JPH09166561A - Thin film phase transformation measuring method and measuring device - Google Patents

Thin film phase transformation measuring method and measuring device

Info

Publication number
JPH09166561A
JPH09166561A JP32426595A JP32426595A JPH09166561A JP H09166561 A JPH09166561 A JP H09166561A JP 32426595 A JP32426595 A JP 32426595A JP 32426595 A JP32426595 A JP 32426595A JP H09166561 A JPH09166561 A JP H09166561A
Authority
JP
Japan
Prior art keywords
thin film
measured
phase transformation
measuring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32426595A
Other languages
Japanese (ja)
Inventor
Norikazu Oshima
則和 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32426595A priority Critical patent/JPH09166561A/en
Publication of JPH09166561A publication Critical patent/JPH09166561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To quantitatively measure the thermal stability of a material and device using a thin film. SOLUTION: The thin film phase transformation measuring device comprises a heating device 2 and a cooling device 3 for heating or cooling a sample 100 having a thin film to be measured to set the temperature arbitrarily, a probe 4 for measuring the electric resistance of a thin film of the sample, a light source 7 for projecting light on the sample, and photo diodes 8, 9 for detecting the reflected light from the sample and transmitted light, respectively, wherein the electric resistance and the change of quantity of light of reflected light and transmitted light are measured in a measuring circuit 10. While the temperature of the thin film to be measured is changed, the optical characteristics and the electric resistance are measured to measure the phase transformation process and the chemical change process of the thin film to be measured easily and with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は薄膜材料における結
晶状態(相)の変化を測定するための方法と装置に関す
る。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for measuring changes in crystalline state (phase) in thin film materials.

【0002】[0002]

【従来の技術】非晶質を初めとした非平衡状態に特徴的
な特性を利用した材料デバイスでは、材料特性の安定性
を評価することが重要な問題である。また、作製時に熱
処理過程を含むデバイスでは、新たに形成される相への
移行過程を明確にし、これを制御することが必要であ
る。このような材料の安定性に関わる問題の解決方法と
して、従来は構造変化に伴う熱の出入りを測定する分析
法がなされてきた。良く知られているのは示差熱分析
(Differential Thermal Amalysis:DTA)或いは、示
差走査熱分析(Differential Scanning Calorimetory:
DSC)である。
2. Description of the Related Art In a material device utilizing characteristics characteristic of a non-equilibrium state such as amorphous material, it is an important problem to evaluate the stability of material characteristics. Further, in a device including a heat treatment process at the time of manufacture, it is necessary to clarify the transition process to a newly formed phase and control it. As a method for solving such a problem relating to the stability of the material, an analysis method for measuring the heat input / output due to the structural change has been conventionally performed. Well known is the Differential Thermal Analysis (DTA) or the Differential Scanning Calorimetory:
DSC).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の分析方法では試料重量が最低でも数mg必要であり、
特に感度を上げた精密な測定を行うためには数10mg
以上なければならないという制約がある。近年、多くの
材料デバイスがサブミクロン以下の厚さの薄膜で構成さ
れ、薄膜はミリ単位の厚さを持つ基板上に形成されるこ
とから、構造変化に伴う熱の出入りを検出する分析法で
は薄膜材料の精密測定は困難であった。
However, these analytical methods require a sample weight of at least several mg,
Several tens of mg in order to perform precise measurements with particularly high sensitivity
There is a constraint that it must be above. In recent years, many material devices are composed of thin films with a thickness of submicron or less, and thin films are formed on a substrate with a thickness of millimeter unit. Precise measurement of thin film materials has been difficult.

【0004】本発明の目的は、薄膜の熱的安定性を定量
的に測定、解析することを可能にした薄膜相変態測定方
法と測定装置を提供することにある。
An object of the present invention is to provide a thin film phase transformation measuring method and a measuring device capable of quantitatively measuring and analyzing the thermal stability of a thin film.

