JPH09157954A - Antistatic fiber - Google Patents

Antistatic fiber

Info

Publication number
JPH09157954A
JPH09157954A JP31690995A JP31690995A JPH09157954A JP H09157954 A JPH09157954 A JP H09157954A JP 31690995 A JP31690995 A JP 31690995A JP 31690995 A JP31690995 A JP 31690995A JP H09157954 A JPH09157954 A JP H09157954A
Authority
JP
Japan
Prior art keywords
polymer
fiber
antistatic
group
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31690995A
Other languages
Japanese (ja)
Inventor
Masao Matsui
雅男 松井
Hidekazu Koseki
英一 小関
Yoshikazu Kondo
義和 近藤
Hiroshi Kajiyama
宏史 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Kanebo Ltd
Original Assignee
Shimadzu Corp
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Kanebo Ltd filed Critical Shimadzu Corp
Priority to JP31690995A priority Critical patent/JPH09157954A/en
Publication of JPH09157954A publication Critical patent/JPH09157954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain antistatic fiber useful as clothing, etc., excellent in natural degradation and fiber performance, slightly polluting an environment, by combining a prescribed an antistatic polymer with a specific fiber-forming polymer in a single fiber. SOLUTION: This antistatic fiber is obtained by combining (A) an antistatic polymer 1 which is obtained by mixing (i) a polymer consisting essentially of an aliphatic polyester such as a polyglycolic acid with (ii) one or more compounds selected from the group consisting of a surfactant containing both a lipophilic group and a hydrophilic group, a 2-4C alkyl group-containing polyalkylene ether and a derivative of the polyalkylene ether and has <=1×10<11> Ω.cm volume resistivity with (B) a fiber-forming polymer 2 consisting essentially of an aliphatic polyester in a single fiber. The combining ratio (volume ratio) of the antistatic polymer 1 and the fiber-forming polymer 2 is preferably 10/90 to 60/40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自然分解性であ
り、且つ帯電防止性および繊維性能が改善された新規帯
電防止性複合繊維に関する。
TECHNICAL FIELD The present invention relates to a novel antistatic composite fiber which is naturally degradable and has improved antistatic properties and fiber performances.

【0002】[0002]

【従来の技術】合成樹脂からなる合成繊維は、自然環境
下での分解速度が遅く、また焼却時の発熱量が多いた
め、自然環境保護の見地からの見直しが必要である。こ
のため、脂肪族ポリエステルからなる自然分解性繊維が
開発されつつあり、環境保護への貢献が期待されてい
る。しかし脂肪族ポリエステルは、水をほとんど吸わず
電気抵抗が高いため、摩擦などで容易に帯電する傾向が
あり、帯電による火花放電やゴミや細菌の付着などの問
題があり、帯電防止された脂肪族ポリエステル繊維が求
められている。帯電防止(以下制電と記すことがある)
性繊維は、帯電防止剤(制電剤)をポリマーに混合して
得られるが、そうすると繊維の性能が低下するという問
題がある。とくに脂肪族ポリエステルは、繊維性能や耐
久性が劣る傾向があり、制電剤混合時の繊維性能の低下
防止が必要とされる。
2. Description of the Related Art Synthetic fibers made of synthetic resin have a slow decomposition rate in a natural environment and generate a large amount of heat when incinerated, so that they must be reviewed from the viewpoint of protecting the natural environment. For this reason, naturally decomposable fibers made of aliphatic polyesters are being developed and are expected to contribute to environmental protection. However, since aliphatic polyesters hardly absorb water and have high electric resistance, they tend to be easily charged by friction, and there are problems such as spark discharge due to electrification and adhesion of dust and bacteria. There is a demand for polyester fibers. Antistatic (hereinafter sometimes referred to as antistatic)
The functional fiber can be obtained by mixing an antistatic agent (antistatic agent) with a polymer, but there is a problem in that the performance of the fiber is deteriorated. In particular, aliphatic polyesters tend to be inferior in fiber performance and durability, and it is necessary to prevent deterioration of fiber performance when an antistatic agent is mixed.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、自然
分解性であり、制電性および繊維性能にすぐれた新規繊
維を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel fiber which is naturally degradable and has excellent antistatic property and fiber performance.

【0004】[0004]

【課題を解決するための手段】上記本発明の目的は、脂
肪族ポリエステルを主成分とする重合体(A)と、「親
油基と親水基とを有する界面活性剤、炭素数2〜4のア
ルキル基を持つポリアルキレンエーテル、および該ポリ
アルキレンエーテルの誘導体」の群より選ばれた少なく
とも1種の化合物(B)とが混合されてなる帯電防止性
ポリマー(1)と、脂肪族ポリエステルを主成分とする
繊維形成性ポリマー(2)とが単繊維内で複合されてい
ることを特徴とする新規制電性複合繊維によって達成さ
れる。
The object of the present invention is to provide a polymer (A) containing an aliphatic polyester as a main component and a "surfactant having a lipophilic group and a hydrophilic group, having 2 to 4 carbon atoms". A polyalkylene ether having an alkyl group, and at least one compound (B) selected from the group of "derivatives of the polyalkylene ether", and an antistatic polymer (1), and an aliphatic polyester. This is achieved by a new regulated electric conjugate fiber, which is characterized in that the fiber-forming polymer (2) as the main component is combined within a single fiber.

【0005】ここで、脂肪族ポリエステルを主成分とす
る重合体とは、(1)グリコール酸、乳酸、ヒドロキシ
ブチルカルボン酸などのようなヒドロキシアルキルカル
ボン酸、(2)グリコリド、ラクチド、ブチロラクト
ン、カプロラクトンなどの脂肪族ラクトン、(3)エチ
レングリコール、プロピレングリコール、ブタンジオー
ル、ヘキサンジオールなどのような脂肪族ジオール、
(4)ジエチレングリコール、トリエチレングリコー
ル、エチレン/プロピレングリコール、ジヒドロキシエ
チルブタンなどのようなポリアルキレンエーテルのオリ
ゴマー、ポリエチレングリコール、ポリプロピレンリコ
ール、ポリブチレンエーテルなどのポリアルキレングリ
コール、(5)ポリプロピレンカーボネート、ポリブチ
レンカーボネート、ポリヘキサンカーボネート、ポリオ
クタンカーボネート、ポリデカンカーボネートなどのポ
リアルキレンカーボネートグリコールおよびそれらのオ
リゴマー、(6)コハク酸、アジピン酸、スベリン酸、
アゼライン酸、セバシン酸、デカンジカルボン酸などの
脂肪族ジカルボン酸など、脂肪族ポリエステル重合原料
に由来する成分を主成分すなわち50重量%以上(特に
60%以上)とするものであって、脂肪族ポリエステル
のホモポリマー、脂肪族ポリエステル共重合ポリマー、
および脂肪族ポリエステルに他の成分、例えば芳香族ポ
リエステル、ポリエーテル、ポリカーボネート、ポリア
ミド、ポリ尿素、ポリウレタン、ポリオルガノシロキサ
ンなどを50重量%以下共重合(ブロック共重合または
/及びランダム共重合)したもの及び/又は混合したも
のをすべて包含する。
Here, the polymer containing an aliphatic polyester as a main component means (1) a hydroxyalkylcarboxylic acid such as glycolic acid, lactic acid or hydroxybutylcarboxylic acid, (2) glycolide, lactide, butyrolactone or caprolactone. Aliphatic lactones such as (3) aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, etc.
(4) Polyethylene ether oligomers such as diethylene glycol, triethylene glycol, ethylene / propylene glycol, dihydroxyethyl butane, etc., polyethylene glycol, polypropylene recall, polyalkylene glycols such as polybutylene ether, (5) polypropylene carbonate, polybutylene Polyalkylene carbonate glycols such as carbonate, polyhexane carbonate, polyoctane carbonate, polydecane carbonate and their oligomers, (6) succinic acid, adipic acid, suberic acid,
An aliphatic polyester containing a component derived from an aliphatic polyester polymerization raw material as a main component, that is, 50% by weight or more (particularly 60% or more), such as an aliphatic dicarboxylic acid such as azelaic acid, sebacic acid, and decanedicarboxylic acid. Homopolymer, aliphatic polyester copolymer,
And other components such as aromatic polyester, polyether, polycarbonate, polyamide, polyurea, polyurethane, polyorganosiloxane are copolymerized with the aliphatic polyester in an amount of 50% by weight or less (block copolymerization and / or random copolymerization). And / or mixtures thereof are all included.

