JPH09162460A - Magnetoresistive effect device and magnetoresistive effect head - Google Patents

Magnetoresistive effect device and magnetoresistive effect head

Info

Publication number
JPH09162460A
JPH09162460A JP7318753A JP31875395A JPH09162460A JP H09162460 A JPH09162460 A JP H09162460A JP 7318753 A JP7318753 A JP 7318753A JP 31875395 A JP31875395 A JP 31875395A JP H09162460 A JPH09162460 A JP H09162460A
Authority
JP
Japan
Prior art keywords
film
magnetic
metal
magnetic film
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7318753A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakakima
博 榊間
Takeshi Uenoyama
雄 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7318753A priority Critical patent/JPH09162460A/en
Publication of JPH09162460A publication Critical patent/JPH09162460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a magnetoresistive effect device and a magnetoresistive effect head which can generate a large change in magnetic resistance even in a fine magnetic field. SOLUTION: The device is provided with a hard magnetic film HM and a soft magnetic film SM on both ends of a high-mobility electron transport part D of semiconductor hetero structure boundary surface respectively, and a magnetic field to be detected is applied to the film SM to generate reverse magnetization, so that any change in resistance is used to judge whether its magnetizing direction is parallel or anti-parallel to that of the film HM magnetized in one direction. A yoke is further provided to the device, thereby realizing a magetoresistive effect head capable of detecting a fine signal magnetic field from a magnetic medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はセンサ−等の磁気抵
抗効果素子及び磁気抵抗効果型ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element such as a sensor and a magnetoresistive effect head.

【0002】[0002]

【従来の技術】近年Cr,Ru等の金属非磁性薄膜を介して
反強磁性的結合をしている[Fe/Cr],[Co/Ru]人工格子膜
が強磁場(1〜10 kOe)で巨大磁気抵抗効果を示す発見
された(フィシ゛カル レウ゛ュー レター 61 第2472項 (1988年);
同 64 第2304項 (1990) (PhysicalReview Letter Vol.
61, p2472, 1988; 同 Vol.64, p2304,1990))。これら
の膜は大きな磁気抵抗(MR)変化を示すものの、磁性
膜間が反強磁性的に結合しているためMR効果を生じる
のに必要な磁界が数kOeと大きく実用上問題があった。
又金属非磁性薄膜Cuで分離され磁気的結合をしていない
保磁力の異なる磁性薄膜Ni-FeとCoを用いた[Ni-Fe/Cu/C
o]人工格子膜でも巨大磁気抵抗効果が発見され、室温印
加磁界0.5kOeでMR比が約8%のものが得られている(シ
゛ャーナル オフ゛ フィシ゛カル ソサイアティー オフ゛ シ゛ャハ゜ン 59 第3061頁 (1
990年) (Journal of Physical Societyof Japan Vol.5
9, p3061, 1990))。しかしこの場合でも完全に磁性膜
間の磁気的結合を断つことが困難で更に小さな印加磁界
でより大きなMR変化を示す磁気抵抗効果素子の開発が
課題であった。なお人工格子膜の膜面に垂直方向に電流
を流すと大きなMR変化が得られるが、膜が極めて薄い
ため膜面垂直方向の抵抗は極めて低く、この様な構成は
実用上問題がある。微小印加磁界で動作するものとして
は反強磁性材料のFe-MnをNi-Fe/Cu/Ni-Feにつけたスピ
ンバルブ型のものが提案され(シ゛ャーナル オフ゛ マク゛ネティス゛ム ア
ント゛ マク゛ネティック マテリアルス゛ 93 第101頁 (1991年)(Journal o
f Magnetism and Magnetic Materials 93,p101,199
1))、磁気抵抗効果型ヘッドへの応用が検討されてい
る。しかしながらこの場合はMR変化が2〜4%と小さ
い問題点がある。
2. Description of the Related Art In recent years, [Fe / Cr], [Co / Ru] artificial lattice films, which are antiferromagnetically coupled through a metal non-magnetic thin film such as Cr and Ru, have a strong magnetic field (1 to 10 kOe). Was found to exhibit a giant magnetoresistive effect (Physical Review Letter 61 Item 2472 (1988);
Ibid. 64 Item 2304 (1990) (Physical Review Letter Vol.
61, p2472, 1988; Vol. 64, p2304, 1990)). Although these films show a large change in magnetic resistance (MR), the magnetic fields required for producing the MR effect are several kOe because of the antiferromagnetic coupling between the magnetic films, which poses a practical problem.
In addition, magnetic thin films Ni-Fe and Co which are separated by non-magnetic metal thin film Cu and have different coercive force without magnetic coupling are used [Ni-Fe / Cu / C
o] A giant magnetoresistive effect was also found in artificial lattice films, and an MR ratio of about 8% was obtained with a magnetic field of 0.5 kOe applied at room temperature (Journal of Physical Society of Japan, 59, page 3061 (1).
990) (Journal of Physical Society of Japan Vol.5
9, p3061, 1990)). However, even in this case, it is difficult to completely break the magnetic coupling between the magnetic films, and the development of a magnetoresistive effect element that exhibits a larger MR change with a smaller applied magnetic field has been a problem. A large MR change can be obtained by passing a current in the direction perpendicular to the film surface of the artificial lattice film, but since the film is extremely thin, the resistance in the direction perpendicular to the film surface is extremely low, and such a configuration has a practical problem. A spin valve type, in which an antiferromagnetic material Fe-Mn is attached to Ni-Fe / Cu / Ni-Fe, has been proposed as one that operates with a minute applied magnetic field (journal off magnetic and magnetic material material 93 page 101). (1991) (Journal o
f Magnetism and Magnetic Materials 93, p101,199
1)), application to a magnetoresistive head is under study. However, in this case, there is a problem that the MR change is as small as 2 to 4%.