【0005】[0005]

【課題を解決するための手段】本発明の薄膜相変態測定
方法は、被測定薄膜を温度変化させ、これに伴う光学的
特性と電気抵抗変化を同時に測定し、これらの測定値か
ら被測定薄膜の相変態を測定することを特徴とする。こ
の場合、被測定薄膜を所要のガス雰囲気の状態として測
定を行うようにしてもよい。また、光学的特性は、被測
定薄膜に光を投射し、その反射光と透過光を検出する。
この場合、反射光と透過光はそのスペクトルを分光検出
するようにしてもよい。
The thin film phase transformation measuring method of the present invention changes the temperature of a thin film to be measured, simultaneously measures the optical characteristics and the electrical resistance change accompanying this, and from these measured values, the thin film to be measured is measured. It is characterized by measuring the phase transformation of. In this case, the thin film to be measured may be measured in a desired gas atmosphere. As for the optical characteristic, light is projected on the thin film to be measured, and its reflected light and transmitted light are detected.
In this case, the spectrums of the reflected light and the transmitted light may be spectrally detected.

【0006】また、本発明の薄膜相変態測定装置は、被
測定薄膜を加熱または冷却してその温度を任意に設定可
能な手段と、前記被測定薄膜の電気抵抗を測定する手段
と、前記被測定薄膜に対して光を投射する手段と、前記
被測定薄膜の反射光と透過光をそれぞれ検出する手段と
を備えている。また、この測定装置においては、被測定
薄膜を所定のガス雰囲気に保持する手段、あるいは反射
光と透過光を検出する手段としてのスペクトル検出手段
を備えることが好ましい。
Further, the thin film phase transformation measuring apparatus of the present invention comprises means for heating or cooling the thin film to be measured so that its temperature can be arbitrarily set, means for measuring the electric resistance of the thin film to be measured, It is provided with means for projecting light onto the thin film to be measured and means for detecting reflected light and transmitted light from the thin film to be measured. In addition, it is preferable that this measuring apparatus is provided with a spectrum detecting means for holding the thin film to be measured in a predetermined gas atmosphere or a means for detecting reflected light and transmitted light.

【0007】反射率、透過率は薄膜の表面形態や電子状
態を反映したものであり、表面モルフォロジー変化、化
学変化、構造相変化に伴って変化する。また、電気抵抗
はその温度依存性により物質の伝導状態を明確にできる
ほか、構造敏感な物性であるため、構造に依存して大き
く変化される。この物性値は構造敏感な量であることに
加えて、反射率、透過率といった光学的変化は非接触で
測定できるという利点をもち、また電気抵抗には膜が薄
くても高感度な測定が可能であるという特徴がある。す
なわち、DTAやDSCといった熱量測定で問題になる
試料重量が問題にならなくなる。特に、非接触である光
学的手法は極薄膜の構造変化を測定するために有効であ
The reflectance and the transmittance reflect the surface morphology and electronic state of the thin film, and change with the surface morphology change, chemical change, and structural phase change. In addition, the electrical resistance can clarify the conduction state of a substance by its temperature dependence, and has a structure-sensitive physical property, so that it greatly changes depending on the structure. In addition to being a structure-sensitive amount, this physical property value has the advantage that optical changes such as reflectance and transmittance can be measured in a non-contact manner, and electrical resistance can be measured with high sensitivity even if the film is thin. The feature is that it is possible. That is, the sample weight, which is a problem in calorimetric measurement such as DTA or DSC, does not matter. In particular, the non-contact optical method is effective for measuring structural changes in ultrathin films.

【0008】ただし、光学的性質には波長依存性がある
ことから、構造変化を検出するための適切な波長を予め
知る必要がある。例えば、可視光を照射した場合、カル
コゲナイド系物質等の半導体材料は、一般的に光学的性
質は局在電子の励起過程で決まり、励起準位の大きさで
あるバンドギャップは構造に敏感に変化することから、
光学定数をモニタすれば、構造、状態の変化の検出が容
易である。しかし、金属材料の多くは、構造変化に伴う
原子の動きは少なく、周期的ポテンシャルに与える変化
が小さいことから、可視光をモニタして構造変化を検出
することは困難である。
However, since the optical properties have wavelength dependence, it is necessary to know in advance the appropriate wavelength for detecting structural changes. For example, when irradiated with visible light, semiconductor materials such as chalcogenide-based materials generally have optical properties determined by the excitation process of localized electrons, and the band gap, which is the size of the excitation level, changes sensitively to the structure. From doing
By monitoring the optical constants, it is easy to detect changes in structure and state. However, in most metal materials, the movement of atoms due to the structural change is small and the change given to the periodic potential is small, so that it is difficult to detect the structural change by monitoring visible light.