【0006】脂肪族ポリエステルを共重合や混合によっ
て変性する目的は、結晶性の低下、融点の低下(重合温
度や成型温度の低下)、柔軟性や弾性回復性の改良、耐
熱性やガラス転移温度の低下または上昇、染色性、親水
性や撥水性の改良、他成分との接着性や混和性の改良、
分解性の向上または抑制などが挙げられる。
The purpose of modifying the aliphatic polyester by copolymerization or mixing is to lower the crystallinity, lower the melting point (lower the polymerization temperature and molding temperature), improve the flexibility and elastic recovery, heat resistance and glass transition temperature. Decrease or increase, improvement in dyeability, hydrophilicity and water repellency, improvement in adhesion and miscibility with other components,
Examples include improvement or suppression of degradability.

【0007】本発明繊維は、制電性ポリマー(1)と繊
維形成性ポリマー(2)との2つの成分ポリマーが複合
(接合)されている。制電性ポリマーは、脂肪族ポリエ
ステルを主成分とする重合体(A)と、「親油基と親水
基とを有する界面活性剤、炭素数2〜4のアルキル基を
持つポリアルキレンエーテル、および該ポリアルキレン
エーテルの誘導体」の群より選ばれた少なくとも1種の
化合物(B)すなわち制電剤との混合物である。脂肪族
ポリエステルを主成分とする重合体(A)は、前記のよ
うに、ホモポリマー、コポリマーおよび混合物のいずれ
でもよい。しかし、この成分は繊維の強度、弾性、耐久
性、耐熱性、などの見地からは、結晶性のホモポリマー
および、それに対して結晶性をあまり損なわない程度に
少量(1〜40重量%程度、とくに30%以下)の第二
成分や第三成分を共重合又は/及び混合したものが好ま
しい。ポリマーの結晶性は、走査型示差熱量計(DS
C)による溶融時の吸熱量が大きいほど高い。強度など
の見地から、重合体(A)の溶融時の吸熱量は、5ジュ
ール(J)/g以上が好ましく、10J/g以上が特に
好ましく、20J/g以上が最も好ましい。多くの結晶
性脂肪族ホモポリマーの溶融吸熱量は50J/g前後で
ある。
The fiber of the present invention is a composite (joint) of two component polymers of the antistatic polymer (1) and the fiber-forming polymer (2). The antistatic polymer includes a polymer (A) containing an aliphatic polyester as a main component, "a surfactant having a lipophilic group and a hydrophilic group, a polyalkylene ether having an alkyl group having 2 to 4 carbon atoms, and It is a mixture with at least one compound (B) selected from the group of “derivatives of said polyalkylene ether”, that is, an antistatic agent. As described above, the polymer (A) containing an aliphatic polyester as a main component may be a homopolymer, a copolymer or a mixture. However, from the viewpoint of fiber strength, elasticity, durability, heat resistance, etc., this component is a crystalline homopolymer and a small amount (about 1 to 40% by weight, to the extent that crystallinity is not significantly impaired). Particularly preferred is a copolymerization and / or mixture of 30% or less) of the second and third components. The crystallinity of the polymer is determined by scanning differential calorimeter (DS
The larger the heat absorption amount at the time of melting by C) is, the higher it is. From the viewpoint of strength and the like, the endothermic amount of the polymer (A) at the time of melting is preferably 5 Joules (J) / g or more, particularly preferably 10 J / g or more, and most preferably 20 J / g or more. The melting endotherm of many crystalline aliphatic homopolymers is around 50 J / g.

【0008】しかし、重合体(A)は、非晶性であって
もよい。非晶性の場合、繊維性能は劣る傾向があるが、
制電剤を混合したとき、荷電粒子が移動し易すく電気伝
導度が高まり、制電性が改善されるという利点がある。
However, the polymer (A) may be amorphous. When amorphous, the fiber performance tends to be inferior,
When the antistatic agent is mixed, there is an advantage that the charged particles are easily moved, the electric conductivity is increased, and the antistatic property is improved.

【0009】制電剤(化合物(B))と重合体(A)と
は、その相互親和性が高いと混合状態が、微細、均一か
つ安定になり、制電性および混合物の力学的性質などが
高められるので望ましい。両者の親和性を高めるため、
制電剤の有効成分であるポリアルキレンエーテルや極性
基などを共重合した脂肪族ポリエステルが重合体(A)
として好ましく用いられる。同様に、制電剤の中に脂肪
族ポリエステルの成分、特にそのセグメントを共重合し
たものが好ましく用いられる。すなわち、制電剤(B)
と重合体(A)とは、共通のセグメントや基を持つこと
が好ましい。ここでセグメントは、分子鎖の一部分を言
い、重合度2〜20程度のオリゴマー級のものから、重
合度20以上のポリマー級のものまでを包含する。
When the mutual affinity of the antistatic agent (compound (B)) and polymer (A) is high, the mixed state becomes fine, uniform and stable, and the antistatic property and mechanical properties of the mixture, etc. It is desirable because it can be improved. In order to enhance the affinity of both,
The aliphatic polyester obtained by copolymerizing a polyalkylene ether, which is an active ingredient of an antistatic agent, or a polar group is a polymer (A).
It is preferably used as Similarly, an antistatic agent in which an aliphatic polyester component, in particular, a segment thereof is copolymerized is preferably used. That is, antistatic agent (B)
It is preferable that the polymer and the polymer (A) have a common segment or group. Here, the segment refers to a part of a molecular chain, and includes from oligomer grade having a polymerization degree of about 2 to 20 to polymer grade having a polymerization degree of 20 or more.

【0010】例えば、ポリ乳酸にポリエチレングリコー
ルを1〜30%程度、特に3〜15%ブロック共重合し
たものを重合体(A)とし、ポリエチレングリコールを
有効成分とする制電剤(B)と組み合わせると、両者は
ポリエチレングリコールという共通セグメントを持つた
め、相互親和性が高く好ましい。同様に、ポリエチレン
グリコールにポリ乳酸を1〜20%程度、特に3〜15
%ブロック共重合した制電剤(B)と、ポリ乳酸を主成
分とする重合体(A)とは、ポリ乳酸を共通セグメント
として持つため、親和性が高く好ましい組み合わせであ
る。両者が共通して持つセグメントの重量比率は、1%
以上が好ましく、3%以上が特に好ましく、5〜20%
程度が最も広く用いられる。同様に、共通の基としてエ
ステル結合、エーテル結合、アルキル基などを持たせる
ことも比較的容易である。
For example, polylactic acid and block copolymerized with polyethylene glycol of about 1 to 30%, especially 3 to 15% are used as a polymer (A) and combined with an antistatic agent (B) containing polyethylene glycol as an active ingredient. Since both have a common segment called polyethylene glycol, they have high mutual affinity and are preferable. Similarly, polylactic acid is added to polyethylene glycol in an amount of about 1 to 20%, particularly 3 to 15%.
Since the block-copolymerized antistatic agent (B) and the polymer (A) containing polylactic acid as a main component have polylactic acid as a common segment, they have a high affinity and are a preferable combination. The weight ratio of the segments that both have in common is 1%
Or more is preferable, 3% or more is especially preferable, 5 to 20%
The degree is most widely used. Similarly, it is relatively easy to have an ester bond, an ether bond, an alkyl group or the like as a common group.

