JPH09164577A - Laminated resin molded body having wavily folded sectional structure and manufacture thereof - Google Patents

Laminated resin molded body having wavily folded sectional structure and manufacture thereof

Info

Publication number
JPH09164577A
JPH09164577A JP7347161A JP34716195A JPH09164577A JP H09164577 A JPH09164577 A JP H09164577A JP 7347161 A JP7347161 A JP 7347161A JP 34716195 A JP34716195 A JP 34716195A JP H09164577 A JPH09164577 A JP H09164577A
Authority
JP
Japan
Prior art keywords
resin
laminated resin
laminated
molded body
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7347161A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsukura
義弘 松庫
Takahisa Kamiyama
隆久 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP7347161A priority Critical patent/JPH09164577A/en
Publication of JPH09164577A publication Critical patent/JPH09164577A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • B29C48/337Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging at a common location
    • B29C48/338Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging at a common location using a die with concentric parts, e.g. rings, cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated resin film having small Young's modulus and large extension ratio by a method wherein this film is produced by pinching an intermediate laminated resin layer having a wavily folded sectional structure between skin resin layers. SOLUTION: By executing a heat shrinkage treatment by holding a laminated resin molded body having heat shrinkable skin resin layers I and II at the temperature higher than the softening temperature of the resins I and II, a laminated resin molded body 100A, to the intermediate laminated resin layer of which wavily folded sectional structure is given selectively, is produced. Thus, by applying an extension treatment to the laminated resin molded body, the skin resin layers I and II of which are made of an elastomer, to the direction parallel or normal to its axis so as to release stress, the laminated resin molded body 100A, to the intermediate laminated resin layer I of which a wavily folded sectional structure is given selectively. By producing the above-mentioned structure, a laminated resin film excellent in breaking strength can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特殊な波状褶曲断
面構造を有するシート状ないしフィルム状の積層樹脂成
形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-shaped or film-shaped laminated resin molding having a special wavy fold cross-section structure.

【0002】[0002]

【従来の技術】シートないしフィルム(以下、特に厚み
を限定する意図を持たずに、包括的に「フィルム」と称
する)状の樹脂に、単独の樹脂では得られない特性を付
与するために複数の樹脂を複合してフィルム化すること
が広く行なわれている。複合フィルムの典型例として
は、複数樹脂混合物の単層成形フィルム、複数樹脂層の
積層フィルムがある。得られる複合フィルムの特性は、
上記複合の態様によっても、もちろん異なり得るが、一
般に構成樹脂(フィルム)の中間的な特性に落ち付くこ
とが多い。例えば複数の構成樹脂層のそれぞれが端部ま
で一様に平行に積層された従来の積層樹脂フィルムは、
面方向において、構成樹脂層の中間的な性質を示す場合
が多い。これは、これで多くの場合に満足できるもので
あるが、場合によっては、単純な積層形態では得られな
い特性を有するフィルムが望ましい場合もある。
2. Description of the Related Art A resin in the form of a sheet or a film (hereinafter, referred to generically as a "film" without specifically intending to limit the thickness) is provided with a plurality of layers in order to impart characteristics that cannot be obtained by a single resin. It is widely practiced to combine these resins to form a film. Typical examples of the composite film include a single-layer molded film of a plurality of resin mixtures and a laminated film of a plurality of resin layers. The characteristics of the resulting composite film are
Of course, it may differ depending on the above-mentioned composite mode, but in general, the intermediate properties of the constituent resin (film) are often settled. For example, a conventional laminated resin film in which each of a plurality of constituent resin layers is evenly laminated in parallel to the end,
In many cases, it exhibits intermediate properties of the constituent resin layers in the plane direction. While this is often satisfactory, it may be desirable in some cases to have films with properties that are not available in simple laminated forms.

【0003】[0003]

【発明が解決しようとする課題】上述した事情に鑑み、
本発明の主要な目的は、特定の波状褶曲断面構造を有
し、該構造に基づく特徴的性質を有する積層樹脂成形体
を提供することにある。
In view of the above-mentioned circumstances,
A main object of the present invention is to provide a laminated resin molding having a specific wavy fold cross-section structure and having characteristic properties based on the structure.

【0004】本発明のより特定的な目的は、ヤング率が
小で、伸度の大なる積層樹脂フィルムを提供することに
ある。
A more specific object of the present invention is to provide a laminated resin film having a small Young's modulus and a large elongation.

【0005】本発明の別の目的は、弾性(伸縮寸法回復
性)に富み、破断強度の大なる積層樹脂フィルムを提供
することにある。
Another object of the present invention is to provide a laminated resin film which is rich in elasticity (elasticity dimension recovery property) and has a high breaking strength.

【0006】[0006]

【課題を解決するための手段】本発明者らは、積層樹脂
成形体について研究する過程で、複数の異なる樹脂から
なり、主たる二表面を有し、該二表面に直交する少なく
とも一の断面において、前記複数の樹脂の層が前記二表
面に対し斜めに積層されてなることを特徴とする積層樹
脂成形体(平成6年特許願第251629号。以下、
「先願の積層樹脂成形体」あるいは単に「斜め樹脂成形
体」ということがある)を得るに至った。そして、更に
研究した結果、この斜め樹脂成形体を一対の表層樹脂層
間に挾持した積層樹脂成形体を、熱収縮あるいは伸長後
の伸長応力除去等の応力緩和処理に付した場合には、中
央の前記斜め樹脂成形体部分に特徴的な波状褶曲断面構
造が発生した積層樹脂成形体が得られることが見出され
た。そして、このようにして得られた特徴的な波状褶曲
断面構造を有する積層樹脂成形体は、表層樹脂層の特性
にもよるが、前記波状褶曲断面構造に起因して、小なる
ヤング率と大なる伸度、あるいは全体として豊かな弾性
(伸縮寸法回復性)と大なる破断強度で代表される、材
料樹脂のみからは期待し得ない特徴的な性質を有するこ
とが見出された。
Means for Solving the Problems In the process of studying a laminated resin molded body, the present inventors have made up of a plurality of different resins, have two main surfaces, and have at least one cross section orthogonal to the two surfaces. A laminated resin molded body (1994, Japanese Patent Application No. 251629), wherein the plurality of resin layers are laminated obliquely with respect to the two surfaces.
"The laminated resin molded product of the prior application" or simply "oblique resin molded product" may be obtained. Then, as a result of further research, when the laminated resin molded body sandwiching this diagonal resin molded body between a pair of surface resin layers is subjected to stress relaxation treatment such as heat shrinkage or extension stress removal after elongation, It has been found that a laminated resin molded product in which a characteristic wavy fold cross-section structure is generated in the oblique resin molded product portion can be obtained. The laminated resin molded product having the characteristic wavy fold cross-section structure thus obtained has a small Young's modulus and a large Young's modulus due to the wavy fold cross-section structure, although it depends on the characteristics of the surface resin layer. It has been found that it has a characteristic property that cannot be expected only from the material resin, which is represented by the following elongation, or abundant elasticity (elasticity dimension recovery property) and large breaking strength as a whole.

【0007】本発明は、このような知見に基づくもので
あり、その積層樹脂成形体は、波状褶曲断面構造を有す
る中間積層樹脂層が表層樹脂層間に挾持されてなること
を特徴とする。
The present invention is based on such knowledge, and the laminated resin molding is characterized in that an intermediate laminated resin layer having a wavy fold cross-section structure is sandwiched between surface resin layers.

【0008】また、本発明の積層樹脂成形体の製造法
は、複数の異なる樹脂からなり、主たる二表面を有し、
該二表面に直交する少なくとも一の断面において、前記
複数の樹脂の層が前記二表面に対し斜めに積層されてな
る中間積層樹脂層の該二表面に一対の表層樹脂層を形成
してなる原積層樹脂成形体を用意し、該原積層樹脂成形
体に応力緩和処理を施して、前記中間積層樹脂層に波状
褶曲断面構造を付与することを特徴とするものである。
Further, the method for producing a laminated resin molding of the present invention comprises a plurality of different resins and has two main surfaces,
In at least one cross section orthogonal to the two surfaces, a raw material obtained by forming a pair of surface resin layers on the two surfaces of an intermediate laminated resin layer in which the plurality of resin layers are laminated obliquely with respect to the two surfaces. It is characterized in that a laminated resin molded body is prepared, and the original laminated resin molded body is subjected to stress relaxation treatment to impart a wavy fold cross-section structure to the intermediate laminated resin layer.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面を参照しつ
つ、より具体的に説明するが、本発明の積層樹脂成形体
の理解のためには、先願の積層樹脂成形体(斜め樹脂成
形体)を説明することが便宜と思われるので、まず、こ
れを従来の積層樹脂成形体(フィルム)との対比におい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to the drawings. To understand the laminated resin molded product of the present invention, the laminated resin molded product (oblique resin) Since it is convenient to describe a molded body), first, this will be described in comparison with a conventional laminated resin molded body (film).

【0010】従来の、積層樹脂フィルムは、図1の
(a)、(b)、(c)にそれぞれ、概念的斜視図、軸
に平行する縦(MD)方向部分断面図、軸に直交する横
(TD)方向部分断面図により示すように、構成樹脂層
A、Bが一様に端部まで主たる二表面に平行に積層した
ものである。
A conventional laminated resin film is a conceptual perspective view, a longitudinal (MD) partial cross-sectional view parallel to an axis, and a direction orthogonal to the axis, respectively, in FIGS. 1 (a), 1 (b) and 1 (c). As shown by the partial cross-sectional view in the transverse (TD) direction, the constituent resin layers A and B are evenly laminated in parallel to the two main surfaces to the ends.