【0003】一方磁気抵抗効果素子としてではないが新
規なトランジスタとして、電極部に磁性体を用い、半導
体ヘテロジャンクションの電子スピン状態をゲ−ト電圧
により制御した電界効果型トランジスタ(FET)が提
案されている(Appl. Phys.Lett. 56, p665 (1990))。
しかしながらゲ−ト電圧でスピン状態の制御が可能かど
うかの実証はされておらず、実用化の可能性は未知であ
る。
On the other hand, a field effect transistor (FET) in which a magnetic substance is used for an electrode portion and an electron spin state of a semiconductor heterojunction is controlled by a gate voltage is proposed as a novel transistor, not as a magnetoresistive effect element. (Appl. Phys. Lett. 56, p665 (1990)).
However, it has not been demonstrated whether the spin state can be controlled by the gate voltage, and the possibility of practical application is unknown.

【0004】[0004]

【発明が解決しようとする課題】従来の人工格子膜を用
いた磁気抵抗効果素子は大きな磁気抵抗(MR)変化率
を示すものの、印加磁界が大きくないと良好な特性を示
さないといった磁界感度が悪い欠点があり、一方スピン
バルブ型のものは磁界感度は良好なものの、MR変化率
が十分大きくない欠点がある。本発明はこれら課題を解
決し、より小さな磁界でより大きなMR変化を示す磁気
抵抗効果素子を可能とするものである。
A conventional magnetoresistive effect element using an artificial lattice film has a large magnetoresistance (MR) change rate, but has a magnetic field sensitivity such as that it does not show good characteristics unless an applied magnetic field is large. On the other hand, the spin valve type has a good magnetic field sensitivity, but has a drawback that the MR change rate is not sufficiently large. The present invention solves these problems and enables a magnetoresistive element that exhibits a larger MR change with a smaller magnetic field.

【0005】[0005]

【課題を解決するための手段】本発明は微小磁界でも容
易に磁化反転する軟磁性膜と一方向に磁化された角型性
の磁化曲線を有する硬質磁性膜間とを半導体ヘテロ構造
界面に形成された移動度の高い電子輸送部により接続
し、軟磁性膜と硬質磁性膜の磁化方向が平行か反平行か
によって上記素子部の抵抗が変化することを利用するも
のである。
According to the present invention, a soft magnetic film that easily reverses magnetization even in a weak magnetic field and a hard magnetic film having a square-shaped magnetization curve magnetized in one direction are formed at a semiconductor heterostructure interface. The connection is made by an electron transporting part having a high mobility, and the fact that the resistance of the element part changes depending on whether the magnetization directions of the soft magnetic film and the hard magnetic film are parallel or antiparallel is utilized.