【0011】制電剤(B)の一つの有効成分は、炭素数
2〜4のポリアルキレンエーテル、すなわちポリエチレ
ングリコール、ポリプロピレングリコール、ポリブチレ
ンエーテル、およびそれらを成分とする共重合体(オリ
ゴマーを含む)である。なかでもポリエチレングリコー
ルは最も導電性が高いので良く用いられ、次にポリエチ
レングリコール/ポリプロピレングリコール共重合体が
用いられることが多い。ポリブチレンエーテルは、それ
自体は電気伝導度が低いが、他の成分と組み合わせて、
良好な制電性を得ることができる。また上記ポリエーテ
ル類の変性体や誘導体、たとえば親水基や極性基例え
ば、水酸基、カルボキシル基、アミノ基、4級アンモニ
ウム塩、アミド基、尿素基、ウレタン基、スルホン基、
硫酸基、リン酸基、などを持ち、電気伝導度が高い化合
物を混合したり、共重合その他の方法で化学的に結合し
て、導電性を強化したものも、本発明の制電剤として特
に好ましい。同様に、脂肪族ポリエステルとの親和性を
高めるために、各種の親油成分、例えばアルキル基、ア
ルキルアリル基、アルキルエステル基、ポリエステルセ
グメントなどをポリエーテルに結合した誘導体も、制電
剤として好ましい。
One active ingredient of the antistatic agent (B) is a polyalkylene ether having 2 to 4 carbon atoms, that is, polyethylene glycol, polypropylene glycol, polybutylene ether, and a copolymer containing them (including an oligomer). ). Among them, polyethylene glycol is often used because it has the highest conductivity, and polyethylene glycol / polypropylene glycol copolymer is often used next. Polybutylene ether itself has low electric conductivity, but in combination with other components,
Good antistatic property can be obtained. In addition, modified products and derivatives of the above polyethers such as hydrophilic groups and polar groups such as hydroxyl group, carboxyl group, amino group, quaternary ammonium salt, amide group, urea group, urethane group, sulfone group,
A compound having a sulfate group, a phosphate group, or the like, which has a high electric conductivity, or which is chemically bonded by a copolymerization or other method to enhance conductivity is also used as the antistatic agent of the present invention. Particularly preferred. Similarly, in order to improve the affinity with the aliphatic polyester, various lipophilic components, for example, a derivative in which an alkyl group, an alkylallyl group, an alkyl ester group, a polyester segment, etc. are bound to a polyether are also preferable as the antistatic agent. .

【0012】制電剤(B)は、低分子型と高分子型に大
別される。低分子型は、分子量2000程度以下の界面
活性剤であり、親水基によってノニオン型、アニオン
型、カチオン型、両性型などに分類されるが、一般に導
電性に優れ、いずれも本発明の目的に応用可能である。
界面活性剤の親油基は、特に限定されないが、脂肪族ポ
リエステルと親和性が高いもの、たとえば直鎖または側
鎖を持つ飽和または不飽和アルキル基、アルキルアリル
基、エステル結合を持つものなどが好ましい。界面活性
剤の親水基も特に限定されないが、エーテル結合、水酸
基のほか、カルボキシル基、アミノ基、スルホン基など
前記極性基の1種または2種以上をもつものが好ましく
用いられる。
The antistatic agent (B) is roughly classified into a low molecular type and a high molecular type. The low molecular weight type is a surfactant having a molecular weight of about 2000 or less, and is classified into nonionic type, anionic type, cationic type, amphoteric type and the like depending on the hydrophilic group, but generally has excellent conductivity and both are suitable for the purpose of the present invention. It is applicable.
The lipophilic group of the surfactant is not particularly limited, but those having high affinity with the aliphatic polyester, for example, saturated or unsaturated alkyl group having a linear or side chain, an alkylallyl group, an ester bond, etc. preferable. The hydrophilic group of the surfactant is not particularly limited, but those having one kind or two or more kinds of the polar groups such as a carboxyl group, an amino group and a sulfone group in addition to an ether bond and a hydroxyl group are preferably used.

【0013】高分子型は、分子量2000程度以上、特
に5000以上のものであり、多くの場合、分子量1万
〜30万程度のもの、中でも分子量2万〜20万のもの
が広く用いられる。高分子型は、ポリエーテル、ポリエ
ーテルと他の成分とが結合したもの、およびポリエーテ
ルと他のポリマーとの共重合体などが好ましく用いられ
る。共重合する場合、重合体(A)との親和性に留意
し、前記のように例えば共通のセグメントを導入するこ
とが特に好ましい。一般に、界面活性剤は親水性で、布
の染色仕上げ工程や洗濯などにより、脱落していく傾向
があるが、高分子型はその傾向が殆どなく、制電性の耐
久性や持続性にすぐれるので、とくに好ましい。さら
に、高分子型は、紡糸性に優れるだけでなく、繊維の製
造や加工工程での延伸や引張りによっても切断され難
く、制電性の耐久性が優れ好ましい。
The high molecular type has a molecular weight of about 2,000 or more, particularly 5,000 or more, and in many cases, those having a molecular weight of about 10,000 to 300,000, and in particular, those having a molecular weight of 20,000 to 200,000 are widely used. As the high molecular type, polyethers, those in which polyethers and other components are bonded, and copolymers of polyethers with other polymers are preferably used. In the case of copolymerization, it is particularly preferable to pay attention to the affinity with the polymer (A) and to introduce, for example, a common segment as described above. Generally, surfactants are hydrophilic and tend to come off during the dyeing and finishing process of cloth and washing, but the polymer type has almost no such tendency, and it has excellent antistatic durability and durability. Therefore, it is particularly preferable. Further, the polymer type is preferable not only because it is excellent in spinnability but also because it is difficult to be cut by stretching or pulling in the production and processing steps of fibers, and it is excellent in antistatic durability.

【0014】制電性ポリマー(1)は、繊維に十分な制
電性を与えるために、高い電気伝導度を持つこと、すな
わち23℃,40%RHにおいて体積抵抗率(比抵抗)
が5×1011Ω・cm以下であることが必要であり、特
に1×1011Ω・cm以下が好ましく、1×1010Ω・
cm以下が最も好ましく、1×108 〜1×1011Ω・
cmの範囲が最も広く用いられる。ポリエチレングリコ
ールのホモポリマー(未変性)の23℃,40%RHで
の比抵抗は6×108 Ω・cmであり、これを脂肪族ポ
リエステルに混合して、上記範囲の比抵抗を持つ制電性
ポリマー(1)を製造することは容易である。(制電成
分を含まぬ通常の脂肪族ポリエステルは、比抵抗1×1
12Ω・cm以上の絶縁体である)。また、ポリアルキ
レンエーテルを有効成分とする制電剤に、例えばアルキ
ルベンゼンスルホン酸ソーダのような極性基を持つ化合
物(界面活性剤)を2〜50%、多くの場合5〜40%
混合して、その導電性を2〜100倍程度、又はそれ以
上に高め、制電性を大幅に改良することが出来る。
The antistatic polymer (1) has a high electrical conductivity in order to give the fiber sufficient antistatic properties, that is, volume resistivity (specific resistance) at 23 ° C. and 40% RH.
Is required to be 5 × 10 11 Ω · cm or less, particularly preferably 1 × 10 11 Ω · cm or less, and 1 × 10 10 Ω · cm.
cm or less is most preferable, 1 × 10 8 to 1 × 10 11 Ω ·
The cm range is most widely used. The specific resistance of polyethylene glycol homopolymer (unmodified) at 23 ° C. and 40% RH is 6 × 10 8 Ω · cm, and by mixing this with an aliphatic polyester, antistatic with a specific resistance in the above range. It is easy to produce the water-soluble polymer (1). (Normal aliphatic polyester that does not contain antistatic components has a specific resistance of 1 x 1
It is an insulator of 0 12 Ω · cm or more). In addition, 2 to 50%, in many cases 5 to 40% of a compound (surfactant) having a polar group such as sodium alkylbenzene sulfonate as an antistatic agent containing polyalkylene ether as an active ingredient.
By mixing, the conductivity can be increased to about 2 to 100 times or more, and the antistatic property can be greatly improved.