【0009】電気抵抗にはこうした波長依存性のような
選択性はなく、小さな変化を高感度に検出できる。特
に、金属結合を担い電気抵抗にも寄与の大きい自由電子
をもつ金属材料には有効である。ただし、電気抵抗法で
は絶縁材料のような非常に抵抗の高い材料の構造相変態
をモニタするのは困難である。こうした場合には適切な
波長の光を照射してその変化を検出する方が容易であ
る。
The electrical resistance does not have such selectivity as wavelength dependency, and small changes can be detected with high sensitivity. In particular, it is effective for a metal material having free electrons, which plays a role of metal bond and contributes greatly to electric resistance. However, it is difficult to monitor the structural phase transformation of a material having a very high resistance such as an insulating material by the electric resistance method. In such a case, it is easier to irradiate light with an appropriate wavelength and detect the change.

【0010】[0010]

【発明の実施の形態】図1は本発明の測定装置の概略構
成図である。ステージ1にはヒータ等の加熱装置2が埋
設され、また一方では冷却装置3が付設されており、そ
の上に載置する試料100を任意の温度に加熱、冷却す
ることが可能に構成されている。この試料100は例え
ば表面に被測定薄膜102が形成された半導体基板10
1であり、その表面には被測定薄膜の電気抵抗を測定す
るための一対のプローブ4が接触される。また、ステー
ジ1の一部には窓1aが開設され、前記試料100を透
過された光をステージ1の下側にまで透過させるように
構成される。そして、このステージ1は内部を真空或い
は任意のガス雰囲気に設定可能な試料室5内に配置され
ている。また、この試料室5は、少なくとも前記ステー
ジ1の上側及び下側は石英ガラス等により透明窓5a,
5bとして形成され、光を透過することができるように
構成される。
1 is a schematic configuration diagram of a measuring apparatus of the present invention. A heating device 2 such as a heater is embedded in the stage 1, and a cooling device 3 is additionally provided on the other hand. The sample 100 placed on the stage 1 can be heated and cooled to an arbitrary temperature. There is. The sample 100 is, for example, a semiconductor substrate 10 having a thin film to be measured 102 formed on its surface.
1, and a pair of probes 4 for measuring the electric resistance of the thin film to be measured are brought into contact with the surface thereof. Further, a window 1a is opened in a part of the stage 1 so that the light transmitted through the sample 100 is transmitted to the lower side of the stage 1. The stage 1 is placed in a sample chamber 5 whose inside can be set to a vacuum or an arbitrary gas atmosphere. In addition, the sample chamber 5 has at least an upper side and a lower side of the stage 1 made of quartz glass or the like, which are transparent windows 5a
It is formed as 5b and is configured to be able to transmit light.

【0011】前記試料室5の上側の窓5aには、これに
臨んでハーフミラー6が配置され、このハーフミラー6
の一側部には光源7が、また上側部にはフォトダイオー
ド8がそれぞれ配置される。また、下側の窓5bには、
これに臨んでフォトダイオード9が配置される。そし
て、前記光源7からの光をハーフミラー6で反射させた
上で、上側の窓5aを通して試料室5内のステージ1上
の試料100に投射させることで、その反射光は上側の
窓5aを通しかつハーフミラー6を通してフォトダイオ
ード8で受光する。また、試料100の透過光はステー
ジ1の窓1a及び試料室5の下側の窓5bを通してフォ
トダイオード9で受光するように構成される。
A half mirror 6 is arranged in the upper window 5a of the sample chamber 5 so as to face the window 5a.
The light source 7 is arranged on one side and the photodiode 8 is arranged on the upper side. Also, in the lower window 5b,
The photodiode 9 is arranged to face this. Then, after the light from the light source 7 is reflected by the half mirror 6 and then projected onto the sample 100 on the stage 1 in the sample chamber 5 through the upper window 5a, the reflected light is reflected by the upper window 5a. The light is received by the photodiode 8 through the half mirror 6. Further, the transmitted light of the sample 100 is configured to be received by the photodiode 9 through the window 1a of the stage 1 and the window 5b below the sample chamber 5.