【0011】これに対し、先願の積層樹脂成形体は、そ
の好ましい製造方法の一例としてのスパイラルダイを用
いて得られる、一例としての積層樹脂フィルム1の概念
的斜視図、MD方向部分断面図およびTD方向部分断面
図を、それぞれ図2の(a)、(b)、(c)に示すよ
うに、MD方向断面は、各樹脂層A、Bが交互に主たる
二表面1a、1bに平行に積層した形態を示す(図2
(b))が、TD方向断面には、各樹脂層A、Bのそれ
ぞれが、主たる二表面1a、1bに到達するようにして
交互に斜めに積層して存在する。但し、個々の樹脂層
A、Bが、積層樹脂フィルム1の主たる二表面1a、1
bとなす角度θ(゜)は、図2(c)に誇張して表現さ
れるほどには大きくなく、一般に0゜超過4゜以下の範
囲、特に0.001゜〜0.4゜の範囲である。なお、
該角度θは、次の関係式により表わすことができる(展
開角(ω(゜))は後述する)。
On the other hand, the laminated resin molded product of the prior application is a conceptual perspective view of a laminated resin film 1 as an example, which is obtained by using a spiral die as an example of a preferable manufacturing method, and a partial cross-sectional view in the MD direction. As shown in (a), (b), and (c) of FIG. 2 and partial cross-sectional views in the TD direction, the MD-direction cross section is parallel to the two main surfaces 1a and 1b where the resin layers A and B are alternately main. Shows the form of stacking on (Fig. 2
(B)), in the TD direction cross section, the respective resin layers A and B are alternately laminated so as to reach the two main surfaces 1a and 1b. However, the individual resin layers A and B are the two main surfaces 1a and 1 of the laminated resin film 1.
The angle θ (°) formed with b is not so large that it is exaggeratedly expressed in FIG. 2 (c), and is generally in the range of more than 0 ° and 4 ° or less, particularly in the range of 0.001 ° to 0.4 °. Is. In addition,
The angle θ can be expressed by the following relational expression (a development angle (ω (°)) will be described later).

【0012】tanθ=[積層樹脂フィルムの厚さ(m
m)]/[筒状の積層樹脂フィルムの円周の長さ(m
m)×展開角(ω)/360゜] このような特徴的な斜め積層構造の結果として、先願の
積層樹脂フィルムは、厚さ方向における特性(例えば、
圧縮性、ガスバリアー性など)は、従来の平行積層型積
層樹脂フィルムと同等であるが、面に平行な方向、特に
TD方向、における特性は、構成樹脂A、Bのうちヤン
グ率、降伏応力等の機械的特性の小なる側の樹脂により
優先的に支配され、且つ変形性の大なる積層樹脂フィル
ムとして得られる。
Tan θ = [thickness of laminated resin film (m
m)] / [circumferential length of cylindrical laminated resin film (m
m) × deployment angle (ω) / 360 °] As a result of such a characteristic diagonal laminated structure, the laminated resin film of the prior application has characteristics in the thickness direction (for example,
(Compressibility, gas barrier property, etc.) is the same as that of the conventional parallel-lamination-type laminated resin film, but the properties in the direction parallel to the plane, particularly in the TD direction, are the Young's modulus and the yield stress of constituent resins A and B. It is obtained as a laminated resin film which is preferentially controlled by a resin having a small mechanical property such as, and has a large deformability.

【0013】一般に、好ましい製造方法としてのスパイ
ラルダイを用いるインフレーション法による製造を考慮
した場合、複数(n;ただしnは自然数である)の異な
る樹脂すなわち積層用の樹脂種数(n)は、2〜4、一
方、後述するスパイラル流路溝24a、24b等を合計
したスパイラル流路溝数(m;ただしmは自然数で、n
<mの関係にある)換言するとスパイラル条数(m)
は、4〜256溝、更には8〜128溝、特に16〜6
4溝程度とすることが好ましく、特定の面方向位置にお
ける厚み方向積層数は、4〜100層、特に6〜20層
であることが好ましい。この厚み方向積層数は、スパイ
ラル流路溝数(スパイラル条数)mと、展開角ωとから
m×ω/360゜として求まるものである。積層樹脂成
形体の全体厚さは、例えば溶融押出パリソンのまま用い
ること、あるいはインフレーション倍率(延伸倍率)の
制御によりかなり巾広く制御可能である。
In general, when considering the production by the inflation method using a spiral die as a preferable production method, a plurality (n; where n is a natural number) of different resins, that is, the number of resin species (n) for lamination is 2. On the other hand, the total number of spiral flow passage grooves 24a, 24b, etc. described later (m; where m is a natural number, n
<There is a relationship of m) In other words, the spiral thread number (m)
4 to 256 grooves, further 8 to 128 grooves, especially 16 to 6 grooves
The number of grooves is preferably about 4, and the number of laminated layers in the thickness direction at a specific surface direction position is preferably 4 to 100 layers, and particularly preferably 6 to 20 layers. The number of laminated layers in the thickness direction can be obtained as m × ω / 360 ° from the number of spiral channel grooves (number of spiral threads) m and the expansion angle ω. The entire thickness of the laminated resin molded product can be controlled in a considerably wide range by using, for example, the melt extruded parison as it is or by controlling the inflation ratio (stretching ratio).

【0014】次に、先願の積層樹脂成形体の好ましい製
造方法としてのスパイラルダイを用いたインフレーショ
ン法(それ自体は、同日の平成6年特許願第25162
8号の主題である)の概要について述べる。
Next, an inflation method using a spiral die as a preferable method for producing the laminated resin molding of the prior application (itself is the same as that of 1994, Japanese Patent Application No. 25162).
(Which is the subject of No. 8).

【0015】まず、比較のために、従来の多層用スパイ
ラルダイを用いる方法について、図3に基づいて説明す
る。まず押出機10a(図示せず)より押出されてスパ
イラルダイ11内に導入された樹脂Bは、第1ダイリン
グ(最内リング)12aの外周近傍に配置されたいわゆ
る(逆)トーナメント型の分岐路13a(複数あるが一
のみ図示)により均一に分岐されながら、第1ダイリン
グ12aの外周面に設けられた複数のスパイラル流路溝
14aに導入される。スパイラル流路溝14aの各々
は、進行方向(上方)に進むに従って次第に小さくなる
溝深さを有し、ここを通る溶融樹脂Bの流れは第2ダイ
リング12bとの間隙で溝を溢れた漏洩流を形成しつつ
螺旋状に上方へと進行し、遂には溝のない筒状流路15
aを均質な軸方向筒状流として上方に進行し、合流点1
6に至る。他方、押出機10bより押出された溶融樹脂
Aの流れは同様に分岐、漏洩流を伴う螺旋流れを経て、
筒状流路15bを通る均質な軸方向筒状流となり、合流
点16に至る。また押出機10cにより押出された溶融
樹脂Bの流れも、同様に分岐、漏洩流を伴う螺旋流れを
経て、筒状流路15cを通る均質な軸方向筒状流とな
り、合流点16に至る。合流点16において、これら三
つの筒状溶融樹脂流は積層され、積層筒状体としてダイ
リップ17より押出される。ダイリップ17より押出さ
れた積層筒状体は、図3(b)に示すように、樹脂層A
を中間層として、その両側に樹脂層Bが存在する筒状積
層体を構成する。
First, for comparison, a method using a conventional multilayer spiral die will be described with reference to FIG. First, the resin B extruded from the extruder 10a (not shown) and introduced into the spiral die 11 is a so-called (reverse) tournament type branch arranged near the outer periphery of the first die ring (innermost ring) 12a. It is introduced into a plurality of spiral flow passage grooves 14a provided on the outer peripheral surface of the first die ring 12a while being uniformly branched by a passage 13a (only one is shown). Each of the spiral flow passage grooves 14a has a groove depth that gradually decreases as it advances in the traveling direction (upward), and the flow of the molten resin B passing therethrough overflows the groove in the gap with the second die ring 12b and leaks. A tubular flow path 15 that spirals upward while forming a flow, and finally has no groove.
a as a uniform axial tubular flow, traveling upwards, and at the confluence 1
To 6. On the other hand, the flow of the molten resin A extruded from the extruder 10b is similarly branched and goes through a spiral flow accompanied by a leakage flow,
A uniform tubular flow in the axial direction passes through the tubular flow path 15b and reaches the confluence 16. Further, the flow of the molten resin B extruded by the extruder 10c also undergoes a spiral flow accompanied by branching and leakage flow in the same manner to become a uniform axial tubular flow passing through the tubular flow passage 15c, and reaches the confluence point 16. At the confluence point 16, these three tubular molten resin streams are laminated and extruded from the die lip 17 as a laminated tubular body. The laminated tubular body extruded from the die lip 17 has a resin layer A as shown in FIG.
Is used as an intermediate layer to form a tubular laminate having the resin layers B on both sides thereof.