【0015】制電性ポリマー(1)の製造において、脂
肪族ポリエステルを主成分とする重合体(A)と、制電
剤(B)との混合率、混合方法や混合構造は、特に限定
されない。混合はニーダー、攪拌機付きの容器、スクリ
ュウ押出機、2軸混練押出機などの機械的攪拌装置を用
いても良く、流れの案内装置により流体の分割と合流を
多段的に繰返す静止混合器を用いてもよく、両者を併用
してもよい。静止混合器の具体例としては、本発明者ら
が特公昭47−15526,同47−15527,同4
7−15532,同47−15528,同47−155
33,同47−15533などに開示したものや、特開
昭47−34166に開示されたものなどが挙げられ
る。
In the production of the antistatic polymer (1), the mixing ratio, mixing method and mixing structure of the polymer (A) containing an aliphatic polyester as a main component and the antistatic agent (B) are not particularly limited. . For the mixing, a mechanical stirrer such as a kneader, a vessel with a stirrer, a screw extruder, or a twin-screw kneading extruder may be used, and a static mixer that repeats fluid splitting and merging in multiple stages by a flow guiding device is used. Or both may be used together. As a specific example of the static mixer, the inventors of the present invention have published Japanese Patent Publications No. 47-15526, No. 47-15527, No. 4-15527.
7-15532, 47-15528, 47-155
33 and 47-15533, and those disclosed in JP-A-47-34166.

【0016】混合構造または分散形態は一方(例えば重
合体(A))の中に、他成分(例えば制電剤(B))が
粒子状に分散されていてもよく、多数の細い繊維状、層
状、薄膜状その他、繊維の長さ方向に連続する構造で分
散されていてもよく、複数種類の構造が混在していても
良い。一般に低分子型の制電剤を用いると、混合方法に
関係なく、粒子状の混合構造が得られることが多い。高
分子型の制電剤を用いると、機械的攪拌法では、微細な
粒子状の混合構造が得られ、静止混合装置を用いて混合
し、そのまま機械的攪拌をせずに紡糸すれば、母体(マ
トリクス)ポリマー中に制電剤が薄層状や微細な繊維状
に分散された連続混合構造を持つ繊維が得られる。粒子
状の混合構造は、紡糸や延伸によって粒子が延ばされ、
繊維中では、多数の細長い針状の分散形態となることも
多い。一般に、制電剤が連続構造を形成すると電気伝導
性が高く、非連続構造に比べて、繊維の制電性が格段に
優れ、少量の混合率(例えば粒状又は針状の分散構造の
1/10程度)で十分である。
The mixed structure or dispersed form may be such that one component (for example, the polymer (A)) and the other component (for example, the antistatic agent (B)) are dispersed in the form of particles. It may be dispersed in a layered structure, a thin film-shaped structure, or other structure continuous in the fiber length direction, or a plurality of types of structures may be mixed. Generally, when a low molecular type antistatic agent is used, a particulate mixed structure is often obtained regardless of the mixing method. When a high-molecular-type antistatic agent is used, a mechanical agitation method gives a fine-grained mixed structure, which is mixed using a static mixing device and spun without mechanical agitation as it is. A fiber having a continuous mixed structure in which an antistatic agent is dispersed in a (matrix) polymer in the form of a thin layer or fine fibers is obtained. Particle-shaped mixed structure, the particles are extended by spinning or stretching,
Often, there are many elongated needle-like dispersed forms in the fiber. Generally, when an antistatic agent forms a continuous structure, it has a high electric conductivity, and the antistatic property of the fiber is remarkably superior to that of a discontinuous structure, and a small mixing ratio (for example, 1 / g of a granular or acicular dispersion structure). 10) is sufficient.

【0017】低分子型の場合、制電剤の混合率は、0.
1〜5%程度、特に0.2〜2%の範囲が好ましいこと
が多い。混合率が大きすぎると、制電剤のブリードアウ
ト現象が甚だしく、またポリマーの紡糸性などを低下さ
せる傾向がある。しかし図1〜2の例のように、制電性
ポリマーが繊維内部に配置された場合は、制電性ポリマ
ー中の制電剤の混合率は、例えば5〜20%程度と高く
することも可能である。なお低分子(界面活性剤)型の
制電剤は、多くの場合、ポリマー中を拡散して表面に滲
出し、薄い表面被膜(連続性)を形成して効果を発揮す
ると推測される。しかし、その表面被膜は洗濯や摩擦で
容易に脱落する傾向がある。
In the case of low molecular weight type, the mixing ratio of the antistatic agent is 0.
A range of about 1 to 5%, particularly 0.2 to 2% is often preferable. If the mixing ratio is too large, the bleed-out phenomenon of the antistatic agent is severe, and the spinnability of the polymer tends to deteriorate. However, when the antistatic polymer is arranged inside the fiber as in the example of FIGS. 1 and 2, the mixing ratio of the antistatic agent in the antistatic polymer may be increased to, for example, about 5 to 20%. It is possible. It is assumed that, in many cases, a low molecular weight (surfactant) type antistatic agent diffuses in the polymer and exudes to the surface, forms a thin surface coating (continuity), and exerts its effect. However, the surface coating tends to fall off easily by washing or rubbing.

【0018】高分子型で連続構造の場合、制電剤の混合
率は、多くの場合、0.2〜5%、特に0.5〜3%程
度で十分である。一方、高分子型の粒子状、針状などの
非連続構造では、制電剤の混合率は3%以上、特に5〜
30%程度必要なことが多い。前記のように、制電剤と
重合体(A)との親和性(混和性)が高いほど、微細、
均一かつ安定な混合構造が得られ、制電性や糸質が優れ
好ましい。
In the case of a polymer type and a continuous structure, the mixing ratio of the antistatic agent is often 0.2 to 5%, especially about 0.5 to 3%. On the other hand, in a non-continuous structure such as polymer type particles or needles, the mixing ratio of the antistatic agent is 3% or more, particularly 5 to 5.
Often about 30% is required. As described above, the higher the affinity (miscibility) between the antistatic agent and the polymer (A), the finer the particles.
A uniform and stable mixed structure is obtained, and antistatic property and yarn quality are excellent and preferred.

【0019】本発明繊維は、制電性ポリマー(1)と繊
維形成性ポリマー(2)とが複合されたものである。繊
維形成性ポリマー(2)は、制電剤の混合によって繊維
性能などが劣化した制電性ポリマー(1)を保護し、繊
維に優れた強度、弾性、耐久性、耐熱性、染色性などの
繊維性能を与えるためのものである。したがって、繊維
形成性ポリマー(2)は、多くの場合、結晶性が高く、
融点100℃以上、特に110℃以上のものが好まし
く、融点130℃以上のものが最も好ましい。そのよう
な高融点の脂肪族ポリエステルホモポリマーとしては、
ポリブチレンサクシネート(融点約116℃)、ポリL
−乳酸(同175℃)、ポリD−乳酸(同175℃)、
ポリヒドロキシブチレート(同180℃)、ポリグリコ
ール酸(同230℃)が挙げられ、繊維形成性ポリマー
(2)として特に好ましい。同様に、それらを主成分と
し、融点130℃以上、特に融点150℃以上の共重合
体も、繊維形成性ポリマー(2)として特に好ましい。
繊維形成性ポリマー(2)の結晶性は高いことが望まし
く、溶融時の吸熱量(DSC法)は、5J/g以上、と
くに10J/g以上が好ましく、20J/g以上が最も
好ましい。
The fiber of the present invention is a composite of the antistatic polymer (1) and the fiber-forming polymer (2). The fiber-forming polymer (2) protects the antistatic polymer (1) whose fiber performance has deteriorated due to the mixing of the antistatic agent, and has excellent strength, elasticity, durability, heat resistance, dyeability, etc. It is for giving fiber performance. Therefore, the fiber-forming polymer (2) is often highly crystalline,
A melting point of 100 ° C. or higher, particularly 110 ° C. or higher is preferable, and a melting point of 130 ° C. or higher is most preferable. As such a high melting point aliphatic polyester homopolymer,
Polybutylene succinate (melting point approx. 116 ° C), poly L
-Lactic acid (at 175 ° C), poly D-lactic acid (at 175 ° C),
Examples thereof include polyhydroxybutyrate (at the same temperature of 180 ° C.) and polyglycolic acid (at the same temperature of 230 ° C.), which are particularly preferable as the fiber-forming polymer (2). Similarly, a copolymer containing them as a main component and having a melting point of 130 ° C. or higher, particularly 150 ° C. or higher is particularly preferable as the fiber-forming polymer (2).
It is desirable that the fiber-forming polymer (2) has high crystallinity, and the endothermic amount (DSC method) at the time of melting is preferably 5 J / g or more, particularly preferably 10 J / g or more, and most preferably 20 J / g or more.

