、請求項
1に記載の発明は、冷媒としてR32、R125、R1
34aをそれぞれ23、25、52wt%近傍の比率で
混合した非共沸混合冷媒を用い、圧縮機、凝縮器、減圧
器、蒸発器を順次配管にて環状に連結して冷凍サイクル
を構成し、前記圧縮機内部に低段用と高段用の2つの圧
縮部を設けるとともに、シェル内を高段の吐出圧力とす
る高圧型2段圧縮機を用いることにより、従来の単段圧
縮機と比較して、各段当たりの圧縮比を小さくするとと
もに圧力差を小さくすることができ、R22のような比
較的低圧冷媒で用いるより、R32、R125、R13
4aをそれぞれ23、25、52wt%近傍の比率で混
合した高圧冷媒で用いる方が効果的に圧縮洩れの低減を
図ることができ、圧縮機の効率向上強いてはシステムの
効率向上を図ることができる。
As is apparent from the above embodiment, the invention described in claim 1 uses R32, R125, R1 as the refrigerant.
Using a non-azeotropic mixed refrigerant obtained by mixing 34a in the proportions of 23, 25, and 52 wt% respectively, a compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in an annular shape to form a refrigeration cycle, Compared with the conventional single-stage compressor, by providing two low-stage and high-stage compressors inside the compressor, and using a high-pressure two-stage compressor with a high-stage discharge pressure in the shell. As a result, the compression ratio for each stage can be reduced and the pressure difference can be reduced, and R32, R125, R13 can be used rather than a relatively low pressure refrigerant such as R22.
It is possible to effectively reduce the compression leakage and to improve the efficiency of the compressor, and hence the efficiency of the system, by using the high pressure refrigerant in which 4a is mixed in the ratio of 23, 25 and 52 wt% respectively. .

【0038】請求項2に記載の発明は、冷媒としてR3
2、R125、R134aをそれぞれ23、25、52
wt%近傍の比率で混合した非共沸混合冷媒を用い、圧
縮機、凝縮器、減圧器、蒸発器を順次配管にて環状に連
結して冷凍サイクルを構成し、前記圧縮機内部に低段用
と高段用の2つの圧縮部を設けるとともに、シェル内を
低段の吐出または高段の吸入の圧力とする中間圧型2段
圧縮機を用いることにより、圧縮機シェル内が吐出圧力
となる高圧型2段圧縮機と比較して、各段の吸入あるい
は吐出圧力とシェルの最大圧力差を小さくすることがで
き、圧縮洩れのさらなる低減を図ることができ、圧縮機
の効率向上、強いてはシステムの効率向上をさらに図る
ことができる。
According to the second aspect of the invention, R3 is used as the refrigerant.
2, R125, R134a 23, 25, 52 respectively
Using a non-azeotropic mixed refrigerant mixed at a ratio of about wt%, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular fashion to form a refrigeration cycle, and a low-stage inside the compressor. By using an intermediate pressure type two-stage compressor that has two compression parts for high-stage and high-stage suction, and has a low-stage discharge pressure or a high-stage suction pressure inside the shell, the discharge pressure is inside the compressor shell. Compared to the high-pressure two-stage compressor, the suction or discharge pressure of each stage and the maximum pressure difference of the shell can be made smaller, and the compression leakage can be further reduced, improving the efficiency of the compressor, The efficiency of the system can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における高圧型2段圧縮
機を用いた空気調和機の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner using a high-pressure two-stage compressor according to a first embodiment of the present invention.

【図2】従来の単段圧縮機を用いた空気調和機と本発明
の第1の実施例における高圧型2段圧縮機を用いた空気
調和機の各冷媒(R22とR407C)における圧縮比
εに対するシステム効率COP特性比較図
FIG. 2 is a compression ratio ε in each refrigerant (R22 and R407C) of the air conditioner using the conventional single-stage compressor and the air conditioner using the high-pressure two-stage compressor according to the first embodiment of the present invention. Comparison of system efficiency COP characteristics

【図3】本発明の第2の実施例における中間圧型2段圧
縮機を用いた空気調和機の冷凍サイクル図
FIG. 3 is a refrigeration cycle diagram of an air conditioner using an intermediate pressure type two-stage compressor according to a second embodiment of the present invention.

【図4】本発明の第1の実施例における高圧型2段圧縮
機と本発明の第2の実施例における中間圧型2段圧縮機
の圧力差比較図
FIG. 4 is a pressure difference comparison diagram between the high pressure type two-stage compressor according to the first embodiment of the present invention and the intermediate pressure type two-stage compressor according to the second embodiment of the present invention.