【0016】これに対し、図4(a)は、先願の積層樹
脂成形体の好ましい製造方法に用いられるスパイラルダ
イ21の模式断面図であり、押出機20aおよび20b
より押出されて、それぞれスパイラルダイ21に導入さ
れた溶融樹脂AおよびBの流れは、それぞれ、それ自体
は図3(a)の13aと同様な(逆)ト−ナメント型の
分岐路(図示せず、後述)によって分岐されたのち、そ
れぞれ複数のスパイラル流路溝24a、24bに導入さ
れる。その後、これらスパイラル流路溝に沿って漏洩流
を伴う螺旋流れとして、内側ダイリング22aと外側ダ
イリング22bの間の単一の筒状流路を上方に進行する
過程で、これら溶融樹脂AとBとが交互に斜めに積層さ
れ、スパイラル流路溝のない筒状流路25を経てダイリ
ップ27から押出される。押出された積層筒状体は、図
4(b)に示すように、樹脂AとBとが交互にその主た
る二表面に対して斜めに積層した周方向断面(軸に直交
する横(TD)方向断面)を有することとなる。
On the other hand, FIG. 4 (a) is a schematic cross-sectional view of the spiral die 21 used in the preferred method for producing the laminated resin molding of the prior application, and the extruders 20a and 20b.
The flows of the molten resins A and B that are further extruded and introduced into the spiral die 21 respectively are (reverse) tournament type branch passages (not shown) that are similar to 13a in FIG. 3A. Instead, after being branched by (described later), they are introduced into the plurality of spiral flow channel grooves 24a and 24b, respectively. Then, as a spiral flow accompanied by a leakage flow along these spiral flow grooves, the molten resin A and the molten resin A are formed in a process of moving upward through a single cylindrical flow path between the inner die ring 22a and the outer die ring 22b. B are alternately stacked obliquely and extruded from the die lip 27 through the cylindrical flow path 25 having no spiral flow path groove. As shown in FIG. 4 (b), the extruded laminated tubular body has a circumferential cross-section in which resins A and B are alternately laminated obliquely with respect to the two main surfaces thereof (transverse direction (TD) orthogonal to the axis). Direction cross section).

【0017】図5は、溶融樹脂流AおよびBの分配−積
層の態様をより詳しく説明するための、図4(a)の一
点鎖線で囲んだ枠III部の模式斜視図である。すなわ
ち、押出機20aおよび20bを通じてスパイラルダイ
21内に導入された溶融樹脂流A、Bは、まずトーナメ
ント分岐点23a1、23b1に到達し、ここから更に
分岐点23a2、23b2・・・を通じて分岐をそれぞ
れ繰り返し、最終分岐点23a3、23b3を過ぎたの
ち、分配部最終流路28a、28b、28a、28b・
・・に導入され、ここからはスパイラル流路溝24a、
24b、24a、24b・・・に溶融樹脂流A、Bが交
互に流入する。なお、ここでスパイラル流路溝24a、
24b、24a、24b・・・の開始点(分配部最終流
路28a、28b、28a、28b・・・の終点)は、
内側ダイリング22aの同一円周線上に位置している。
そして、スパイラル流路溝24a、24bに入った溶融
樹脂流A、Bは、当初は、専ら該スパイラル流路溝24
a、24bに沿った螺旋流として進むが、次第に内側ダ
イリング22a、特にそのスパイラル山22aaと、外
側ダイリング22bとの間隙である流路22abにスパ
イラル山22aaを乗り越える漏洩流が流路に沿って
(すなわち上方へと)生ずる。すなわち、あたかも樹脂
A、樹脂Bの溶融樹脂流膜が円周方向に形成される如く
各スパイラル流路溝から流出する。そして、かくして形
成された樹脂A、樹脂Bの溶融樹脂流膜は、それぞれ下
流側のスパイラル溝24b、24aから流出した樹脂
B、樹脂Aの溶融樹脂流膜に、それぞれ、即ち溶融樹脂
流膜Aと溶融樹脂流膜Bとが交互にかぶさるように積層
されていく。その積層される角度は、各スパイラル流路
溝から漏洩する樹脂の展開角ω(図4(b))に一致す
る。すなわち、スパイラル流路溝の開始点が外表面側を
形成し、積層されるに従って内表面側へと移動して、展
開角ωだけ移動したところで内表面に到達する。このよ
うに樹脂Aと樹脂Bは、それぞれの展開角ω分だけ傾斜
した状態で積層される(図4(b))。展開角ω(゜)
は、樹脂A、Bのそれぞれについて形成されるスパイラ
ル流路溝24a、24bの当初深さ、および次第に浅く
なる割合等によって制御可能であるが、一般に60゜〜
720゜の範囲、好ましくは80゜〜360゜の範囲、
より好ましくは130゜〜230゜の範囲である。展開
角ωが60゜未満では、得られる積層体に厚み斑が多く
なり、一方、720゜超過では、成形時にスパイラルダ
イ内での圧力が大きくなり、成形加工が難しくなる。
FIG. 5 is a schematic perspective view of the frame III portion surrounded by the one-dot chain line in FIG. 4 (a) for explaining the distribution-lamination aspect of the molten resin flows A and B in more detail. That is, the molten resin flows A and B introduced into the spiral die 21 through the extruders 20a and 20b first reach the tournament branch points 23a1 and 23b1, and further branch therefrom through the branch points 23a2, 23b2. After repeating the final branch points 23a3 and 23b3, the distribution section final flow paths 28a, 28b, 28a, 28b
.. from which the spiral flow channel 24a,
The molten resin streams A and B alternately flow into 24b, 24a, 24b, .... Here, the spiral flow path groove 24a,
The start points of 24b, 24a, 24b ... (End points of the distribution section final flow paths 28a, 28b, 28a, 28b ...)
It is located on the same circumferential line of the inner die ring 22a.
The molten resin flows A and B that have entered the spiral flow passage grooves 24a and 24b are initially exclusively filled with the spiral flow passage grooves 24.
Although it proceeds as a spiral flow along a and 24b, a leak flow gradually gets over the spiral mountain 22aa in the flow path 22ab which is a gap between the inner die ring 22a, especially the spiral mountain 22aa and the outer die ring 22b. (That is, upward). That is, as if the molten resin flow film of the resin A and the resin B is formed in the circumferential direction, it flows out from each spiral flow path groove. The molten resin flow films of the resin A and the resin B thus formed are respectively transferred to the molten resin flow films of the resin B and the resin A flowing out from the spiral grooves 24b and 24a on the downstream side, that is, the molten resin flow film A. And the molten resin flow film B are laminated so as to be alternately covered. The stacked angle corresponds to the expansion angle ω (FIG. 4B) of the resin leaking from each spiral channel. That is, the starting point of the spiral flow channel forms the outer surface side, moves toward the inner surface side as the layers are stacked, and reaches the inner surface when moved by the development angle ω. In this way, the resin A and the resin B are stacked in a state of being inclined by the respective development angles ω (FIG. 4B). Deployment angle ω (°)
Can be controlled by the initial depth of the spiral flow passage grooves 24a, 24b formed for each of the resins A, B, the ratio of gradually decreasing depth, etc.
720 ° range, preferably 80 ° -360 ° range,
More preferably, it is in the range of 130 ° to 230 °. When the expansion angle ω is less than 60 °, the resulting laminate has many thickness irregularities, while when it exceeds 720 °, the pressure in the spiral die during molding becomes large, and the molding process becomes difficult.

【0018】図4に戻って、ダイリップより押出された
積層筒状体を、拡周ならびに薄肉化のためのインフレー
ション工程に付したのち一般には軸と平行な方向に切裂
くことにより図2(a)〜(c)に示すような先願の積
層樹脂成形体が得られる。
Returning to FIG. 4, the laminated tubular body extruded from the die lip is subjected to an inflation process for expanding and thinning, and is then torn in a direction generally parallel to the axis as shown in FIG. ) To (c), the laminated resin molded product of the prior application can be obtained.

【0019】本発明の積層樹脂成形体の製造法において
は、図2(b)、(c)に対応して、図6(a)、
(b)に示すように、上記のようにして得られた先願の
積層樹脂成形体(斜め樹脂成形体)1の両表面に一対の
表層樹脂層IおよびIIを配置した原積層樹脂成形体1
00を用意する。このような原積層樹脂成形体100
は、好ましくは図4および図5で示した複数樹脂を交互
に流入加工できるように形成したスパイラルダイの前後
に更に表層樹脂層IおよびIIを形成可能なダイを設け
ることにより、斜め樹脂成形体1の形成と同時にこの斜
め樹脂成形体1の主たる二表面を表層樹脂層IおよびI
Iで挾持した一体の積層樹脂成形体100として形成可
能である。換言すれば、図3に示す従来の(3層)積層
用スパイラルダイにおいて、押出機10aおよび10c
ならびにこれらに連結されたダイを層I、および層II
の形成用に用い、押出機10bおよびこれに連結された
流路溝15bを有するダイを、図4および図5で示した
二台の押出機およびスパイラルダイに置換したスパイラ
ルダイにそれぞれ変更すればよい。
In the method for producing a laminated resin molded product of the present invention, FIG. 6 (a) corresponds to FIGS. 2 (b) and 2 (c).
As shown in (b), an original laminated resin molded product in which a pair of surface resin layers I and II are arranged on both surfaces of the laminated resin molded product (oblique resin molded product) 1 of the prior application obtained as described above. 1
00 is prepared. Such an original laminated resin molded body 100
Is preferably provided with a die capable of further forming surface resin layers I and II before and after the spiral die formed so that a plurality of resins shown in FIGS. 4 and 5 can be alternately flow-processed. Simultaneously with the formation of No. 1, the two main surfaces of this oblique resin molded body 1 are covered with surface resin layers I and I.
It can be formed as an integral laminated resin molded body 100 held by I. In other words, in the conventional (three-layer) laminating spiral die shown in FIG. 3, extruders 10a and 10c are used.
And the dies connected to them by layer I and layer II
When the extruder 10b and the die having the flow channel 15b connected to the extruder 10b used for forming the above are replaced with the spiral die replaced with the two extruders and the spiral die shown in FIGS. 4 and 5, respectively. Good.