【0020】両成分ポリマー(1)および(2)の分子
量は、特に限定されない。しかし、優れた紡糸性や繊維
強度などを得るために、繊維形成性ポリマー(2)の分
子量は、5万以上が好ましく、7万〜30万が特に好ま
しく、10万〜20万が最も広く用いられる。制電性ポ
リマー(1)中の、重合体(A)の分子量も同様であ
る。
The molecular weights of both component polymers (1) and (2) are not particularly limited. However, in order to obtain excellent spinnability and fiber strength, the molecular weight of the fiber-forming polymer (2) is preferably 50,000 or more, particularly preferably 70,000 to 300,000, and most preferably 100,000 to 200,000. To be The same applies to the molecular weight of the polymer (A) in the antistatic polymer (1).

【0021】制電性ポリマー(1)と繊維形成性ポリマ
ー(2)との複合比率(体積比)は、特に限定されない
が、5/95〜95/5、特に10/90〜90/10
の範囲が好ましく、20/80〜80/20の範囲が最
も好ましく、10/90〜60/40の範囲が最も広く
用いられる。一般に、制電性ポリマー(1)の電気伝導
度が高いほど、その複合比を小さくすることが出来る。
複合構造も任意であるが、芯鞘型、多芯型、鍵穴型、並
列型、放射型、多層型その他多種多様の応用が可能であ
る。制電性ポリマー(1)が芯や鍵穴に配置された場合
は、それが外部に露出しないか僅かに露出するのみなの
で、繊維形成性ポリマーによる保護効果が最も大きく繊
維性能に優れ、制電性ポリマー(1)が制電剤を多量に
含み紡糸性などが劣る場合も紡糸可能である。一方、制
電性ポリマー(1)が繊維表面の一部または全部を占め
ると、外部に放電しやすく、制電性に優れる傾向があ
る。すなわち、制電性ポリマー(1)の導電性、紡糸性
と、必要とされる繊維の強度、耐久性や制電性に応じ
て、複合比率や複合構造を自由に選ぶことが出来る。
The composite ratio (volume ratio) of the antistatic polymer (1) and the fiber-forming polymer (2) is not particularly limited, but is 5/95 to 95/5, particularly 10/90 to 90/10.
Is preferable, the range of 20/80 to 80/20 is the most preferable, and the range of 10/90 to 60/40 is the most widely used. Generally, the higher the electrical conductivity of the antistatic polymer (1), the smaller the composite ratio can be.
A composite structure is also optional, but various applications such as a core-sheath type, a multi-core type, a keyhole type, a parallel type, a radiating type, and a multi-layer type are possible. When the antistatic polymer (1) is placed in the core or keyhole, it is not exposed to the outside or only slightly exposed, so the fiber-forming polymer has the greatest protection effect and excellent fiber performance, and antistatic property. Spinning is also possible when the polymer (1) contains a large amount of antistatic agent and is inferior in spinnability and the like. On the other hand, when the antistatic polymer (1) occupies a part or the whole of the fiber surface, it tends to be discharged to the outside and the antistatic property tends to be excellent. That is, the composite ratio and the composite structure can be freely selected according to the conductivity and spinnability of the antistatic polymer (1) and the required strength, durability and antistatic property of the fiber.

【0022】同様に、本発明繊維の断面は、円形、長円
形、ひょうたん形、多角形、多葉形、アルファベット形
その他各種の非円形(異形)、中空形など任意に選ぶこ
とが出来、繊度も同様に使用目的に応じて任意に選ばれ
る。
Similarly, the cross section of the fiber of the present invention can be arbitrarily selected, such as circular, oval, gourd-shaped, polygonal, multilobal, alphabetical and other non-circular (variant), hollow, and fineness. Similarly, it is arbitrarily selected according to the purpose of use.

【0023】[0023]

【発明の実施の形態】図1〜10は本発明繊維に好まし
い複合構造の具体例を示す単繊維の断面図であり、図に
おいて1は制電性ポリマー、2は繊維形成性ポリマー、
3は中空部又は繊維形成性ポリマー(2と同種または異
種)である。
1 to 10 are cross-sectional views of a single fiber showing a specific example of a preferable composite structure for the fiber of the present invention, in which 1 is an antistatic polymer, 2 is a fiber-forming polymer,
3 is a hollow part or a fiber-forming polymer (the same kind or different kind as 2).

【0024】図1は、制電性ポリマー(1)を芯とし、
繊維形成性ポリマー(2)を鞘とする芯鞘型、図2は芯
が複数である多芯型、図3は制電性ポリマー(1)を鞘
とする芯鞘型の例である。図1および図2では、制電性
ポリマーが芯に配置されているため、十分に保護され
る。図3では制電性ポリマーが鞘に配置されているの
で、制電性が最も優れる例である。図4は並列型、図5
は3層並列型、図6は放射型であり、図7は鍵穴型でで
ある。
FIG. 1 shows an antistatic polymer (1) as a core,
FIG. 2 shows an example of a core-sheath type having a fiber-forming polymer (2) as a sheath, FIG. 2 shows an example of a multi-core type having a plurality of cores, and FIG. 3 shows an example of a core-sheath type having an antistatic polymer (1) as a sheath. In FIGS. 1 and 2, the antistatic polymer is placed on the core and thus is well protected. In FIG. 3, since the antistatic polymer is arranged in the sheath, it is an example having the best antistatic property. FIG. 4 is a parallel type, FIG.
Is a three-layer parallel type, FIG. 6 is a radial type, and FIG. 7 is a keyhole type.

【0025】図5〜7の例は、制電性ポリマーの大部分
が内部に配置されているため、繊維形成性ポリマー
(2)による保護効果が高いと同時に、制電性ポリマー
が繊維表面の一部を占めているので外部放電効果もある
ので、保護効果と制電性の両方を満足する特に好ましい
複合構造である。この様な場合、制電性ポリマー(1)
の占める表面積は、繊維全体の表面積の30%以下、特
に1〜20%の範囲が好ましく、2〜15%の範囲が最
も好ましい。
In the examples of FIGS. 5 to 7, most of the antistatic polymer is disposed inside, so that the fiber-forming polymer (2) has a high protection effect and at the same time the antistatic polymer is on the fiber surface. Since it occupies a part, it also has an external discharge effect, so it is a particularly preferable composite structure that satisfies both the protective effect and the antistatic property. In such a case, antistatic polymer (1)
The surface area occupied by is preferably 30% or less of the total surface area of the fiber, particularly preferably 1 to 20%, and most preferably 2 to 15%.

【0026】図8は芯鞘で中空の例である。中空部3に
繊維形成性ポリマーまたは別のポリマーを配置すれば、
多重芯鞘型が得られる。図9は多重並列型の例、図10
は複数鍵穴型の例である。図1〜10に示す以外にも、
色々な目的のために多数提案されている公知の複合構造
も、本発明に応用可能であることが多い。
FIG. 8 shows an example in which the core / sheath is hollow. If a fiber-forming polymer or another polymer is arranged in the hollow portion 3,
A multi-sheath type is obtained. FIG. 9 shows an example of multiple parallel type, FIG.
Is an example of a multiple keyhole type. In addition to those shown in FIGS.
Many known composite structures that have been proposed for various purposes are also often applicable to the present invention.