【0006】更に磁気ヘッドとして用いる場合は磁気媒
体に記録されている箇所は小さくかつ媒体からの信号磁
界は弱いため、これを効率良く軟磁性膜に導くための軟
磁性体より成るヨ−クを備えることが実用上有効であ
る。
Further, when used as a magnetic head, since the recorded portion on the magnetic medium is small and the signal magnetic field from the medium is weak, a yoke made of a soft magnetic material for efficiently guiding the magnetic field to the soft magnetic film is used. It is practically effective to prepare.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図1(a),
(b)を用いて説明を行う。同図(a)において電子は両磁性
膜部に設けられた電極Eのどちらか一方から注入される
が(例えば電極E1から注入)、磁性膜部(この場合は
硬質磁性膜HM)を通過する時、電子は矢印(→)の方
向にスピン偏極され、他方の磁性膜(この場合は軟磁性
膜SM)までは半導体S1、S2のヘテロ構造界面に形
成された移動度の高い電子輸送部Dをスピン散乱される
ことなく通過し、他方の磁性膜スピンと電子のスピンが
平行か反平行かにより抵抗が変化することを利用し、検
知すべき磁界Hにより上記軟磁性膜SMの磁化方向(即
ちスピンの方向)を変化させ磁界を検知するものであ
る。上記の半導体ヘテロ構造界面に形成された電子輸送
部Dでは移動度が極めて高く、電子はスピン散乱を受け
ることなく、スピン偏極された状態を維持することが出
来る。又硬質磁性膜は一方向に磁化しておき、検知すべ
き磁界により磁化反転しないよう十分保磁力が大きくか
つ角型性の良好な磁化曲線を有する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention is shown in FIG.
An explanation will be given using (b). In the same figure (a), the electrons are injected from either one of the electrodes E provided on both magnetic film portions (for example, from the electrode E1), but pass through the magnetic film portion (in this case, the hard magnetic film HM). At this time, the electrons are spin-polarized in the direction of the arrow (→), and up to the other magnetic film (in this case, the soft magnetic film SM), an electron transporting portion having a high mobility formed at the heterostructure interface between the semiconductors S1 and S2. Utilizing the fact that the resistance passes through D without being spin-scattered and the resistance changes depending on whether the spin of the other magnetic film and the spin of the electron are parallel or anti-parallel, and the magnetization direction of the soft magnetic film SM by the magnetic field H to be detected. The magnetic field is detected by changing (that is, the direction of spin). In the electron transporting part D formed at the interface of the semiconductor heterostructure, the mobility is extremely high, and the electrons can be maintained in the spin-polarized state without undergoing spin scattering. Further, the hard magnetic film must be magnetized in one direction and have a magnetization curve with a sufficiently large coercive force and a good squareness so as not to be magnetized by the magnetic field to be detected.

【0008】同図(a)のような構造は検知すべき磁界が
大きな広がりを有する場合有効であるが、磁気抵抗効果
型ヘッドのように磁気媒体からの微小領域からの微小な
信号磁界を検知するには不向きである。この場合は同図
(b)に示したように微小信号領域の形状に対応した幅や
厚さを有するヨ−クYにより信号磁界Hを軟磁性膜SM
に導く構成が有効で、効率良く磁束を軟磁性膜に導くに
はヨ−クは透磁率の高い軟磁性材料より構成する必要が
ある。
The structure shown in FIG. 1A is effective when the magnetic field to be detected has a large spread, but it detects a minute signal magnetic field from a minute area from the magnetic medium like a magnetoresistive head. Not suitable for. In this case
As shown in (b), the signal magnetic field H is applied to the soft magnetic film SM by the yoke Y having the width and thickness corresponding to the shape of the minute signal region.
In order to efficiently guide the magnetic flux to the soft magnetic film, the yoke must be made of a soft magnetic material having a high magnetic permeability.