【0020】本発明に従い、図6に示すような原積層樹
脂成形体に応力緩和処理を施すと、図7に示すような、
斜め樹脂成形体の1の部分にほぼ選択的に波状褶曲断面
構造を発生させることができる。
According to the present invention, when stress relaxation treatment is applied to the original laminated resin molding as shown in FIG. 6, as shown in FIG.
It is possible to almost selectively generate the wavy fold cross-section structure in the portion 1 of the diagonal resin molded body.

【0021】次に、図6〜7に示した例に基づいて、本
発明の積層樹脂成形体の好ましい層構成について述べ
る。
Next, based on the examples shown in FIGS. 6 to 7, the preferable layer constitution of the laminated resin molding of the present invention will be described.

【0022】本発明の積層樹脂成形体の基本的な特性を
決定するのは中間積層樹脂層であり、構成樹脂層A、B
の少なくとも一方、例えば樹脂A、を機能性樹脂で構成
することが好ましい。
It is the intermediate laminated resin layer that determines the basic characteristics of the laminated resin molding of the present invention, and the constituent resin layers A and B.
It is preferable that at least one of the two, for example, the resin A, is composed of a functional resin.

【0023】このような機能性樹脂の好ましい例として
は、EVOH(エチレン−酢酸ビニル共重合体ケン化
物)、ポリアミド、ポリビニルアルコール、ポリエステ
ル、ポリヒドロキシポリエーテル、ポリ塩化ビニリデン
等のガスバリアー性樹脂等が挙げられる。このようなガ
スバリアー性樹脂の使用により本発明の積層樹脂成形体
をガスバリアー性にすぐれたものとすることができる。
なかでも、本発明の波状褶曲断面構造を有する積層樹脂
成形体の特性を生かすべく、比較的剛性が大で伸縮変形
性の乏しいものが好適に用いられる。
Preferred examples of such a functional resin include EVOH (saponified ethylene-vinyl acetate copolymer), polyamide, polyvinyl alcohol, polyester, polyhydroxypolyether, polyvinylidene chloride, and other gas barrier resins. Is mentioned. By using such a gas barrier resin, the laminated resin molded product of the present invention can have excellent gas barrier properties.
Among them, in order to take advantage of the characteristics of the laminated resin molded product having the wavy fold cross-section structure of the present invention, those having relatively large rigidity and poor stretchability and deformability are preferably used.

【0024】前記機能性樹脂Aと組合せるべき樹脂B
は、機能性樹脂Aと接着性が良好で、機能性樹脂Aより
は小なる弾性率(ヤング率)を有する樹脂が好ましく、
より具体的には、VLDPE(超低密度、ポリエチレ
ン)、LDPE(低密度ポリエチレン)等のポリオレフ
ィン、あるいはEVA(エチレン−酢酸ビニル共重合
体)、EMAA(エチレン−メタクリル酸共重合体)、
EAA(エチレン−アクリル酸共重合体)、EMA(エ
チレン−アクリル酸メチル共重合体)、EEA(エチレ
ン−アクリル酸エチル共重合体)、エチレン−プロピレ
ン共重合体等のオレフィン共重合体、からなるオレフィ
ン系樹脂、更にはこれらの酸変性物;熱可塑性ポリウレ
タン、SBS(スチレン−ブタジエン−スチレン共重合
体、SIS(スチレン−イソプレン−スチレン共重合
体)、SEBS(水添スチレン−ブタジエン−スチレン
共重合体)、SEIS(水添スチレン−イソプレン−ス
チレン共重合体)、ポリエステル系エラストマー、ポリ
アミド系エラストマーなどのエラストマーが挙げられ
る。
Resin B to be combined with the functional resin A
Is preferably a resin having good adhesiveness to the functional resin A and having an elastic modulus (Young's modulus) smaller than that of the functional resin A,
More specifically, polyolefin such as VLDPE (ultra-low density, polyethylene), LDPE (low density polyethylene), EVA (ethylene-vinyl acetate copolymer), EMAA (ethylene-methacrylic acid copolymer),
It comprises olefin copolymers such as EAA (ethylene-acrylic acid copolymer), EMA (ethylene-methyl acrylate copolymer), EEA (ethylene-ethyl acrylate copolymer), ethylene-propylene copolymer and the like. Olefin-based resin and further acid-modified products thereof; thermoplastic polyurethane, SBS (styrene-butadiene-styrene copolymer, SIS (styrene-isoprene-styrene copolymer), SEBS (hydrogenated styrene-butadiene-styrene copolymer) Examples of the elastomer include elastomers such as (combined), SEIS (hydrogenated styrene-isoprene-styrene copolymer), polyester elastomers and polyamide elastomers.

【0025】前記したスパイラルダイを用いた好ましい
製造態様を考慮するとき、樹脂Aと樹脂Bとは、体積比
で、1:0.3〜1:20、好ましくは1:0.5〜
1:5、更に好ましくは1:0.6〜1:2、最も好ま
しくは約1:1の比率で用いるとよい。
In consideration of the preferred manufacturing method using the above-mentioned spiral die, the resin A and the resin B are in a volume ratio of 1: 0.3 to 1:20, preferably 1: 0.5 to.
It may be used in a ratio of 1: 5, more preferably 1: 0.6 to 1: 2, most preferably about 1: 1.

【0026】必要に応じて、例えば樹脂A層と樹脂B層
間の接合性を改善する目的で、付加的に樹脂C層を設け
てもよい。
If desired, a resin C layer may be additionally provided for the purpose of improving the bondability between the resin A layer and the resin B layer.

【0027】これら樹脂A層および樹脂B層等からなる
中間積層樹脂層1の両面に設ける一対の表層樹脂層Iお
よびIIは、異なる樹脂で構成しても良いが、対称な特
性のフィルム状積層樹脂成形体を得るためには、同種の
樹脂から構成することが好ましい。
The pair of surface resin layers I and II provided on both sides of the intermediate laminated resin layer 1 including the resin A layer and the resin B layer may be made of different resins, but they are film-like laminated layers having symmetrical characteristics. In order to obtain a resin molded product, it is preferable to use the same type of resin.

【0028】表層樹脂層IおよびIIを構成する樹脂の
好ましい一例は、熱収縮性樹脂であり、より具体的に
は、EVA、アイオノマー樹脂、EMAA、EAA、E
MA、EEA、VLDPE、LDPEなどのオレフィン
系樹脂やこれらの酸変性物、ポリアミド、ポリエステル
等の熱可塑性樹脂を、中間積層樹脂層1とともに一軸ま
たは二軸に延伸した状態で用いるとよい。このような延
伸状態は、上記したスパイラルダイを用いる際には、溶
融押出後のパリソンをインフレーション工程に付すこと
により好適に達成し得る。
A preferred example of the resin constituting the surface resin layers I and II is a heat-shrinkable resin, and more specifically, EVA, ionomer resin, EMAA, EAA, E.
An olefin resin such as MA, EEA, VLDPE, or LDPE, an acid-modified product thereof, or a thermoplastic resin such as polyamide or polyester may be used together with the intermediate laminated resin layer 1 in a uniaxially or biaxially stretched state. Such a stretched state can be suitably achieved by subjecting the parison after melt extrusion to an inflation step when using the above-mentioned spiral die.

【0029】そして、このような熱収縮性の表層樹脂層
IおよびIIを有する図6(a)および(b)に示す原
積層樹脂成形体2を例えば樹脂IおよびIIの軟化温度
以上の温度に保持することにより、熱収縮処理を行なう
ことにより中間積層樹脂層1に選択的に波状褶曲断面構
造が付与された図7のような積層樹脂成形体100Aが
形成される。
Then, the original laminated resin molded body 2 shown in FIGS. 6 (a) and 6 (b) having such heat-shrinkable surface resin layers I and II is heated to a temperature not lower than the softening temperature of the resins I and II, for example. By holding the laminated resin molded body 100A, the intermediate laminated resin layer 1 is selectively provided with the corrugated fold cross-sectional structure by heat-shrinking treatment, as shown in FIG.

【0030】波状褶曲断面構造は、MD方向およびTD
方向のいずれにも現れ、一軸あるいは二軸延伸のいずれ
かによっても異なるが、例えばMD方向とTD方向が同
程度の延伸倍率の二軸延伸を行い、その後に熱収縮した
場合には、TD方向に優先的に現れる。
The wavy fold cross-section structure has MD direction and TD
Although it appears in any of the directions, and varies depending on whether it is uniaxial or biaxial stretching, for example, when biaxial stretching with a stretching ratio of MD and TD is about the same, and then heat shrinking, TD Appears in priority to.

【0031】表層樹脂層IおよびIIの構成樹脂の第2
の好ましい例は、熱可塑性ポリウレタン、SBS、SI
S、SEBS、SEIS、ポリエステル系エラストマ
ー、ポリアミド系エラストマーなどのエラストマーであ
る。これらの中では、熱可塑性ポリウレタンやSEBS
などが好適であり、伸長比300%の条件下での(伸
縮)寸法回復率[測定法は後述]が85%以上、好まし
くは88%以上、更に好ましくは90%以上のエラスト
マーを用いるのがよい。
Second resin constituting the surface resin layers I and II
Preferred examples of thermoplastic polyurethane, SBS, SI
Elastomers such as S, SEBS, SEIS, polyester elastomers and polyamide elastomers. Among these, thermoplastic polyurethane and SEBS
It is preferable to use an elastomer having a (stretching) dimensional recovery rate [measuring method will be described later] of 85% or more, preferably 88% or more, more preferably 90% or more under the condition of an elongation ratio of 300%. Good.