【0027】本発明繊維は、制電性ポリマー(1)と繊
維形成性ポリマー(2)とを、溶融、湿式、乾式、乾湿
式その他の方法で複合紡糸して製造することが出来る
が、特に溶融紡糸は能率が高く好ましい。溶融紡糸は、
巻取速度500〜2000m/minの低速紡糸、巻取
速度2000〜4000m/minの高速紡糸、巻取速
度5000m/min以上の超高速紡糸が可能であり、
必要に応じて延伸や熱処理することができる。一般に低
速紡糸では3〜6倍程度、高速紡糸では1.5〜2.5
倍程度の延伸を行い、超高速紡糸では延伸不要または2
倍程度以下の延伸を行うことが多い。紡糸と延伸を連続
して行ういわゆるスピンドロー方式も好ましく応用でき
る。
The fiber of the present invention can be produced by subjecting the antistatic polymer (1) and the fiber-forming polymer (2) to complex spinning by melt, wet, dry, dry-wet or other method, and in particular, Melt spinning is preferred because of its high efficiency. Melt spinning
It is possible to perform low-speed spinning at a winding speed of 500 to 2000 m / min, high-speed spinning at a winding speed of 2000 to 4000 m / min, and ultra-high-speed spinning at a winding speed of 5000 m / min or more.
Stretching and heat treatment can be performed as necessary. Generally, low-speed spinning is about 3 to 6 times, and high-speed spinning is 1.5 to 2.5.
Stretching is performed twice, and it is not necessary to stretch in ultra-high-speed spinning or 2
In many cases, the stretching is performed at about twice or less. A so-called spin draw method in which spinning and drawing are continuously performed can also be preferably applied.

【0028】本発明繊維は、連続フィラメント、モノィ
ラメント、マルチフィラメント、切断したステープル
等、使用目的に応じて任意の形態とすることが出来る。
また、図4や図7に示したような2成分が偏心的に配置
された繊維は、分子配向した後、加熱などで収縮させ
て、自発巻縮させることができる。もちろん、必要に応
じて、仮撚や押込み法などで、機械的に巻縮を付与する
ことも出来る。前記のように、繊度は特に限定されない
が、通常の衣料用、資材用などには単糸0.5〜30デ
ニール程度、特殊産業用、特にモノフィラメントでは3
0〜3000デニール程度のものも用いられる。同様
に、皮革、特殊衣料、フィルター、特殊資材用などに
0.5デニール以下の超極細繊維も有用である。
The fiber of the present invention may be in any form such as continuous filament, monofilament, multifilament, cut staple, etc. depending on the purpose of use.
Further, the fibers in which the two components are eccentrically arranged as shown in FIGS. 4 and 7 can be spontaneously crimped by being molecularly oriented and then contracted by heating or the like. Of course, if necessary, crimping can be mechanically imparted by false twisting or indentation. As described above, the fineness is not particularly limited, but a single yarn of about 0.5 to 30 denier for ordinary clothes, materials, etc., 3 for special industries, especially monofilaments.
Those having a denier of about 0 to 3000 are also used. Similarly, ultrafine fibers of 0.5 denier or less are also useful for leather, special clothing, filters, special materials and the like.

【0029】本発明繊維には、各種顔料、染料、着色
剤、撥水剤、吸水剤、難燃剤、安定剤、酸化防止剤、紫
外線吸収剤、金属粒子、無機化合物粒子、結晶核剤、滑
剤、可塑剤、抗菌剤、香料その他の添加剤を混合するこ
とが出来る。
The fibers of the present invention include various pigments, dyes, colorants, water repellents, water absorbing agents, flame retardants, stabilizers, antioxidants, ultraviolet absorbers, metal particles, inorganic compound particles, crystal nucleating agents, lubricants. , Plasticizers, antibacterial agents, fragrances and other additives can be mixed.

【0030】本発明繊維は単独で、又は他の繊維と混用
して糸、紐、ロープ、編物、織物、不織布、紙、複合材
料その他の構造物の製造に用いることが出来る。他の繊
維と混用する場合、綿、羊毛、絹などの天然有機繊維、
脂肪族ポリエステル繊維などの自然分解性繊維と混合使
用すれば、完全に自然分解性の製品が得られるので特に
好ましい。
The fibers of the present invention can be used alone or in combination with other fibers to produce yarns, strings, ropes, knits, woven fabrics, nonwoven fabrics, papers, composite materials and other structures. When mixed with other fibers, natural organic fibers such as cotton, wool and silk,
It is particularly preferable to use it in combination with a naturally degradable fiber such as an aliphatic polyester fiber because a completely naturally degradable product can be obtained.

【0031】[0031]

【実施例】以下の実施例において、%、部は特に断らな
い限り重量比である。脂肪族ポリエステルの分子量は、
試料の0.1%クロロホルム溶液のGPC分析におい
て、分子量1000以下の成分を除く高分子成分の分散
の重量平均値である。
EXAMPLES In the following examples,% and parts are by weight unless otherwise specified. The molecular weight of the aliphatic polyester is
In GPC analysis of a 0.1% chloroform solution of a sample, it is a weight average value of dispersion of a high molecular component excluding a component having a molecular weight of 1,000 or less.

【0032】編物の帯電性(または制電性)は、家庭用
洗剤で十分洗濯し、乾燥後測定室に24時間以上放置し
て調湿した試験片を用い、本発明者らが特公昭62−1
1303号に開示し、JIS L 1094(198
8)参考法「摩擦帯電放電曲線測定法」に規定されてい
る方法に準じて測定した。電気抵抗は、同じく十分に洗
濯した試料を用い、23℃,40%RHで、直流100
Vを印加して測定した。 [実施例1]分子量8000で両末端が水酸基のポリエ
チレングリコール(PEG)3部、L−ラクチド98
部、オクチル酸錫100ppm、チバガイギー社の酸化
防止剤イルガノックス1010の0.1部を混合し、窒
素雰囲気中190゜Cで15分間、2軸押出機中で溶融
攪拌重合し、冷却チップ化後、140゜C窒素雰囲気中
で4時間処理(固相重合)して、ポリ乳酸とPEGのブ
ロック共重合ポリマーP1を得た。ポリマーP1の分子
量は171000、PEG成分の含有率は約3%、融点
は174゜Cであった。
The electrostatic property (or antistatic property) of the knitted fabric was sufficiently washed with a household detergent, dried, and allowed to stand in a measuring room for 24 hours or more. -1
1303, JIS L 1094 (198).
8) The measurement was carried out according to the method specified in Reference Method "Measurement Method of Friction and Charge Discharge Curve". The electrical resistance of the sample, which was also thoroughly washed, was 100 ° C at 23 ° C and 40% RH.
V was applied and measured. [Example 1] 3 parts of polyethylene glycol (PEG) having a molecular weight of 8000 and hydroxyl groups at both ends, and L-lactide 98
Parts, tin octylate 100 ppm, and 0.1 parts of the antioxidant Irganox 1010 manufactured by Ciba-Geigy Co., Ltd., and melt-stir-polymerized in a twin-screw extruder at 190 ° C. for 15 minutes in a nitrogen atmosphere. After treatment at 140 ° C in a nitrogen atmosphere for 4 hours (solid-state polymerization), a block copolymer P1 of polylactic acid and PEG was obtained. The polymer P1 had a molecular weight of 171,000, a PEG component content of about 3%, and a melting point of 174 ° C.

【0033】ポリマーP1を220℃のスクリュウ押出
機で溶融し、複合紡糸口金のポリマー供給部の一方に、
繊維形成ポリマー(1)として供給する。ポリマーP1
を用い、同様に220℃スクリュウ押出機で溶融し、一
定速度で送りながら溶融した制電剤を側面から連続的に
供給混合した後、計量ギアポンプで同じ複合紡糸口金の
ポリマー供給部の他方に、制電ポリマー(2)として供
給し、両者を220℃の口金内で複合した後、オリフィ
スより紡出する。制電剤混合装置は送液パイプにケニッ
クス型静止混合素子を60個直列に組み込んだものであ
り、混合ポリマーはさらに計量ギアポンプで機械的に攪
拌され、制電剤は微細な粒子状に分散される。
The polymer P1 was melted by a screw extruder at 220 ° C., and was added to one of the polymer supply parts of the composite spinneret.
Supplied as fiber-forming polymer (1). Polymer P1
Similarly, after melting with a screw extruder at 220 ° C. and continuously feeding and mixing the molten antistatic agent while feeding at a constant speed, the other side of the polymer supply part of the same composite spinneret with a metering gear pump, It is supplied as an antistatic polymer (2), both are compounded in a die at 220 ° C., and then spun out from an orifice. The antistatic agent mixing device is one in which 60 Kenix type static mixing elements are installed in series in a liquid feeding pipe, the mixed polymer is further mechanically stirred by a metering gear pump, and the antistatic agent is dispersed in fine particles. It