【0012】さらに、前記各フォトダイオード8,9に
はエレクトロメータやデジタルマルチメータ等からなる
測定回路10が電気接続されており、各フォトダイオー
ド8,9で検出した信号を測定可能とされている。ま
た、この測定回路10では前記試料100の表面に接触
されているプローブ4が電気接続され、被測定薄膜10
2の電気抵抗を測定することができる。また、前記加熱
装置2や冷却装置3もこれら測定回路10によって制御
され、ステージ1及び試料100の温度制御を行うよう
に構成される。
Further, a measuring circuit 10 including an electrometer, a digital multimeter, etc. is electrically connected to each of the photodiodes 8 and 9 so that a signal detected by each of the photodiodes 8 and 9 can be measured. . In the measuring circuit 10, the probe 4 in contact with the surface of the sample 100 is electrically connected, and the thin film to be measured 10 is measured.
The electrical resistance of 2 can be measured. The heating device 2 and the cooling device 3 are also controlled by these measuring circuits 10 and are configured to control the temperature of the stage 1 and the sample 100.

【0013】この測定装置を用いて、磁気ヘッド材料で
あるNiMn薄膜の加熱に伴う光学的性質と電気抵抗の
変化を測定した。すなわち、NiMn薄膜を有する試料
(100)をステージ1上に載置し、加熱手段2により
徐々に加熱を行いながら試料の温度を変化させる。ま
た、これに伴って光源7からの光をハーフミラー6で反
射させて上側窓5aを通して試料に投射させる。そし
て、この試料からの反射光を上側のフォトダイオード8
で受光し、同時に試料の透過光を下側のフォトダイオー
ド9で受光し、各受光した信号を測定回路10で測定す
る。また、これと同時に試料に通流される電流等をプロ
ーブ4で検出し、これに基づいて測定回路10でその電
気抵抗を測定する。
Using this measuring apparatus, changes in optical properties and electric resistance of the NiMn thin film, which is a magnetic head material, with heating were measured. That is, the sample (100) having a NiMn thin film is placed on the stage 1, and the temperature of the sample is changed while gradually heating it by the heating means 2. Along with this, the light from the light source 7 is reflected by the half mirror 6 and projected onto the sample through the upper window 5a. Then, the reflected light from this sample is reflected by the upper photodiode 8
At the same time, the transmitted light of the sample is received by the lower photodiode 9, and each received signal is measured by the measuring circuit 10. At the same time, the current flowing through the sample is detected by the probe 4, and the electric resistance is measured by the measuring circuit 10 based on this.

【0014】このような測定を行った結果を図2に示
す。同図から判るように、光学的性質の変化は小さく、
特に温度に依存した変化は見られていない。しかし、電
気抵抗は約100℃と300℃で大きく低下している。
これは構造変化に対応しており、この測定装置が薄膜の
構造変化を調べるのに有効であることが示されたことに
なる。
The result of such measurement is shown in FIG. As can be seen from the figure, the change in optical properties is small,
No particular temperature-dependent change was observed. However, the electric resistance is greatly reduced at about 100 ° C and 300 ° C.
This corresponds to the structural change, which means that this measuring device has been shown to be effective for investigating the structural change of the thin film.

【0015】また、前記測定装置を用い、光源に白色光
を用い、光ディスク材料であるGeSbTe薄膜の加熱
に伴う光学的性質と電気抵抗の変化を測定した結果を図
3に示す。同図から判るように、反射率、透過率、電気
抵抗は約200℃で大きく変化されている。構造解析よ
り、この温度で非晶質が結晶化したことが明らかとなっ
た。したがって、この測定装置により結晶化温度の検出
が可能であることが示されたことになる。また、結晶化
温度以下の領域で電気抵抗及び透過率にはクニックが存
在している。約130℃に見られるこの変化は長距離構
造の変化を伴わないことから、非晶質のガラス転移を示
している。ガラス転移は発生する熱的変化が小さいた
め、薄膜試料ではDSC等の熱分析では測定が困難であ
ったが、この測定装置によって容易にこれを把握するこ
とができた。一方、ガラス転移温度以下では電気抵抗が
指数関数的に減少していること、結晶化後も同様の指数
関数的変化が見られていることから、GaSbTe薄膜
は非晶質状態でも結晶状態でも半導体的性質をもった材
料であることがわかり、この系の物性に対する知見も得
ることができた。
FIG. 3 shows the results of measurement of changes in optical properties and electric resistance of the GeSbTe thin film, which is an optical disk material, due to heating, using white light as a light source, using the above measuring apparatus. As can be seen from the figure, the reflectance, the transmittance, and the electric resistance are largely changed at about 200 ° C. Structural analysis revealed that the amorphous crystallized at this temperature. Therefore, it has been shown that the crystallization temperature can be detected by this measuring device. Further, there is a knick in the electric resistance and the transmittance in the region below the crystallization temperature. This change seen at about 130 ° C. is not accompanied by a change in long-range structure and thus indicates an amorphous glass transition. Since the glass transition causes a small thermal change, it was difficult to measure the thin film sample by thermal analysis such as DSC, but this could be easily grasped by this measuring device. On the other hand, since the electric resistance exponentially decreases below the glass transition temperature and the same exponential change is observed even after crystallization, the GaSbTe thin film is amorphous or crystalline and has a semiconductor property. It was found that the material had specific properties, and we could also obtain knowledge on the physical properties of this system.