【0032】このようにして、表層樹脂層IおよびII
がエラストマーからなる図6の原積層樹脂成形体2を、
MD方向またはTD方向、好ましくはTD方向に、好ま
しくは300%以上の伸長比で伸長処理を行い、応力を
開放すると、中間積層樹脂層1に選択的に波状褶曲断面
構造が付与された図7のような積層樹脂成形体100A
が形成される。
Thus, the surface resin layers I and II
Of the original laminated resin molded body 2 of FIG.
When the stretching treatment is performed in the MD direction or the TD direction, preferably the TD direction at a stretching ratio of 300% or more and the stress is released, the intermediate laminated resin layer 1 is selectively provided with a wavy fold cross-section structure. Laminated resin molding 100A such as
Is formed.

【0033】上記した、波状褶曲断面構造についてより
具体的に説明する。熱収縮あるいは伸長後の伸長応力除
去により収縮もしくは寸法回復させた本発明の積層樹脂
成形体100Aの断面は図7に示すような中間積層樹脂
層1が正弦波のような波状に折れ曲がった構造(波状褶
曲断面構造)を有している。この図において、挾持する
エラストマー層(すなわち表面層)のその断面における
長さをL1とし、波状に褶曲した中間積層樹脂層の長さ
L1中の波状褶曲部分を直線状にのばした長さをL2と
した場合、波状褶曲断面構造を有している成形体におい
ては、その長さの比(L2/L1)が1.0より大きい
値、後述する性質をより発揮させるためには好ましくは
1.1より大きい値となる。
The above-mentioned wavy fold sectional structure will be described more specifically. The cross-section of the laminated resin molding 100A of the present invention which has been shrunk or dimensionally recovered by removing the extension stress after thermal contraction or extension has a structure in which the intermediate laminated resin layer 1 as shown in FIG. It has a wavy fold cross section structure). In this figure, the length of the sandwiching elastomer layer (that is, the surface layer) in the cross section is L1, and the length of the wavy fold in the length L1 of the intermediate laminated resin layer that is wavy is linearly extended. In the case of L2, in a molded product having a wavy fold cross-section structure, the length ratio (L2 / L1) is a value larger than 1.0, preferably 1 in order to exhibit the properties described later. The value is larger than 1.

【0034】必要に応じて、表層樹脂層I(あるいはI
I)と中間積層樹脂層1との間に、これら層間の接着性
の改善のために、例えばエチレンー酢酸ビニル共重合体
等からなる接合樹脂層を挿入してもよい。
If necessary, the surface resin layer I (or I
A bonding resin layer made of, for example, an ethylene-vinyl acetate copolymer or the like may be inserted between I) and the intermediate laminated resin layer 1 in order to improve the adhesion between these layers.

【0035】図7のような波状褶曲断面構造を有する中
間積層樹脂層1を含む積層樹脂成形体100Aは、小な
るヤング率と大なる伸度、あるいは全体として豊かな弾
性(伸縮寸法回復性)と大なる破断強度で代表される、
材料樹脂のみからは期待し得ない特徴的な性質を有する
ものである。
The laminated resin molding 100A including the intermediate laminated resin layer 1 having the wavy fold cross-sectional structure as shown in FIG. 7 has a small Young's modulus and a large elongation, or a rich elasticity (expansion and contraction dimension recovery) as a whole. Is represented by a large breaking strength,
It has characteristic properties that cannot be expected from the material resin alone.

【0036】本発明の積層樹脂成形体は、応力緩和処理
前の原積層樹脂成形体が10〜600μm、好ましくは
20〜400μm、更に好ましくは35〜200μmの
厚さに調整される。そして表層樹脂層IおよびIIの合
計の厚さは、原積層樹脂成形体全層の厚さの55%以
上、更には60%以上、特に65%以上であることが好
ましく、また上限は98%以下、更に97%以下、特に
94%以下であることが好ましい。
In the laminated resin molding of the present invention, the thickness of the original laminated resin molding before stress relaxation treatment is adjusted to 10 to 600 μm, preferably 20 to 400 μm, and more preferably 35 to 200 μm. The total thickness of the surface resin layers I and II is preferably 55% or more, more preferably 60% or more, and particularly preferably 65% or more, and the upper limit is 98%, of the total thickness of the original laminate resin molded body. It is preferably 97% or less, particularly 94% or less.

【0037】以下、波状褶曲断面構造を有する積層樹脂
成形体の製造実施例および比較例を挙げる。
The production examples and comparative examples of laminated resin moldings having a wavy fold cross-section structure will be described below.

【0038】実施例1(熱収縮系) インフレーション用の通常の5層スパイラルダイにおい
て、コア層(第3層)形成用ダイ部を図4(a)のよう
に2種の樹脂を交互に流入加工できる斜め積層体形成用
ダイ(m=32)に置きかえて得た5層スパイラルダイ
を用いて、各々の層全てを円筒状に同時共押出しし、図
6に示すようにコア層に中間積層樹脂層である斜め樹脂
成形体1を含む本発明の積層樹脂成形体2(但し、図6
に示さない接合樹脂層を更に含む)を未延伸の積層樹脂
フィルムとして製造した。その後、インフレーション法
により同時二軸延伸を行ない、延伸フィルムを製造し
た。延伸フィルムの構成は次のとおりであった。その製
造条件を表1、表2に示す。
Example 1 (Heat Shrinkage System) In a normal five-layer spiral die for inflation, two kinds of resin are alternately flown into the die portion for forming the core layer (third layer) as shown in FIG. 4 (a). Using a 5-layer spiral die obtained by replacing the diagonal laminate forming die (m = 32) which can be processed, all the layers were co-extruded into a cylindrical shape at the same time, and as shown in FIG. The laminated resin molding 2 of the present invention including the diagonal resin molding 1 which is a resin layer (however, FIG.
Further, a bonding resin layer (not shown) is produced as an unstretched laminated resin film. After that, simultaneous biaxial stretching was performed by an inflation method to produce a stretched film. The structure of the stretched film was as follows. The manufacturing conditions are shown in Tables 1 and 2.

【0039】 層 IO/接合樹脂層/斜め樹脂成形体/接合樹脂層/EVA 厚み(μm) 43 2.5 20 2.5 23 コア層である斜め樹脂成形体1は、厚みが、コア層E
VOH(樹脂A)=10μm(合計)、コア層接着性
樹脂1(樹脂B)10μm(合計)で、積層数は14〜
15層からなる。各樹脂の概要は次のとおりである。
Layer IO / bonding resin layer / oblique resin molded body / bonding resin layer / EVA thickness (μm) 43 2.5 20 2.5 2.5 23 The oblique resin molded body 1 as the core layer has a thickness of the core layer E.
VOH (resin A) = 10 μm (total), core layer adhesive resin 1 (resin B) 10 μm (total), and the number of laminated layers is 14 to
It consists of 15 layers. The outline of each resin is as follows.

【0040】IO:アイオノマー樹脂(三井デュポンポ
リケミカル製「ハイミランAM79082」メルトイン
デックス(190℃、2160g荷重)=1.9g/1
0min)である内側構成層 EVA:酢酸ビニル含量が15重量%のエチレン−酢酸
ビニル共重合体(日本ユニカー製「NUC3753」メ
ルトインデックス(190℃、2160g荷重)=1.
5g/10min)である外側構成層 接合樹脂層:無水マレイン酸でグラフト変性されたEV
A共重合体(三菱油化製「モディックE−300K」溶
融粘度(200℃、25sec-1)=708Pa・s) 接着性樹脂1:接合樹脂層と同じものを使用した。
IO: Ionomer resin (Mitsui DuPont Polychemical “HIMILAN AM79082” melt index (190 ° C., 2160 g load) = 1.9 g / 1
0 min) inner constituent layer EVA: ethylene-vinyl acetate copolymer having a vinyl acetate content of 15% by weight (“UNIC3753” manufactured by Nippon Unicar, melt index (190 ° C., 2160 g load) = 1.
5 g / 10 min) outer constituent layer Bonding resin layer: EV graft-modified with maleic anhydride
A copolymer (Mitsubishi Oil Chemical "Modic E-300K" melt viscosity (200 ° C, 25 sec -1 ) = 708 Pa · s) Adhesive resin 1: The same resin as the bonding resin layer was used.

【0041】EVOH:エチレン含有量44mol%、
鹸化度99.4%のエチレン−酢酸ビニル共重合体ケン
化物(クラレ製「EVAL EPE−105」溶融粘度
(200℃、25sec-1)=901Pa・s)を使用
した。
EVOH: ethylene content 44 mol%,
A saponification product of ethylene-vinyl acetate copolymer having a saponification degree of 99.4% (“EVAL EPE-105” manufactured by Kuraray, melt viscosity (200 ° C., 25 sec −1 ) = 901 Pa · s) was used.