【図5】従来の空気調和機の冷凍サイクル図FIG. 5: Refrigeration cycle diagram of a conventional air conditioner

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 第1絞り弁 4 蒸発器 5 第2絞り弁 1 Compressor 2 Condenser 3 First throttle valve 4 Evaporator 5 Second throttle valve

フロントページの続き (72)発明者 藤高 章 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡邊 幸男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 若林 寿夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Akira Fujitaka 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Inventor Yamaguchi Adult 1006, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yukio Watanabe, 1006, Kadoma, Kadoma City, Osaka Prefecture 1006 Kadoma City, Matsushita Electric Industrial Co., Ltd. (72) Inventor Toshio Wakabayashi 1006 Kadoma City, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒としてR32、R125、R134a
をそれぞれ23、25、52wt%近傍の比率で混合し
た非共沸混合冷媒を用い、圧縮機、凝縮器、減圧器、蒸
発器を順次配管にて環状に連結して冷凍サイクルを構成
し、前記圧縮機内部に低段用と高段用の2つの圧縮部を
設けるとともに、圧縮機の容器を形成するシェル内を高
段の吐出圧力とする高圧型2段圧縮機を用いることを特
徴とする空気調和機。
1. R32, R125, R134a as a refrigerant
A non-azeotropic mixed refrigerant in which the refrigerants are mixed at a ratio of about 23, 25, and 52 wt%, respectively, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape to form a refrigeration cycle, A high-pressure two-stage compressor is used, in which two compression parts for a low stage and a high stage are provided inside the compressor, and a high-stage discharge pressure is used in a shell forming a container of the compressor. Air conditioner.
【請求項2】冷媒としてR32、R125、R134a
をそれぞれ23、25、52wt%近傍の比率で混合し
た非共沸混合冷媒を用い、圧縮機、凝縮器、減圧器、蒸
発器を順次配管にて環状に連結して冷凍サイクルを構成
し、前記圧縮機内部に低段用と高段用の2つの圧縮部を
設けるとともに、圧縮機の容器を形成するシェル内を低
段の吐出または高段の吸入の圧力とする中間圧型2段圧
縮機を用いることを特徴とする空気調和機。
2. R32, R125, R134a as a refrigerant
A non-azeotropic mixed refrigerant in which the refrigerants are mixed at a ratio of about 23, 25, and 52 wt%, respectively, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape to form a refrigeration cycle, An intermediate pressure type two-stage compressor is provided in which two low-stage and high-stage compression parts are provided inside the compressor and a shell forming a container of the compressor has a low-stage discharge or high-stage suction pressure. An air conditioner characterized by being used.
JP7332989A 1995-12-21 1995-12-21 Air conditioner Pending JPH09170829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7332989A JPH09170829A (en) 1995-12-21 1995-12-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7332989A JPH09170829A (en) 1995-12-21 1995-12-21 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09170829A true JPH09170829A (en) 1997-06-30

Family

ID=18261064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7332989A Pending JPH09170829A (en) 1995-12-21 1995-12-21 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09170829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879951A (en) * 2015-05-20 2015-09-02 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879951A (en) * 2015-05-20 2015-09-02 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof
CN104879951B (en) * 2015-05-20 2017-04-19 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof

Similar Documents

Publication Publication Date Title
CN101978226B (en) Refrigeration apparatus
US20060242985A1 (en) Refrigeration/air-conditioning apparatus powered by an engine exhaust gas driven turbine
JPH1194380A (en) Refrigeration cycle
JP2004502126A (en) Regenerative refrigeration system using mixed refrigerant
JP2001221517A (en) Supercritical refrigeration cycle
JP2001241780A (en) Refrigerating air conditioner
JPH11142007A (en) Refrigerating cycle
JPH10325622A (en) Refrigerating cycle device
JP2002022295A (en) Ejector cycle
JP2003074997A (en) Supercritical refrigeration unit
JP2007024412A (en) Ejector type refrigeration cycle
EP1509733B1 (en) Expander driven motor for auxiliary machinery
JPH1194379A (en) Refrigeration air-conditioner
JP4622193B2 (en) Refrigeration equipment
JP2001107881A (en) Fluid machinery
JP3936027B2 (en) Air conditioner
JPH09170829A (en) Air conditioner
JP2001355928A (en) Refrigerating device
JPH09170830A (en) Air conditioner
JP3414091B2 (en) Refrigeration equipment
CN110234939A (en) Refrigerating plant
KR100309011B1 (en) Refrigeration cycle
JP2006105526A (en) Mixed refrigerant refrigerating cycle
JP2006138628A (en) Refrigerant condenser
JP2008121913A (en) Vapor compression type refrigerating cycle