【0016】図4は本発明の他の実施形態の測定装置の
概略構成図であり、図1の測定装置と等価な部分には同
一符号を付してある。この測定装置では、試料100の
反射光と透過光を検出するフォトダイオード8,9に代
えて、分光検出器11,12を備えている。ここでは、
各分光検出器11,12は、分光プリズム13,14
と、この分光プリブム13,14でそれぞれ分光された
光の光量を検出するための位置敏感型の光検出器15,
16とで構成される。そして、試料室5には、図外のガ
ス供給源から所要のガスが供給される。
FIG. 4 is a schematic block diagram of a measuring apparatus according to another embodiment of the present invention, in which the portions equivalent to those of the measuring apparatus of FIG. In this measuring device, spectroscopic detectors 11 and 12 are provided instead of the photodiodes 8 and 9 that detect reflected light and transmitted light of the sample 100. here,
Each of the spectral detectors 11 and 12 has a spectral prism 13 or 14
And a position-sensitive photodetector 15 for detecting the amount of light dispersed by the spectroscopic prisms 13, 14, respectively.
16 and. Then, the required gas is supplied to the sample chamber 5 from a gas supply source (not shown).

【0017】この図4の測定装置を用い、試料室5に酸
素ガスを供給しながら試料としての錯化合物をステージ
1上で加熱し、前記実施例と同様に光学的性質と電気抵
抗を測定した結果を図5及び図6に示す。図5から判る
ように、約250℃で電気抵抗は大きく上昇し、導電性
の良い状態から絶縁性に変化している。反射光量と透過
光量の総和も同様に約250℃で変化を示している。そ
の変化は抵抗値と比較して小さい。しかし、図6に示し
た試料の反射光、透過光のスペクトル変化から、約25
0℃を境にピーク位置が変化することが判り、分光特性
を検出すれば構造変化が敏感に測定できることが示され
た。
Using the measuring apparatus shown in FIG. 4, the complex compound as a sample was heated on the stage 1 while supplying oxygen gas to the sample chamber 5, and the optical properties and the electric resistance were measured in the same manner as in the above embodiment. The results are shown in FIGS. 5 and 6. As can be seen from FIG. 5, the electric resistance greatly increases at about 250 ° C., and the state of good conductivity changes to the state of insulation. Similarly, the total sum of the reflected light amount and the transmitted light amount also shows a change at about 250 ° C. The change is small compared to the resistance value. However, from the spectrum change of the reflected light and the transmitted light of the sample shown in FIG.
It was found that the peak position changed at 0 ° C, and it was shown that the structural change can be sensitively measured by detecting the spectral characteristics.

【0018】本発明は前記した薄膜以外にも、種々の薄
膜の光学的特性と電気抵抗を測定することで、その薄膜
の構造変化が測定できることは言うまでもない。また、
測定装置は、試料における反射光と透過光、及び電気抵
抗をその温度変化に伴って測定できる構成であれば、図
1及び図4の構成のものに限定されないことは言うまで
もない。
It goes without saying that the present invention can measure the structural change of the thin film by measuring the optical characteristics and electric resistance of various thin films other than the above-mentioned thin films. Also,
It goes without saying that the measuring apparatus is not limited to the configurations shown in FIGS. 1 and 4 as long as it is a configuration capable of measuring the reflected light and the transmitted light in the sample and the electric resistance according to the temperature change.

【0019】[0019]

【発明の効果】以上説明したように本発明の測定方法で
は、被測定薄膜を温度変化させながらその光学的特性と
電気抵抗とを測定することで、被測定薄膜の相変態過程
や化学変化過程を容易にしかも高精度に測定することが
可能となる。また、本発明の測定装置は、被測定薄膜を
温度変化させながらその光学的特性と電気抵抗の測定を
同時にしかも簡単に測定することででき、本発明の薄膜
相変態測定方法を容易に実行することができる。
As described above, according to the measuring method of the present invention, the optical characteristics and the electrical resistance of the thin film to be measured are measured while changing the temperature, so that the phase transformation process or the chemical change process of the thin film to be measured can be performed. Can be measured easily and with high accuracy. Further, the measuring apparatus of the present invention can simultaneously and easily measure the optical characteristics and the electrical resistance of the thin film to be measured while changing the temperature, and easily execute the thin film phase transformation measuring method of the present invention. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の測定装置の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a measuring apparatus according to a first embodiment of the present invention.