【0042】該延伸フィルムを80℃の熱水中に10秒
間浸漬しフィルムを収縮させ、斜め樹脂成形体層が波状
褶曲断面構造を示す積層樹脂成形体を得た。得られた収
縮後フィルムのTD断面顕微鏡写真(倍率155倍)を
図8に、代表的な物理的および機械的性質を表3に示
す。
The stretched film was dipped in hot water at 80 ° C. for 10 seconds to shrink the film to obtain a laminated resin molded product in which the oblique resin molded product layer had a wavy fold cross-section structure. A TD cross-sectional micrograph (magnification: 155 times) of the obtained film after shrinkage is shown in FIG. 8, and representative physical and mechanical properties are shown in Table 3.

【0043】なお、本実施例で使用した5層スパイラル
ダイのコア層(第3層)形成用ダイ部に用いた斜め積層
体形成用ダイの仕様は以下の通りである。
The specifications of the diagonal laminated body forming die used for the core layer (third layer) forming die portion of the five-layer spiral die used in this example are as follows.

【0044】 <ダイの仕様> ・スパイラル条数(スパイラル流路溝数) 32(16+16) ・流路の巻数 1 ・スパイラルのピッチ 5.156mm ・スパイラルのピッチ角度 27.7゜ ・スパイラル流路溝の開始点および終点における溝深さと幅 溝深さ(mm) 幅(mm) EVOH側 開始点 5 3.5 終点 0 0 接着性樹脂1側 開始点 5 3.5 終点 0 0 ・スパイラル山と外側ダイリングとの間隙の大きさおよびその押出方向への変 化 開始点 0.5mm 終点 1.25mm ・内側ダイリングの直径およびその押出方向への変化 開始点 100mm 終点 97.5mm<Die specifications> • Number of spiral threads (number of spiral channel grooves) 32 (16 + 16) • Number of channel windings 1 • Spiral pitch 5.156 mm • Spiral pitch angle 27.7 ° • Spiral channel grooves starting point and the groove depth and width groove depth at the end (mm) width (mm) EVOH-initiated point 5 3.5 endpoint 0 0 adhesive resin 1 side start point 5 3.5 endpoint 0 0 spiral mountains and outer Size of gap with die ring and its change in extrusion direction Start point 0.5 mm End point 1.25 mm-Diameter of inner die ring and its change in extrusion direction Start point 100 mm End point 97.5 mm

【0045】<物性測定法> (1)引張試験(破断点の強度および伸度) JIS K−7127に準拠し、オリエンテック(株)
製テンシロン万能試験機RTM−100を用いて、以下
の条件で測定した。
<Physical property measurement method> (1) Tensile test (strength and elongation at break) According to JIS K-7127, Orientec Co., Ltd.
Using a Tensilon universal testing machine RTM-100, the measurement was performed under the following conditions.

【0046】 ・試料長(つかみ具間距離) 50mm ・試料幅 10mm ・クロスヘッド速度 500mm/min ・試験温度 23℃ ・試験湿度 50%RH・ Sample length (distance between grips) 50 mm ・ Sample width 10 mm ・ Crosshead speed 500 mm / min ・ Test temperature 23 ° C ・ Test humidity 50% RH

【0047】(2)熱水収縮率 延伸フィルムのMD、TDにそれぞれ10cmの距離に
印を付し(少なくとも繰り返し数を5以上として)、該
フィルムを80℃の熱水に10秒間浸漬し、取り出し直
後に常温の水で冷却し、その後収縮した印の距離を計測
して、もとの10cmから読み取り値を差し引いた値を
百分率で表示し、繰り返し数にもとづいて平均値で表
す。
(2) Hot Water Shrinkage Ratio MD and TD of the stretched film are marked at a distance of 10 cm (at least 5 repetitions), and the film is immersed in hot water at 80 ° C. for 10 seconds, Immediately after it is taken out, it is cooled with water at room temperature, then the distance of the contracted mark is measured, and the value obtained by subtracting the reading value from the original 10 cm is displayed as a percentage and expressed as an average value based on the number of repetitions.

【0048】(3)ヤング率 JIS K−7127に準拠し、オリエンテック(株)
製テンシロン万能試験機RTM−100を用いて、以下
の条件で測定した。
(3) Young's modulus Orientec Co., Ltd. in accordance with JIS K-7127
Using a Tensilon universal testing machine RTM-100, the measurement was performed under the following conditions.

【0049】 ・試料長(つかみ具間距離) 100mm ・試料幅 20mm ・クロスヘッド速度 10mm/min ・試験温度 23℃ ・試験湿度 50%RH・ Sample length (distance between grips) 100 mm ・ Sample width 20 mm ・ Crosshead speed 10 mm / min ・ Test temperature 23 ° C ・ Test humidity 50% RH

【0050】(4)溶融粘度 Rheometrics社製回転粘度計DSRを用いて
以下の条件で測定した。
(4) Melt viscosity The melt viscosity was measured under the following conditions using a rotational viscometer DSR manufactured by Rheometrics.

【0051】 ・試験温度 200℃ ・剪断速度 0.1〜1000sec-1 ・治具(ジオメトリー) 平行平板 ・ギャップ距離 2mm なお、溶融粘度比は上記測定結果の25sec-1の値を
用いて算出した。
・ Test temperature 200 ° C. ・ Shear rate 0.1 to 1000 sec -1・ Jig (geometry) parallel flat plate ・ Gap distance 2 mm The melt viscosity ratio was calculated using the value of 25 sec -1 of the above measurement result. .

【0052】(5)(伸縮)寸法回復率 JIS K−7127に準拠し、オリエンテック(株)
製テンシロン万能試験機RTM−100を用いて、以下
の条件で測定した。
(5) (Expansion / contraction) dimensional recovery rate In accordance with JIS K-7127, Orientec Co., Ltd.
Using a Tensilon universal testing machine RTM-100, the measurement was performed under the following conditions.

【0053】 ・初期試料長 50mm ・試料幅 10mm ・クロスヘッド速度(伸長速度) 500mm/min ・伸長比 100%、200% 300%、400% ・試験温度 23℃ ・試験湿度 50%RH ・測定方法 所定の伸長比(300%または400 %)で引っ張った直後に、フィルムをチ ャックから外して72時間放置(緩和処 理)。次いで所定の伸長比(100%ま たは200%)で再度引っ張り、同様に チャックから外して72時間放置後試料 長さを測定することにより、以下の式か ら求めた。Initial sample length 50 mm Sample width 10 mm Crosshead speed (extension speed) 500 mm / min Extension ratio 100%, 200% 300%, 400% Test temperature 23 ° C. Test humidity 50% RH Measurement method Immediately after pulling at the specified elongation ratio (300% or 400%), the film was removed from the chuck and left for 72 hours (relaxation treatment). Then, the sample was pulled again at a predetermined elongation ratio (100% or 200%), similarly removed from the chuck and allowed to stand for 72 hours, and then the sample length was measured to obtain from the following formula.

【0054】[0054]

【数1】 [Equation 1]

【0055】(6)L2/L1の算出方法 L2/L1の算出は以下のような方法で行った。(6) Calculation method of L2 / L1 The calculation of L2 / L1 was performed by the following method.

【0056】応力解放後、寸法回復させた試料の断面を
光学顕微鏡にて観察し、写真撮影する。その写真をもと
に表面層の長さ(L1)およびこの長さでの波状褶曲断
面構造中の波状褶曲部分を直線状にのばした長さ(L
2)を測定し、その値からL2/L1を算出した。
After the stress is released, the cross section of the dimension-reduced sample is observed with an optical microscope and photographed. Based on the photograph, the length of the surface layer (L1) and the length of the wavy fold in the wavy fold cross section structure at this length (L1)
2) was measured and L2 / L1 was calculated from the measured value.

【0057】(7)酸素ガスバリアー性(酸素ガス透過
度) 伸長処理後の積層樹脂フィルムを使用し、JIS K−
7126に準じ、Modern Control社製O
XTRAN−100TWINを用いて、30℃、80%
RHでの酸素ガス透過度を測定した。
(7) Oxygen gas barrier property (oxygen gas permeability) Using the laminated resin film after the elongation treatment, JIS K-
According to 7126, O manufactured by Modern Control
Using XTRAN-100TWIN, 30 ℃, 80%
The oxygen gas permeability at RH was measured.

【0058】実施例2 斜め樹脂成形体を構成する樹脂Aとして、EVOHの代
りに、ナイロン(Ny)6−12(東レ(株)製「アミ
ランCM6541X3」、溶融粘度(200℃、25s
ec-1)=814Pa・s)を使用した以外は実施例と
同様にして、本発明の積層樹脂成形体である未延伸の積
層樹脂フィルムならびに延伸フィルムを製造した。また
実施例1と同様に、得られた延伸フィルムを80℃の熱
水中に10秒間浸漬しフィルムを収縮させ、斜め樹脂成
形体層が波状褶曲断面構造を示す積層樹脂成形体を得
た。得られた収縮後フィルムの代表的な物理的および機
械的性質を表3に示す。
Example 2 Nylon (Ny) 6-12 (“Amilan CM6541X3” manufactured by Toray Industries, Inc.), melt viscosity (200 ° C., 25 s) was used instead of EVOH as the resin A constituting the oblique resin molding.
ec −1 ) = 814 Pa · s) was used, and an unstretched laminated resin film and a stretched film, which were the laminated resin molded product of the present invention, were produced in the same manner as in the example. Further, in the same manner as in Example 1, the obtained stretched film was immersed in hot water at 80 ° C. for 10 seconds to shrink the film, to obtain a laminated resin molded body in which the diagonal resin molded body layer had a wavy fold cross-section structure. Representative physical and mechanical properties of the resulting post-shrink film are shown in Table 3.