【0009】従来の人工格子膜やスピンバルブ膜の場
合、磁性膜間に設けられた非磁性膜は約2nmと極めて薄
く磁気的分離が不十分であったが、本発明は二つの磁性
膜は完全に磁気的に分離されており、軟磁性膜が本来の
特性を示して微小磁界で磁化回転することが可能となり
磁界感度が向上する。更に従来の人工格子膜では積層膜
の界面と平行方向に電流を流すため、スピン偏極が不完
全でスピン散乱の効率が悪いが、本発明ではスピン偏極
した電子を用いるため大きなMR変化が得られることが
特徴である。
In the case of the conventional artificial lattice film and spin valve film, the non-magnetic film provided between the magnetic films is as thin as about 2 nm and the magnetic separation is insufficient. The magnetic field is completely magnetically separated, and the soft magnetic film exhibits the original characteristics and can be magnetized and rotated by a minute magnetic field, thereby improving the magnetic field sensitivity. Further, in the conventional artificial lattice film, since the electric current flows in the direction parallel to the interface of the laminated film, the spin polarization is incomplete and the efficiency of spin scattering is poor. However, in the present invention, a spin-polarized electron is used, so that a large MR change occurs. The feature is that it can be obtained.

【0010】本発明の磁気抵抗効果素子及び磁気抵抗効
果型磁気ヘッドを構成する軟磁性膜、硬質磁性膜、半導
体、ヨ−ク等には以下のものを用いることが望ましい。
It is desirable to use the following materials for the soft magnetic film, hard magnetic film, semiconductor, yoke, etc. which compose the magnetoresistive effect element and the magnetoresistive effect type magnetic head of the present invention.

【0011】軟磁性膜としては磁気抵抗変化を生じやす
く低磁界で磁化反転しやすい、 NiXCoYFeZ --- (1) を主成分とし、原子組成比が X=0.6〜0.9、Y=0〜0.4、Z=0〜0.3 --- (1') のNi-richの磁性膜が望ましく、その代表的なものは Ni
0.8Co0.15Fe0.05, Ni0.6 8Co0.2Fe0.12等である。これら
よりやや動作磁界は大きくなるものの、より大きな磁気
抵抗変化が得られるものとして NiX'CoY'FeZ' --- (2) を主成分し、原子組成比が X'=0〜0.4、Y'=0.2〜0.95、Z=0〜0.5 --- (2') のCo-richの磁性膜があり、その代表的なものはCo0.9Fe
0.1, Co0.7Ni0.1Fe0.2等である。
As a soft magnetic film, the main component is Ni X Co Y Fe Z --- (1), which is liable to cause a change in magnetic resistance and easily causes magnetization reversal in a low magnetic field, and has an atomic composition ratio of X = 0.6 to 0.9, Y = 0 to 0.4, Z = 0 to 0.3 --- (1 ') Ni-rich magnetic film is desirable, typical one is Ni
0.8 Co 0.15 Fe 0.05, a Ni 0.6 8 Co 0.2 Fe 0.12 mag. Although these somewhat more operating field increases, 'and main component --- (2), the atomic composition ratio of X' Ni X 'Co Y' Fe Z as a larger magnetoresistive change is obtained = 0-0.4 , Y '= 0.2 to 0.95, Z = 0 to 0.5 --- (2') Co-rich magnetic film, typical of which is Co 0.9 Fe.
0.1 , Co 0.7 Ni 0.1 Fe 0.2, etc.

【0012】硬質磁性膜としては検知すべき磁界で磁化
反転しないように保磁力が大きく角型の磁化曲線を有す
るものが望ましい。又素子が大きな磁気抵抗効果を示す
には主要構成元素の一つとしてCoを含有することが望ま
しい。その代表的なものはCo,Co0.5Fe0.5, Co0.75Pt
0.25等である。
As the hard magnetic film, one having a large coercive force and a square-shaped magnetization curve is desirable so that the magnetization is not reversed by the magnetic field to be detected. Further, in order for the element to exhibit a large magnetoresistive effect, it is desirable to contain Co as one of the main constituent elements. Typical examples are Co, Co 0.5 Fe 0.5 , Co 0.75 Pt
It is 0.25 mag.