【図2】NiMn薄膜の測定結果を示す図である。FIG. 2 is a diagram showing a measurement result of a NiMn thin film.

【図3】GeSbTe薄膜の測定結果を示す図である。FIG. 3 is a diagram showing a measurement result of a GeSbTe thin film.

【図4】本発明の他の実施形態の測定装置の概略構成図
である。
FIG. 4 is a schematic configuration diagram of a measuring device according to another embodiment of the present invention.

【図5】錯化合物の測定結果を示す図である。FIG. 5 is a diagram showing measurement results of complex compounds.

【図6】図5の化合物の分光スペクトル測定結果を示す
図である。
FIG. 6 is a diagram showing the results of spectroscopic measurement of the compound of FIG.

【符号の説明】[Explanation of symbols]

1 ステージ 2 加熱装置 3 冷却装置 4 プローブ 5 試料室 6 ハーフミラー 7 光源 8,9 フォトダイオード 10 測定回路 11,12 分光検出器 100 試料 1 Stage 2 Heating Device 3 Cooling Device 4 Probe 5 Sample Chamber 6 Half Mirror 7 Light Source 8, 9 Photodiode 10 Measuring Circuit 11, 12 Spectral Detector 100 Sample

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被測定薄膜を温度変化させ、これに伴う
光学的特性と電気抵抗変化を同時に測定し、これらの測
定値から被測定薄膜の相変態を測定することを特徴とす
る薄膜相変態測定方法。
1. A thin film phase transformation characterized by changing the temperature of a thin film to be measured, simultaneously measuring optical characteristics and electrical resistance changes accompanying it, and measuring the phase transformation of the thin film to be measured from these measured values. Measuring method.
【請求項2】 被測定薄膜を所要のガス雰囲気の状態と
する請求項1の薄膜相変態測定方法。
2. The thin film phase transformation measuring method according to claim 1, wherein the thin film to be measured is kept in a desired gas atmosphere.
【請求項3】 光学的特性は、被測定薄膜に光を投射
し、その反射光と透過光を検出する請求項1または2の
薄膜相変態測定方法。
3. The thin film phase transformation measuring method according to claim 1 or 2, wherein the optical characteristics are such that light is projected onto a thin film to be measured, and reflected light and transmitted light thereof are detected.
【請求項4】 反射光と透過光のスペクトル分布を分光
検出する請求項3の薄膜相変態測定方法。
4. The thin film phase transformation measuring method according to claim 3, wherein the spectral distributions of the reflected light and the transmitted light are spectrally detected.
【請求項5】 被測定薄膜を加熱または冷却してその温
度を任意に設定可能な手段と、前記被測定薄膜の電気抵
抗を測定する手段と、前記被測定薄膜に対して光を投射
する手段と、前記被測定薄膜の反射光と透過光をそれぞ
れ検出する手段とを備える薄膜相変態測定装置。
5. A means for heating or cooling a thin film to be measured so that its temperature can be arbitrarily set, a means for measuring the electrical resistance of the thin film to be measured, and a means for projecting light on the thin film to be measured. And a thin film phase transformation measuring device comprising means for detecting reflected light and transmitted light of the thin film to be measured.
【請求項6】 被測定薄膜を所定のガス雰囲気に保持す
る手段を備える請求項5の薄膜相変態測定装置。
6. The thin film phase transformation measuring device according to claim 5, further comprising means for holding the thin film to be measured in a predetermined gas atmosphere.
【請求項7】 反射光と透過光を検出する手段がスペク
トル検出手段である請求項5または6の薄膜相変態測定
装置。
7. The thin film phase transformation measuring device according to claim 5, wherein the means for detecting the reflected light and the transmitted light is a spectrum detecting means.
JP32426595A 1995-12-13 1995-12-13 Thin film phase transformation measuring method and measuring device Pending JPH09166561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32426595A JPH09166561A (en) 1995-12-13 1995-12-13 Thin film phase transformation measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32426595A JPH09166561A (en) 1995-12-13 1995-12-13 Thin film phase transformation measuring method and measuring device