【0034】ラウリルアルコール1モルに対しエチレン
オキシドを約20モル付加反応させたノニオン界面活性
剤SA1(分子量約1150)12部と、ドデシルベン
ゼンスルホン酸ソーダ3部を160℃で溶融混合し、減
圧下で十分脱水し水分率100ppm以下としたのちイ
ルガノックス1010、0.1部を混合したものを制電
剤A1とする。制電剤A1を、静止混合器を用い前記方
法でポリマーP1に6%混合した制電性ポリマーをAP
1とする。AP1の比抵抗は2×10 Ω・cmであっ
た。制電性ポリマーAP1とポリマーP1を用い、前記
方法で体積比1/4で図1のような同心円の芯鞘型に複
合した後オリィスより紡出し、空気中で冷却しオイリン
グしながら4000m/minの速度で巻取り、さらに
125℃で1.5倍延伸し、緊張下130℃で熱処理し
て、150デニール/48フィラメントの延伸糸F1を
得た。延伸糸F1の引張り強度、伸度、および延伸糸F
1を用いて直径約12cmの丸編物を作り、十分洗濯、
乾燥、調湿したのち測定した、摩擦直後及び摩擦1分後
の帯電圧を表1に示す。
12 parts of a nonionic surfactant SA1 (molecular weight of about 1150) obtained by addition-reacting about 20 mol of ethylene oxide with 1 mol of lauryl alcohol and 3 parts of sodium dodecylbenzenesulfonate are melt-mixed at 160 ° C. under reduced pressure. After sufficient dehydration to reduce the water content to 100 ppm or less, a mixture of Irganox 1010 and 0.1 part is used as the antistatic agent A1. An antistatic polymer obtained by mixing 6% of the antistatic agent A1 with the polymer P1 by the above method using a static mixer is AP.
Let it be 1. The specific resistance of AP1 was 2 × 10 8 Ω · cm. Using the antistatic polymer AP1 and the polymer P1, composited into a concentric core-sheath type as shown in FIG. 1 at a volume ratio of 1/4 by the above method, then spun out from an orice, cooled in air and oiling at 4000 m / min. The film was wound at a speed of 1, was further drawn at a ratio of 1.5 times at 125 ° C., and was heat-treated at 130 ° C. under tension to obtain a drawn yarn F1 having 150 denier / 48 filaments. Tensile strength, elongation of drawn yarn F1 and drawn yarn F
Make a circular knit with a diameter of about 12 cm using 1 and wash thoroughly,
Table 1 shows the electrification voltage immediately after rubbing and after 1 minute of rubbing, which was measured after drying and conditioning.

【0035】比較のため、ポリマーP1のみから同様に
して得た、延伸糸F2の強度、伸度及び摩擦帯電圧を表
1に示す。またAP1単独では紡糸は困難で、制電剤A
1の混合率を0.6%に減らして得たポリマーAP2を
同様に単独で紡糸したがトラブルが多く、紡糸速度15
00m/min,延伸倍率を3.3倍として延伸糸F3
を得た。延伸糸F3の強度、伸度、摩擦帯電圧を表1に
示す。
For comparison, Table 1 shows the strength, elongation and frictional electrification voltage of the drawn yarn F2 obtained in the same manner from the polymer P1 alone. Also, spinning with AP1 alone is difficult, and antistatic agent A
The polymer AP2 obtained by reducing the mixing ratio of 1 to 0.6% was similarly spun alone, but there were many problems, and the spinning speed was 15
Drawing yarn F3 with 00 m / min and draw ratio of 3.3 times
I got Table 1 shows the strength, elongation, and frictional electrification voltage of the drawn yarn F3.

【0036】表1に見るように、本発明繊維は比較例に
比べ、強度、伸度にすぐれ、編物の摩擦帯電圧、とくに
摩擦1分後のそれは、比較例に比べ極めて低く、本発明
繊維の優れた制電性が明らかである。
As can be seen from Table 1, the fiber of the present invention is superior in strength and elongation as compared with the comparative example, and the frictional electrification voltage of the knitted fabric, particularly after 1 minute of rubbing, is extremely low as compared with the comparative example. The excellent antistatic property of is clear.

【0037】[0037]

【表1】 [実施例2]分子量4万のPEG100部、L−ラクチ
ド10部、イルガノックス1010、0.1部、オクチ
ル酸錫100ppmを用い、以下実施例1のポリマーP
1と同様に重合し、PEG/ポリ乳酸=約10/1のブ
ロック共重合体(分子量83000)を得た後、それに
対して十分脱水したドデシルベンゼンスルホン酸ソーダ
を20%溶融混合して、制電剤A2を得た。実施例1の
ポリマーP1を溶融しギアポンプで所定速度で送りなが
ら、その中に制電剤A2を1%定量的に送り込み、紡糸
口金内に組み込んだ静止混合器(ケニックス型、段数1
2)で多層状に混合し(機械的攪拌を加えないで、その
まま)、別に溶融し定量供給されたポリマーP1と、複
合比1/4で図7に示す鍵穴型に複合し、600メッシ
ュの金網フィルターを通した後オリィスから紡出し、以
下実施例1の延伸糸F1と同様にして、延伸糸F4を得
た。延伸糸F4は、強度は5.1g/d,伸度34%,
摩擦直後の帯電圧−5.3kV,摩擦1分後の帯電圧−
0.2kVと、非常に優れた性能を持っていた。延伸糸
F4の制電性ポリマーAP3は、ポリマーP1中に制電
剤A2が1%、繊維の長さ方向に連続する微細な多数の
繊維状に分散、混合されたもので、繊維長さ方向の比抵
抗は9×109 Ω・cmであった。
[Table 1] Example 2 100 parts of PEG having a molecular weight of 40,000, 10 parts of L-lactide, 0.1 part of Irganox 1010, and 100 ppm of tin octylate were used, and the polymer P of Example 1 was used.
Polymerization was performed in the same manner as in 1 to obtain a block copolymer (molecular weight 83000) of PEG / polylactic acid = about 10/1. Then, 20% of sufficiently dehydrated sodium dodecylbenzenesulfonate was melt-mixed to form a block copolymer. An electric agent A2 was obtained. A static mixer (Kenix type, number of stages: 1) in which the polymer P1 of Example 1 was melted and fed with a gear pump at a predetermined speed and 1% of an antistatic agent A2 was quantitatively fed into the spinneret.
2) was mixed in multiple layers (without mechanical stirring, as it was), and was separately melted and quantitatively supplied with the polymer P1 to be combined with the keyhole type shown in FIG. After passing through a wire mesh filter, it was spun out from the oryce, and a drawn yarn F4 was obtained in the same manner as the drawn yarn F1 in Example 1 below. The drawn yarn F4 has a strength of 5.1 g / d, an elongation of 34%,
Charge voltage immediately after friction-5.3 kV, Charge voltage 1 minute after friction-
It had a very excellent performance of 0.2 kV. The antistatic polymer AP3 of the drawn yarn F4 is obtained by dispersing and mixing 1% of the antistatic agent A2 in the polymer P1 into a large number of fine fibers continuous in the length direction of the fiber. Had a specific resistance of 9 × 10 9 Ω · cm.

【0038】[0038]

【発明の効果】本発明によって、自然分解性であり環境
汚染することが少なく、しかも糸の性能及び制電性にす
ぐれた新規複合繊維が提供され、各種繊維、繊維構造
物、複合構造物などの形態で、衣料、工業資材、産業資
材、家庭用品などに好適に利用可能となった。一般に、
脂肪族ポリエステル繊維は、自然環境下で分解するだけ
でなく、従来使われた合成繊維よりも燃焼時の発熱量が
少なく、焼却も容易である。特に、乳酸は、農産物から
発酵法などで得られ、自然の物質循環系の中に組み込ま
れるので、ポリ乳酸を主成分とする脂肪族ポリエステル
は、環境保護の見地から最も好ましい。
Industrial Applicability According to the present invention, there are provided novel conjugate fibers which are naturally degradable and less polluting the environment, and are excellent in yarn performance and antistatic property, and various fibers, fiber structures, composite structures, etc. In this form, it can be suitably used for clothing, industrial materials, industrial materials, household products, and the like. In general,
The aliphatic polyester fiber not only decomposes in the natural environment, but also has a smaller calorific value upon combustion than the conventionally used synthetic fiber and is easy to incinerate. In particular, since lactic acid is obtained from agricultural products by a fermentation method or the like and is incorporated into a natural substance circulation system, an aliphatic polyester containing polylactic acid as a main component is most preferable from the viewpoint of environmental protection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合繊維の例を示す芯鞘型の横断面図FIG. 1 is a cross-sectional view of a core-sheath type showing an example of the composite fiber of the present invention.