【0059】比較例1 通常の5層スパイラルダイを用いて、各々の層全てを円
筒状に同時共押出し、実施例1、2の対照となる多層フ
ィルムを製造した。その後、インフレーション法により
同時二軸延伸を行ない、対照となる多層延伸フィルムを
製造した。その製造条件を表1、表2に示す。延伸フィ
ルムの構成は次のとおりであった。
Comparative Example 1 Using a conventional five-layer spiral die, all layers were coextruded into a cylindrical shape at the same time to produce a multilayer film as a control of Examples 1 and 2. Thereafter, simultaneous biaxial stretching was carried out by the inflation method to produce a control multilayer stretched film. The manufacturing conditions are shown in Tables 1 and 2. The structure of the stretched film was as follows.

【0060】 IO/接合樹脂層/EVOH/接合樹脂層/EVA 厚み(μm) 43 7.5 10 7.5 23 各樹脂は実施例1に使用のものと同様である。IO / bonding resin layer / EVOH / bonding resin layer / EVA thickness (μm) 43 7.5 10 7.5 23 Each resin is the same as that used in Example 1.

【0061】得られたフィルムの多層延伸フィルムを8
0℃の熱水中に10秒間浸漬しフィルムを収縮させた
が、EVOH層は波状褶曲断面構造を示さなかった。得
られた収縮後フィルムの代表的な物理的および機械的性
質を表3に示す。
A multilayer stretched film of the obtained film was prepared as 8
When the film was shrunk by immersing it in hot water at 0 ° C. for 10 seconds, the EVOH layer did not show a wavy fold cross-section structure. Representative physical and mechanical properties of the resulting post-shrink film are shown in Table 3.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】表3を見ると、本発明の熱収縮により、コ
ア層に波状褶曲断面構造が発生した積層樹脂成形体(実
施例1および2)は、比較例のそれに比べて破断伸度が
増大し、ヤング率が小であること、すなわち、変形し易
くて粘り強い性質を有することがわかる。
As shown in Table 3, the laminated resin moldings (Examples 1 and 2) in which the core layer has the wavy fold cross-section structure due to the heat shrinkage of the present invention, the breaking elongation is increased as compared with that of the comparative example. However, it is understood that the Young's modulus is small, that is, it has the property of being easily deformed and tough.

【0066】実施例3(伸長−緩和系) 実施例1で用いたと同じ5層スパイラルダイを用いて、
各々の層全てを円筒状に同時押出し、コア層に斜め樹脂
成形体を含む本発明の積層樹脂成形体である未延伸の積
層樹脂フィルムを製造した。得られたフィルムの構成は
次のとおりであった。
Example 3 (Stretch-relaxation system) Using the same five-layer spiral die used in Example 1,
All layers were coextruded into a cylindrical shape to produce an unstretched laminated resin film, which is a laminated resin molded body of the present invention including a diagonal resin molded body in the core layer. The structure of the obtained film was as follows.

【0067】 熱可塑性ポリウレタン1/ 斜め樹脂成形体 /熱可塑性ポリウレタン1 20μm 20μm 20μm 斜め樹脂成形体:樹脂A EVOH 10μm 樹脂B 熱可塑性ポリウレタン1 10μm 層数 14〜15層 熱可塑性ポリウレタン1 :クラレ製 クラミクロンU 3185 (溶融粘度(200℃、25sec-1)=738 Pa・s) EVOH :クラレ製 エバール EPE105A (実施例1で使用したものと同じ) 得られた多層フィルムの各一軸伸長比(TD方向)にお
ける伸長処理後の多層フィルムのコア層(斜め樹脂成形
体)の波状褶曲断面構造発生の指標となるL2/L1の
値、一軸伸長後寸法回復させた多層フィルムを再度伸長
処理に付した後の寸法回復率を表4、機械的性質を表5
に示す。伸長比300%以上の一軸伸長処理を行った多
層フィルムはコア層(斜め樹脂成形体)に波状褶曲断面
構造が見られた。伸長比300%による一軸伸長処理後
の多層フィルムMD方向およびTD方向断面写真(各約
830倍)を図9(a)、(b)に示す。
Thermoplastic polyurethane 1 / diagonal resin molding / thermoplastic polyurethane 1 20 μm 20 μm 20 μm Diagonal resin molding: Resin A EVOH 10 μm Resin B Thermoplastic polyurethane 1 10 μm Number of layers 14-15 layers Thermoplastic polyurethane 1: Kuraray Kuraray Micron U 3185 (melt viscosity (200 ° C., 25 sec −1 ) = 738 Pa · s) EVOH: EVAL EPE105A manufactured by Kuraray (same as that used in Example 1) Each uniaxial elongation ratio (TD direction) of the obtained multilayer film Value of L2 / L1 which is an index for generating the wavy fold cross-section structure of the core layer (oblique resin molded body) of the multilayer film after the stretching treatment in), after the uniaxially stretched multilayer film is subjected to the stretching treatment again. Table 4 shows the dimensional recovery rate and Table 5 shows the mechanical properties.
Shown in In the multilayer film subjected to the uniaxial elongation treatment with an elongation ratio of 300% or more, a wavy fold cross-section structure was found in the core layer (oblique resin molded body). 9 (a) and 9 (b) are cross-sectional photographs of the multilayer film in the MD and TD directions (about 830 times each) after the uniaxial stretching treatment with the stretching ratio of 300%.

【0068】比較例2 比較例1で用いたのと同じ通常の5層スパイラルダイを
用いて、各々の層全てを円筒状に同時共押出し、対照と
なる多層未延伸フィルムを得た。得られたフィルムの構
成は次のとおりであった。
Comparative Example 2 Using the same conventional five-layer spiral die as used in Comparative Example 1, all the layers were coextruded into a cylindrical shape to obtain a control multilayer unstretched film. The structure of the obtained film was as follows.

【0069】 熱可塑性ポリウレタン1/EVOH/熱可塑性ポリウレウレタン1 25μm 10μm 25μm 熱可塑性ポリウレタン1 :クラレ製 クラミクロンU 3185 (実施例3で使用したものと同じ) EVOH :クラレ製 エバール EPE105A (実施例1で使用したものと同じ) 得られた多層フィルムの各一軸伸長比(TD方向)にお
ける伸長処理後の多層フィルムのコア層(斜め樹脂成形
体)の波状褶曲断面構造の発生の指標となるL2/L1
の値、一軸伸長後寸法回復させた多層フィルムを再度伸
長処理に付した後の寸法回復率を表4、機械的性質を表
5に示す。
Thermoplastic Polyurethane 1 / EVOH / Thermoplastic Polyurethane 1 25 μm 10 μm 25 μm Thermoplastic Polyurethane 1: Kuraray's Kuramicron U 3185 (same as used in Example 3) EVOH: Kuraray's Eval EPE105A (Example 1) The same as the one used in 1.) L2 / which is an index of occurrence of a wavy fold cross-section structure of the core layer (oblique resin molded body) of the multilayer film after stretching treatment at each uniaxial stretching ratio (TD direction) of the obtained multilayer film. L1
Table 4 shows the dimensional recovery rate after subjecting the multilayer film subjected to dimensional recovery after uniaxial stretching to stretching processing again, and Table 5 shows mechanical properties.

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】上記表4および5を見ると、本発明の伸長
処理後のコア層に波状褶曲断面構造を有する積層樹脂成
形体(フィルム)は、比較例2のそれに比べて、弾性率
が低く、破断応力および破断伸度が増大する。これは、
表3に示された熱収縮系と同様の傾向である。更に実施
例3のフィルムの特徴は、伸長処理後に再度伸長処理を
行なった後の寸法回復率が極めて優れていることであ
り、良好なガスバリアー性とも合わせ、極めて良好なス
キン包装材料であることを示している。
As can be seen from Tables 4 and 5, the laminated resin molded product (film) of the present invention having a wavy fold cross-section structure in the core layer after the elongation treatment has a lower elastic modulus than that of Comparative Example 2, Breaking stress and breaking elongation increase. this is,
The tendency is similar to that of the heat shrink system shown in Table 3. Furthermore, the feature of the film of Example 3 is that the dimensional recovery rate after re-stretching treatment after stretching treatment is extremely excellent, and it is also a very good skin packaging material together with good gas barrier properties. Is shown.

【0073】[0073]

【発明の効果】上述したように、本発明によれば、中間
積層樹脂層が特徴的な波状褶曲断面構造を有する積層樹
脂成形体が得られ、この積層樹脂成形体は、上記波状褶
曲断面構造の結果として、小なるヤング率と大なる伸
度、あるいは全体として豊かな弾性(伸縮寸法回復性)
と大なる破断強度で代表される、材料樹脂のみからは期
待し得ない特徴的な性質を示す。
As described above, according to the present invention, there can be obtained a laminated resin molded product having a characteristic wavy fold cross-section structure of the intermediate laminated resin layer, and this laminated resin molded product has the above wavy fold cross-section structure. As a result, a small Young's modulus and a large elongation, or an overall rich elasticity (stretchable dimension recovery)
And a characteristic property which cannot be expected only from the material resin, which is represented by a large breaking strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の積層樹脂フィルムの斜視図および二方向
断面図。
FIG. 1 is a perspective view and a bidirectional cross-sectional view of a conventional laminated resin film.

【図2】先願の実施例による積層樹脂フィルム(本発明
の中間積層樹脂層)の斜視図および二方向断面図。
FIG. 2 is a perspective view and a two-way cross-sectional view of a laminated resin film (intermediate laminated resin layer of the present invention) according to an example of the prior application.