【0013】高移動度の電子輸送部を形成するには選択
ド−プにより得られる半導体ヘテロジャンクションの反
転層を用いれば良い。代表的なものはInAlAs/InGaAs, G
aAs/InGaAs, AlGaAs/GaAs等のヘテロジャンクションで
ある。
An inversion layer of a semiconductor heterojunction obtained by selective doping may be used to form an electron transporting portion having high mobility. Typical ones are InAlAs / InGaAs, G
Heterojunctions such as aAs / InGaAs, AlGaAs / GaAs.

【0014】ヨ−クに用いる磁性膜は高透磁率の軟磁性
膜である必要があり、この条件を満足するものとしては
Co0.82Nb0.12Zr0.06等のCo系の非晶質合金膜やNi0.8Fe
0.2がある。
The magnetic film used for the yoke needs to be a soft magnetic film having a high magnetic permeability, and one satisfying this condition is
Co 0.82 Nb 0.12 Zr 0.06 Co-based amorphous alloy film or Ni 0.8 Fe
There is 0.2 .

【0015】なお下記の観点から半導体部と磁性膜部の
間に非磁性金属膜を設けても良い。例えば半導体膜部か
ら磁性体膜部への電子の移動を容易にするには半導体膜
側にCs等の非磁性金属膜をつけることが有効である。又
磁気抵抗効果の観点からは磁性膜界面につける非磁性金
属膜としてはCu,Ag,Au等が有効である。
From the following viewpoint, a nonmagnetic metal film may be provided between the semiconductor portion and the magnetic film portion. For example, in order to facilitate the movement of electrons from the semiconductor film portion to the magnetic film portion, it is effective to attach a non-magnetic metal film such as Cs to the semiconductor film side. From the viewpoint of the magnetoresistive effect, Cu, Ag, Au, etc. are effective as the non-magnetic metal film attached to the magnetic film interface.

【0016】これらを併せて半導体部と磁性膜部の界面
に非磁性金属膜として、Cs等の膜を半導体と接する側
に、上記のCu等の膜を磁性膜と接する側に設けた構成と
しても良い。
In addition, a structure in which a nonmagnetic metal film is provided at the interface between the semiconductor portion and the magnetic film portion, a film such as Cs is provided on the side in contact with the semiconductor, and a film such as Cu is provided on the side in contact with the magnetic film Is also good.

【0017】以下具体的な実施例により本発明の効果の
説明を行う。 (実施例1)MBEを用いてGaAs基板上にAlGaAs膜を形
成し、AiGaAsにSiをド−プし、GaAs/AlGaAsヘテロジャ
ンクションを作製し、界面に高移動度層を形成した。ド
ライエッチにより半導体部に溝を作り、Co0.7Ni0.1Fe
0.2を蒸着し、パタ−ニングして軟磁性膜部を形成し
た。次にドライエッチにより半導体部に溝を作り、Co
0.5Fe0.5を蒸着しパタ−ニングして硬質磁性膜部を形成
した。それぞれの磁性膜部に電極を設けて磁気抵抗素子
とした。この素子にヘルムホルツコイルで 500Oeの磁界
を印加してCo0.5Fe0.5を一方向に磁化した後、30Oeの磁
界を反対方向に発生して抵抗変化を測定したところ20%
のMR変化率が得られた。
The effects of the present invention will be described below with reference to specific examples. (Example 1) An AlGaAs film was formed on a GaAs substrate using MBE, Si was doped on AiGaAs to prepare a GaAs / AlGaAs heterojunction, and a high mobility layer was formed at the interface. A groove is formed in the semiconductor part by dry etching, and Co 0.7 Ni 0.1 Fe
0.2 was vapor-deposited and patterned to form a soft magnetic film portion. Next, a groove is formed in the semiconductor portion by dry etching and Co
0.5 Fe 0.5 was vapor-deposited and patterned to form a hard magnetic film portion. Electrodes were provided on the respective magnetic film portions to make magnetoresistive elements. A magnetic field of 500 Oe was applied to this element by a Helmholtz coil to magnetize Co 0.5 Fe 0.5 in one direction, and then a magnetic field of 30 Oe was generated in the opposite direction and the resistance change was measured to be 20%.
The MR change rate of was obtained.