Publications (1)

Publication Number Publication Date
JPH09166561A true JPH09166561A (en) 1997-06-24

Family

ID=18163882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32426595A Pending JPH09166561A (en) 1995-12-13 1995-12-13 Thin film phase transformation measuring method and measuring device

Country Status (1)

Country Link
JP (1) JPH09166561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278524A (en) * 2013-05-27 2013-09-04 广西启利新材料科技股份有限公司 Measurement method for phase-change temperature of compound paraffin phase-change material
CN104880480A (en) * 2015-06-16 2015-09-02 北京科技大学 Numerical differentiation method for calculating phase transformation volume ratio
WO2017152397A1 (en) * 2016-03-09 2017-09-14 中南大学 Method for testing phase transformation point of aluminium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215444A (en) * 1985-07-12 1987-01-23 Matsushita Electric Ind Co Ltd Method for measuring activation energy of thin film
JPH06244255A (en) * 1993-02-19 1994-09-02 Sony Corp Monitoring method for phase change of semiconductor and crystallizng method for semiconductor using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215444A (en) * 1985-07-12 1987-01-23 Matsushita Electric Ind Co Ltd Method for measuring activation energy of thin film
JPH06244255A (en) * 1993-02-19 1994-09-02 Sony Corp Monitoring method for phase change of semiconductor and crystallizng method for semiconductor using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278524A (en) * 2013-05-27 2013-09-04 广西启利新材料科技股份有限公司 Measurement method for phase-change temperature of compound paraffin phase-change material
CN104880480A (en) * 2015-06-16 2015-09-02 北京科技大学 Numerical differentiation method for calculating phase transformation volume ratio
CN104880480B (en) * 2015-06-16 2017-10-31 北京科技大学 A kind of method that two phase in version volume ratios are determined based on numerical differentiation method
WO2017152397A1 (en) * 2016-03-09 2017-09-14 中南大学 Method for testing phase transformation point of aluminium alloy
US10883946B2 (en) 2016-03-09 2021-01-05 Central South University Method for testing phase transformation point of aluminum alloy

Similar Documents

Publication Publication Date Title
Borroni-Bird et al. Single crystal adsorption microcalorimetry
US5118200A (en) Method and apparatus for temperature measurements
US7141440B2 (en) Apparatus and method for measuring a property of a layer in a multilayered structure
WO2012012258A2 (en) Temperature-adjusted spectrometer
Kim et al. Temperature dependence of the optical properties of CdTe
US5792667A (en) Process and a device for the detection of surface plasmons
JPH09166561A (en) Thin film phase transformation measuring method and measuring device
WO2018204545A1 (en) Method for rapid temperature measurement and apparatus thereof
US6375349B1 (en) Instrument configured to test multiple samples for the determination of thermophysical properties by the flash method
Kappert et al. Temperature calibration procedure for thin film substrates for thermo-ellipsometric analysis using melting point standards
JP2000346818A (en) Thermal diffusivity measuring method of thin film by means of laser heating angstrom method and measuring device therefor
US5022765A (en) Nulling optical bridge for contactless measurement of changes in reflectivity and/or transmissivity
Park et al. Precision measurements of the effect of implanted boron on silicon solid phase epitaxial regrowth
Hemberger et al. Determination of the thermal diffusivity of electrically non-conductive solids in the temperature range from 80 K to 300 K by laser-flash measurement
Morris et al. Exciton dynamics in molecular crystals from line shape analysis. Time response function of singlet excitons in crystal anthracene
Jorez et al. Low-cost optical instrumentation for thermal characterization of MEMS
Guidotti et al. Novel and nonintrusive optical thermometer
JP2003177093A (en) Infrared analysis apparatus
El Helou et al. Temperature dependence of the thermoreflectance coefficient of gold by the use of a phase-locked single-point measurement approach
Decker et al. The design and operation of a precise, high sensitivity adiabatic laser calorimeter for window and mirror material evaluation
Yamada et al. In situ silicon-wafer surface-temperature measurements utilizing polarized light
US20040263867A1 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
JPH0456145A (en) Measuring device for substrate temperature in plasma
Ahrens et al. Measurement of optical absorption in dielectric reflectors
JPH06349606A (en) Diamond thermistor and manufacture thereof