【図2】本発明の複合繊維の例を示す多芯型の横断面図FIG. 2 is a cross-sectional view of a multicore type showing an example of the conjugate fiber of the present invention.

【図3】本発明の複合繊維の例を示す芯鞘型の横断面図FIG. 3 is a cross-sectional view of a core-sheath type showing an example of the composite fiber of the present invention.

【図4】本発明の複合繊維の例を示す並列型の横断面図FIG. 4 is a cross-sectional view of a parallel type showing an example of the conjugate fiber of the present invention.

【図5】本発明の複合繊維の例を示す3層並列型の横断
面図
FIG. 5 is a cross-sectional view of a three-layer side-by-side type showing an example of the conjugate fiber of the present invention.

【図6】本発明の複合繊維の例を示す放射型の横断面図FIG. 6 is a radial cross-sectional view showing an example of the conjugate fiber of the present invention.

【図7】本発明の複合繊維の例を示す鍵穴型の横断面図FIG. 7 is a cross-sectional view of a keyhole type showing an example of the composite fiber of the present invention.

【図8】本発明の複合繊維の例を示す中空芯鞘型の横断
面図
FIG. 8 is a cross-sectional view of a hollow core-sheath type showing an example of the composite fiber of the present invention.

【図9】本発明の複合繊維の例を示す多重並列型の横断
面図
FIG. 9 is a cross-sectional view of a multiple parallel type showing an example of the conjugate fiber of the present invention.

【図10】本発明の複合繊維の例を示す多重鍵穴型の横
断面図
FIG. 10 is a cross-sectional view of a multiple keyhole type showing an example of the composite fiber of the present invention.

【符号の説明】[Explanation of symbols]

1制電性ポリマー 2繊維形成性ポリマー 3中空
1 antistatic polymer 2 fiber-forming polymer 3 hollow part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 1/09 D01F 1/09 (72)発明者 近藤 義和 山口県防府市国衙2丁目5番31号 (72)発明者 梶山 宏史 山口県防府市鐘紡町4番1号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number of the agency FI technical display location D01F 1/09 D01F 1/09 (72) Inventor Yoshikazu Kondo 2-531, Kokukei, Hofu City, Yamaguchi Prefecture No. (72) Inventor Hiroshi Kajiyama 4-1 Kanebocho, Hofu City, Yamaguchi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】脂肪族ポリエステルを主成分とする重合体
(A)と、「親油基と親水基とを有する界面活性剤、炭
素数2〜4のアルキル基を持つポリアルキレンエーテ
ル、および該ポリアルキレンエーテルの誘導体」の群よ
り選ばれた少なくとも1種の化合物(B)とが混合され
てなる帯電防止性ポリマー(1)と、脂肪族ポリエステ
ルを主成分とする繊維形成性ポリマー(2)とが単繊維
内で複合されていることを特徴とする帯電防止性繊維。
1. A polymer (A) containing an aliphatic polyester as a main component, a "surfactant having a lipophilic group and a hydrophilic group, a polyalkylene ether having an alkyl group having 2 to 4 carbon atoms, and Antistatic polymer (1) prepared by mixing at least one compound (B) selected from the group of "polyalkylene ether derivatives", and fiber-forming polymer (2) containing an aliphatic polyester as a main component. An antistatic fiber characterized in that and are combined in a single fiber.
【請求項2】帯電防止性ポリマー(1)の体積抵抗率が
1×1011Ω・cm以下であり、且つ帯電防止性ポリマ
ー(1)と繊維形成性ポリマー(2)との複合比率(体
積比)が10/90〜60/40の範囲である請求項1
記載の繊維。
2. The volume resistivity of the antistatic polymer (1) is 1 × 10 11 Ω · cm or less, and the composite ratio (volume) of the antistatic polymer (1) and the fiber-forming polymer (2). The ratio) is in the range of 10/90 to 60/40.
The described fiber.
JP31690995A 1995-12-05 1995-12-05 Antistatic fiber Pending JPH09157954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31690995A JPH09157954A (en) 1995-12-05 1995-12-05 Antistatic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31690995A JPH09157954A (en) 1995-12-05 1995-12-05 Antistatic fiber

Publications (1)

Publication Number Publication Date
JPH09157954A true JPH09157954A (en) 1997-06-17

Family

ID=18082266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31690995A Pending JPH09157954A (en) 1995-12-05 1995-12-05 Antistatic fiber

Country Status (1)

Country Link
JP (1) JPH09157954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036865A1 (en) * 1999-03-15 2000-09-20 Takasago International Corporation Biodegradable complex fiber and method for producing the same
JP2010084302A (en) * 2008-10-02 2010-04-15 Kb Seiren Ltd Cotton swab
WO2012023594A1 (en) 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
CN104126035A (en) * 2012-03-01 2014-10-29 株式会社吴羽 Water-disintegrable composite fiber and process for producing same
CN104411868A (en) * 2012-09-14 2015-03-11 株式会社吴羽 Water-disintegrating composite fiber and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036865A1 (en) * 1999-03-15 2000-09-20 Takasago International Corporation Biodegradable complex fiber and method for producing the same
JP2010084302A (en) * 2008-10-02 2010-04-15 Kb Seiren Ltd Cotton swab
WO2012023594A1 (en) 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
US8802756B2 (en) 2010-08-16 2014-08-12 Teijin Limited Low-charging fiber and method for producing the same
CN104126035A (en) * 2012-03-01 2014-10-29 株式会社吴羽 Water-disintegrable composite fiber and process for producing same
JPWO2013129240A1 (en) * 2012-03-01 2015-07-30 株式会社クレハ Water-disintegrating composite fiber and method for producing the same
CN104126035B (en) * 2012-03-01 2016-03-09 株式会社吴羽 Water-destructible property composite fibre and manufacture method thereof
CN104411868A (en) * 2012-09-14 2015-03-11 株式会社吴羽 Water-disintegrating composite fiber and method for producing same
JPWO2014042222A1 (en) * 2012-09-14 2016-08-18 株式会社クレハ Water-disintegrating composite fiber and method for producing the same

Similar Documents

Publication Publication Date Title
JP4498001B2 (en) Polyester composite fiber
KR100546741B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
US6844063B2 (en) Spontaneously degradable fibers and goods made thereof
JP3387255B2 (en) Antistatic polylactic acid and its molded product
JP2007284846A (en) Polyester conjugate fiber
JPH09157954A (en) Antistatic fiber
JP2008025059A (en) Polylactic acid fiber
JP3683048B2 (en) Naturally degradable fiber assembly
JP2006225767A (en) Polylactic acid multifilament having modified cross section
JP3557027B2 (en) Naturally degradable composite yarn and its product
JP3694100B2 (en) Spontaneous crimpable composite fiber
JPH09157953A (en) Naturally degradable electroconductive fiber
KR100519015B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JPH09209216A (en) Self-crimping conjugate fiber
JP3694101B2 (en) Naturally degradable composite fiber and its application products
JP3694102B2 (en) Naturally degradable composite fiber and its application products
JP3683037B2 (en) Naturally degradable composite yarn and its products
JP3694118B2 (en) Spontaneous crimpable composite fiber
JP3683036B2 (en) Naturally degradable composite yarn and its products
JP2000212835A (en) Antistatic aliphatic polyester conjugate fiber
JPH09310229A (en) Naturally degradable conjugate fiber and its application product
JP2000054227A (en) Polyolefin-based conjugate fiber
JPH11302926A (en) Polyester-based conjugate fiber
JP2003306834A (en) Latently crimpable polylactic acid conjugated fiber
JPH11222730A (en) Polyester-based anti-electrostatic conjugate fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060720