【0018】(実施例2)MBEを用いてGaAs基板上に
AlGaAs膜を形成し、AiGaAsにSiをド−プし、GaAs/AlGaA
sヘテロジャンクションを作製し、界面に高移動度層を
形成した。ドライエッチにより半導体部に溝を作り、Co
0.5Fe0.5を蒸着しパタ−ニングして硬質磁性膜部を形成
した。次にドライエッチにより半導体部に溝を作り、Ni
0.68Co0.2Fe0.12を蒸着し、パタ−ニングして軟磁性膜
部を形成した。更にSiO2をスパッタして絶縁膜をつけた
後、Co0.82Nb0.12Zr0.06膜をスパッタ法で成膜しパタ−
ニングしてヨ−ク部を形成した。それぞれの磁性膜部に
電極とリ−ド部を設けて磁気抵抗効果型ヘッドとした。
このヘッドにヘルムホルツコイルで 500Oeの磁界を印加
してCo0.5Fe0.5を一方向に磁化した後、10 Oeの磁界を
反対方向に発生して抵抗変化を測定したところ15%のM
R変化率が得られた。
(Example 2) On a GaAs substrate using MBE
An AlGaAs film is formed, Si is doped on AiGaAs, and GaAs / AlGaA
We fabricated s heterojunction and formed a high mobility layer at the interface. A groove is formed in the semiconductor part by dry etching, and Co
0.5 Fe 0.5 was vapor-deposited and patterned to form a hard magnetic film portion. Next, a groove is formed in the semiconductor portion by dry etching and Ni
0.68 Co 0.2 Fe 0.12 was vapor-deposited and patterned to form a soft magnetic film portion. After SiO 2 is sputtered to form an insulating film, a Co 0.82 Nb 0.12 Zr 0.06 film is formed by the sputtering method and patterned.
To form a yoke portion. An electrode and a lead portion were provided on each magnetic film portion to form a magnetoresistive head.
A magnetic field of 500 Oe was applied to this head with a Helmholtz coil to magnetize Co 0.5 Fe 0.5 in one direction, and then a magnetic field of 10 Oe was generated in the opposite direction to measure the resistance change.
The R change rate was obtained.

【0019】[0019]

【発明の効果】本発明は微小な磁界で大きな磁気抵抗変
化が得られる磁気抵抗効果素子及び磁気抵抗効果型ヘッ
ドを可能とするものである。
The present invention enables a magnetoresistive effect element and a magnetoresistive effect type head that can obtain a large magnetoresistive change with a minute magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の磁気抵抗効果素子を示す図 (b)は磁気抵抗効果型ヘッドの構成図FIG. 1A is a diagram showing a magnetoresistive effect element of the present invention. FIG. 1B is a configuration diagram of a magnetoresistive head.

【符号の説明】[Explanation of symbols]

HM 硬質磁性膜 E1,E2 電極 S1,S2 半導体 D 高移動度層 SM 軟磁性膜 H 磁界 Y ヨ−ク HM Hard magnetic film E1, E2 Electrodes S1, S2 Semiconductor D High mobility layer SM Soft magnetic film H Magnetic field Y York