【図3】従来の多層用スパイラルダイの断面図および製
品フィルム断面図。
FIG. 3 is a cross-sectional view of a conventional multi-layer spiral die and a cross-sectional view of a product film.

【図4】本発明の中間積層樹脂層の製造に適したスパイ
ラルダイの断面図および得られる中間積層樹脂層の断面
図。
FIG. 4 is a cross-sectional view of a spiral die suitable for producing the intermediate laminated resin layer of the present invention and a sectional view of the obtained intermediate laminated resin layer.

【図5】図4のスパイラルダイの要部の模式斜視図。5 is a schematic perspective view of a main part of the spiral die of FIG.

【図6】(a)、(b)は、本発明の応力緩和処理前の
原積層樹脂成形体の、それぞれMD厚さ方向およびTD
厚さ方向の模式断面図。
6 (a) and 6 (b) are a MD thickness direction and a TD, respectively, of an original laminated resin molded body before stress relaxation treatment of the present invention.
Schematic sectional view in the thickness direction.

【図7】応力緩和処理後の本発明の積層樹脂成形体の模
式断面図。
FIG. 7 is a schematic cross-sectional view of a laminated resin molded body of the present invention after stress relaxation treatment.

【図8】本発明実施例1で得られた積層樹脂成形体(フ
ィルム)のTD厚さ方向断面顕微鏡写真(倍率155
倍)。
FIG. 8 is a micrograph of a cross section of a laminated resin molding (film) obtained in Example 1 of the present invention in the TD thickness direction (magnification: 155).
Times).

【図9】(a)、(b)は、本発明の実施例3で得られ
た積層樹脂成形体(フィルム)の、それぞれMD厚さ方
向およびTD厚さ方向断面顕微鏡写真(倍率830
倍)。
9 (a) and 9 (b) are cross-sectional photomicrographs (magnification: 830) of the laminated resin molded body (film) obtained in Example 3 of the present invention in the MD thickness direction and the TD thickness direction, respectively.
Times).

【符号の説明】[Explanation of symbols]

1:先願の積層樹脂フィルム(1a、1b:その主たる
二表面)。本発明の積層樹脂成形体を構成する中間積層
樹脂層。 A、B:構成樹脂 100:本発明の積層樹脂成形体 100A:本発明の積層樹脂成形体(応力緩和処理後) 10a、10b、10c:押出機 11、21:スパイラルダイ 12a、12b、22a、22b:ダイリング 22ab:内外ダイリング間間隙流路 13a、23a1、23a2、23a3、23b1、2
3b2、23b3:トーナメント分岐部 14a、24a、24b:スパイラル流路溝 15a、15b、15c、25:筒状流路 16:合流点 17、27:ダイリップ 28a、28b:分配部最終流路 I 、II:表層樹脂層
1: The laminated resin film of the prior application (1a, 1b: its two main surfaces). The intermediate | middle laminated resin layer which comprises the laminated resin molding of this invention. A, B: Constituent resin 100: Laminated resin molded body of the present invention 100A: Laminated resin molded body of the present invention (after stress relaxation treatment) 10a, 10b, 10c: Extruder 11, 21: Spiral die 12a, 12b, 22a, 22b: Die ring 22ab: Gap channel between inner and outer die rings 13a, 23a1, 23a2, 23a3, 23b1, 2
3b2, 23b3: Tournament branch part 14a, 24a, 24b: Spiral flow channel groove 15a, 15b, 15c, 25: Cylindrical flow channel 16: Confluence point 17, 27: Die lip 28a, 28b: Distributor final flow channel I, II : Surface resin layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/06 B32B 27/06 // B29L 9:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B32B 27/06 B32B 27/06 // B29L 9:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 波状褶曲断面構造を有する中間積層樹脂
層が表層樹脂層間に挾持されてなる、積層樹脂成形体。
1. A laminated resin molding, wherein an intermediate laminated resin layer having a wavy fold cross-section structure is sandwiched between surface resin layers.
【請求項2】 複数の異なる樹脂からなり、主たる二表
面を有し、該二表面に直交する少なくとも一の断面にお
いて、前記複数の樹脂の層が前記二表面に対し斜めに積
層されてなる中間積層樹脂層の該二表面に一対の表層樹
脂層を形成してなる原積層樹脂成形体を用意し、該原積
層樹脂成形体に応力緩和処理を施して、前記中間積層樹
脂層に波状褶曲断面構造を付与する、積層樹脂成形体の
製造法。
2. An intermediate layer comprising a plurality of different resins, having two main surfaces, and at least one cross section orthogonal to the two surfaces, wherein the plurality of resin layers are laminated obliquely with respect to the two surfaces. An original laminated resin molded body obtained by forming a pair of surface resin layers on the two surfaces of the laminated resin layer is prepared, stress relaxation treatment is applied to the original laminated resin molded body, and the intermediate laminated resin layer has a wavy fold section. A method for producing a laminated resin molding, which imparts a structure.
【請求項3】 一対の表層樹脂層がエラストマーからな
り、前記応力緩和処理が原積層樹脂成形体を伸長後、伸
長応力を緩和する処理である請求項2の製造法。
3. The method according to claim 2, wherein the pair of surface resin layers are made of an elastomer, and the stress relaxation treatment is a treatment for relaxing the elongation stress after stretching the original laminated resin molded product.
【請求項4】 一対の表層樹脂層が熱収縮性樹脂であ
り、前記応力緩和処理が原積層樹脂成形体に対する熱収
縮処理である請求項2の製造法。
4. The method according to claim 2, wherein the pair of surface resin layers are heat-shrinkable resins, and the stress relaxation treatment is heat-shrink treatment for the original laminated resin molded body.
JP7347161A 1995-12-15 1995-12-15 Laminated resin molded body having wavily folded sectional structure and manufacture thereof Pending JPH09164577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7347161A JPH09164577A (en) 1995-12-15 1995-12-15 Laminated resin molded body having wavily folded sectional structure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7347161A JPH09164577A (en) 1995-12-15 1995-12-15 Laminated resin molded body having wavily folded sectional structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09164577A true JPH09164577A (en) 1997-06-24

Family

ID=18388332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347161A Pending JPH09164577A (en) 1995-12-15 1995-12-15 Laminated resin molded body having wavily folded sectional structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09164577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136560A (en) * 2009-12-31 2011-07-14 Samsung Mobile Display Co Ltd Barrier film composite body, display apparatus with the barrier film composite body, method for manufacturing the barrier film composite body, and method for manufacturing the display apparatus with the barrier film composite body
JP2014520690A (en) * 2011-07-20 2014-08-25 プラスティカ・クリティス・ソシエテ・アノニム Concentric coextrusion die and method for extruding multilayer thermoplastic film
KR20180048442A (en) * 2015-09-04 2018-05-10 라미플렉스 아브 A laminated film with an elongated layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136560A (en) * 2009-12-31 2011-07-14 Samsung Mobile Display Co Ltd Barrier film composite body, display apparatus with the barrier film composite body, method for manufacturing the barrier film composite body, and method for manufacturing the display apparatus with the barrier film composite body
JP2014520690A (en) * 2011-07-20 2014-08-25 プラスティカ・クリティス・ソシエテ・アノニム Concentric coextrusion die and method for extruding multilayer thermoplastic film
US9868244B2 (en) 2011-07-20 2018-01-16 Plastika Kritis S.A. Concentric co-extrusion die for extruding a multilayer thermoplastic film
KR20180048442A (en) * 2015-09-04 2018-05-10 라미플렉스 아브 A laminated film with an elongated layer
JP2018532609A (en) * 2015-09-04 2018-11-08 ラミフレックス アーベーLamiflex Ab Laminated film with stretched layer

Similar Documents

Publication Publication Date Title
JP2975116B2 (en) Heat-sealing highly moisture-proof film and method for producing the same
US20180134024A1 (en) Multilayer battery separators
FI84035B (en) Method and arrangement for the manufacture of especially hard film material
JP6149052B2 (en) Microporous membrane, battery separator and method for producing the same
EP0229715A2 (en) Multilayered polyolefin high shrinkage low-shrink force shrink film
JP3471924B2 (en) Spiral die and method of manufacturing laminate using the same
JPS6412226B2 (en)
JPH10289703A (en) Manufacture of three-layer separator
MX9800886A (en) Multilayer breathable film and a method for making a multilayer breathable film.
SE460534B (en) Multilayer film with core layers of polyene and polyethylene outer layers
JPH01156058A (en) Uniaxial oriented shrink film
JPH048530A (en) Manufacture of polypropylene multi-layer oriented film
EP0703066B1 (en) Obliquely laminated resin product
JPH09164577A (en) Laminated resin molded body having wavily folded sectional structure and manufacture thereof
JP3093020B2 (en) Heat shrinkable laminated film
JPS57176125A (en) Production of extremely thin resin film
JP7048184B2 (en) Polymer multilayer material and its manufacturing method
WO2002051630A2 (en) Multilayer barrier shrink films and process for their manufacture
JP3955643B2 (en) Composite tube with great flexibility
JP3450559B2 (en) Gas barrier resin film with good elasticity recovery
JP3649510B2 (en) Gas permeable film, production method thereof and precursor
JPH02178016A (en) Liquid crystalline polymer film and manufacture thereof
JP3972159B2 (en) Film for vapor deposition balloon
WO2023077500A1 (en) Mdo barrier film, package laminates containing the same, and methods of making the same
WO2017077555A1 (en) Process for producing cross laminated polymer film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124