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】半導体ヘテロ構造界面に形成された移動度
の高い電子輸送部と、この両端の一方に設けられた一方
向に磁化された磁化曲線が角型性の良好な金属硬質磁性
膜、及び他方に設けられた磁界検知用金属軟磁性膜、更
に上記金属硬質磁性膜と金属軟磁性膜それぞれに設けら
れた抵抗変化検出用電極部より成ることを特徴とする磁
気抵抗効果素子。
1. An electron transporting part having a high mobility formed at a semiconductor heterostructure interface, and a metal hard magnetic film provided on one of both ends of the electron transporting part and having a unidirectional magnetization curve having a good squareness. And a magnetic field detecting metal soft magnetic film provided on the other side, and a resistance change detecting electrode portion provided on each of the metal hard magnetic film and the metal soft magnetic film.
【請求項2】半導体ヘテロ構造界面に形成された移動度
の高い電子輸送部と、この両端の一方に設けられた一方
向に磁化された磁化曲線が角型性の良好な金属硬質磁性
膜、及び他方に設けられた磁界検知用金属軟磁性膜とこ
れに磁気媒体からの信号磁界を導くためのヨ−ク、更に
上記金属硬質磁性膜と金属軟磁性膜それぞれに設けられ
た抵抗変化検出用電極部より成ることを特徴とする磁気
抵抗効果型ヘッド。
2. An electron transporting part having a high mobility formed at a semiconductor heterostructure interface, and a metal hard magnetic film provided on one of both ends of the electron transporting part and having a unidirectionally magnetized magnetization curve having a good squareness. And a magnetic soft magnetic film for magnetic field detection provided on the other side, a yoke for guiding a signal magnetic field from a magnetic medium to the soft magnetic magnetic film, and resistance change detection provided on each of the hard metal magnetic film and the soft metal magnetic film. A magnetoresistive head comprising an electrode portion.
【請求項3】特に金属軟磁性膜に、NiXCoYFeZを主成分
とし原子組成比でXは0.6〜0.9、Yは0〜0.4、Zは0〜0.3
である強磁性膜を用いることを特徴とする請求項1記載
の磁気抵抗効果素子
3. A metal soft magnetic film, in particular, containing Ni X Co Y Fe Z as a main component and having an atomic composition ratio of 0.6 to 0.9 for X, 0 to 0.4 for Y, and 0 to 0.3 for Z.
2. The magnetoresistive effect element according to claim 1, wherein the ferromagnetic film is used.
【請求項4】金属軟磁性膜に、NiXCoYFeZを主成分とし
原子組成比でXは0.6〜0.9、Yは0〜0.4、Zは0〜0.3であ
る強磁性膜を用いることを特徴とする請求項2記載の磁
気抵抗効果型ヘッド。
4. A ferromagnetic film containing Ni X Co Y Fe Z as a main component and having an atomic composition ratio of 0.6 to 0.9 for X, 0 to 0.4 for Y, and 0 to 0.3 for Z as the soft magnetic metal film. The magnetoresistive head according to claim 2, wherein
【請求項5】金属軟磁性膜に、NiX'CoY'FeZ'を主成分し
原子組成比でX'は0〜0.4、Y'は0.2〜0.95、Zは0〜0.5で
ある強磁性膜を用いることを特徴とする請求項1磁気抵
抗効果素子。
5. A soft magnetic metal film, the 'X in the main component and atomic composition ratio' Ni X 'Co Y' Fe Z 0~0.4, Y ' is 0.2 to 0.95, Z is strong 0 to 0.5 The magnetoresistive effect element according to claim 1, wherein a magnetic film is used.
【請求項6】金属軟磁性膜に、NiX'CoY'FeZ'を主成分し
原子組成比でX'は0〜0.4、Y'は0.2〜0.95、Zは0〜0.5で
ある強磁性膜を用いることを特徴とする請求項2記載の
磁気抵抗効果型ヘッド。
6. A soft magnetic metal film, the 'X in the main component and atomic composition ratio' Ni X 'Co Y' Fe Z 0~0.4, Y ' is 0.2 to 0.95, Z is strong 0 to 0.5 The magnetoresistive head according to claim 2, wherein a magnetic film is used.
【請求項7】金属硬質磁性膜が主成分の一つとしてCoを
含有していることを特徴とする請求項1記載の磁気抵抗
効果素子。
7. The magnetoresistive effect element according to claim 1, wherein the hard metal magnetic film contains Co as one of its main components.
【請求項8】金属硬質磁性膜が主成分の一つとしてCoを
含有していることを特徴とする請求項2記載の磁気抵抗
効果型ヘッド。
8. A magnetoresistive head according to claim 2, wherein the hard metal magnetic film contains Co as one of its main components.
【請求項9】金属磁性膜と半導体部との間に非磁性金属
膜を設けたことを特徴とする請求項1記載の磁気抵抗効
果素子。
9. The magnetoresistive effect element according to claim 1, wherein a nonmagnetic metal film is provided between the metal magnetic film and the semiconductor portion.
【請求項10】金属磁性膜と半導体部との間に非磁性金
属膜を設けたことを特徴とする請求項2記載の磁気抵抗
効果型ヘッド。
10. The magnetoresistive head according to claim 2, wherein a nonmagnetic metal film is provided between the metal magnetic film and the semiconductor portion.
JP7318753A 1995-12-07 1995-12-07 Magnetoresistive effect device and magnetoresistive effect head Pending JPH09162460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7318753A JPH09162460A (en) 1995-12-07 1995-12-07 Magnetoresistive effect device and magnetoresistive effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7318753A JPH09162460A (en) 1995-12-07 1995-12-07 Magnetoresistive effect device and magnetoresistive effect head

Publications (1)

Publication Number Publication Date
JPH09162460A true JPH09162460A (en) 1997-06-20

Family

ID=18102559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7318753A Pending JPH09162460A (en) 1995-12-07 1995-12-07 Magnetoresistive effect device and magnetoresistive effect head

Country Status (1)

Country Link
JP (1) JPH09162460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990087860A (en) * 1998-05-13 1999-12-27 이데이 노부유끼 Element exploiting magnetic material and addressing method therefor
US6700761B2 (en) * 2000-06-12 2004-03-02 Fujitsu Limited Magnetic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990087860A (en) * 1998-05-13 1999-12-27 이데이 노부유끼 Element exploiting magnetic material and addressing method therefor
US6700761B2 (en) * 2000-06-12 2004-03-02 Fujitsu Limited Magnetic sensor

Similar Documents

Publication Publication Date Title
JP3217703B2 (en) Magnetic device and magnetic sensor using the same
Johnson et al. Hybrid Hall effect device
US7755929B2 (en) Spin-injection device and magnetic device using spin-injection device
Parkin et al. Magnetically engineered spintronic sensors and memory
US9236103B2 (en) Bipolar spin-transfer switching
JP3253696B2 (en) Magnetoresistance effect element
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
Bratkovsky Spintronic effects in metallic, semiconductor, metal–oxide and metal–semiconductor heterostructures
US20070064351A1 (en) Spin filter junction and method of fabricating the same
JPH09121066A (en) Magnetoresistive effect element and memory element
KR20060048611A (en) Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by an antiferromagnetic/ferromagnetic exchange-coupled structure
JP2003069107A (en) Magnetic field sensor and magnetic head
US20110103138A1 (en) Single-charge tunneling device
JP4583443B2 (en) Magnetoelectric field effect transistors for spintronics applications
JP3556457B2 (en) Spin-dependent conductive element and electronic and magnetic components using the same
Inomata Giant magnetoresistance and its sensor applications
JP2006019728A (en) Anomalous magnetic resistance sensor having perpendicular magnetic biasing by exchange-coupled antiferromagnetism/ferromagnetic structure
JP3520192B2 (en) Magnetic element and magnetic component and electronic component using the same
Johnson et al. Hybrid ferromagnet-semiconductor nonvolatile gate
Lu et al. Design and synthesis of an artificial perpendicular hard ferrimagnet with high thermal and magnetic field stabilities
US7170722B2 (en) Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by a ferromagnetic multilayer
US20040196744A1 (en) Control device for reversing the direction of magnetisation without an external magnetic field
JPH09162460A (en) Magnetoresistive effect device and magnetoresistive effect head
Fert Historical overview: From electron transport in magnetic materials to spintronics
JP4146202B2 (en) Spin tunnel transistor, magnetic reproducing head, magnetic information reproducing system, and magnetic storage device