JPH09157805A - High strength iron base sintered alloy - Google Patents

High strength iron base sintered alloy

Info

Publication number
JPH09157805A
JPH09157805A JP31537495A JP31537495A JPH09157805A JP H09157805 A JPH09157805 A JP H09157805A JP 31537495 A JP31537495 A JP 31537495A JP 31537495 A JP31537495 A JP 31537495A JP H09157805 A JPH09157805 A JP H09157805A
Authority
JP
Japan
Prior art keywords
weight
powder
sintered alloy
iron
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31537495A
Other languages
Japanese (ja)
Inventor
Kinya Kawase
欣也 川瀬
Kenji Orito
賢治 織戸
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP31537495A priority Critical patent/JPH09157805A/en
Publication of JPH09157805A publication Critical patent/JPH09157805A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength iron base sintered alloy by cooling the sintered body of a high carbon alloy contg. either or both of Ni and Cu together with Mo to a room temp., thereafter holding it under heating to a temp. directly above the austentic one and executing quenching and tempering. SOLUTION: The powder of either of both of Fe-Mo powder and Cu powder and graphite powder and mixed together with zinc stearate, and this powdery mixture is subjected to compacting form into a powdery green compact having a compsn. contg. one or two kinds of 1 to 4% Ni and 1 to 4% Cu, 0.5 to 4% Mo, 0.5 to 0.9% C, and the balance Fe. This is, moreover, subjected to compacting, is sintered, e.g. at 1120 deg.C in a nonoxidizing atmosphere, is thereafter held at the sintering temp. for 30min and is subjected to furnace cooling to a room temp. to produce the iron base sintered alloy in which high hardness metallic carbides having 0.1 to 5μm average particle size are uniformly dispersed into a martensitic matrix and extremely excellent in strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ギヤ、ロータ
ー、プーリー、スプロケット、バルブシートなどの機械
部品の材料として用いられる高強度鉄基焼結合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength iron-based sintered alloy used as a material for mechanical parts such as gears, rotors, pulleys, sprockets and valve seats.

【0002】[0002]

【従来の技術】従来、ギヤ、ローター、プーリー、スプ
ロケット、バルブシートなどの機械部品の部材として、
NiおよびCuのうち少なくとも1種:1〜4重量%、
Mo:0.5〜4重量%、C:0.5〜0.9重量%を
含有し、残りがFeおよび不可避不純物からなる組成を
有する鉄基焼結合金が知られており、この鉄基焼結合金
は、C:0.05%以下、Mo:0.2〜2重量%、O
2 :0.2重量%以下、残部:Feと2重量%以下の不
可避不純物からなる低合金鉄粉末に、0.2〜1.0重
量%の黒鉛粉末と、Ni粉末およびCu粉末のうち少な
くとも1種:0.5〜4.0重量%を添加混合し、つい
でこの混合粉末を所定形状に圧粉成形した後、非酸化雰
囲気中で焼結することにより焼結体を作製し、この焼結
体を完全にオーステナイトになる温度領域(この温度
は、通常、オーステナイト変態温度+50℃よりも高い
温度であり、以下、完全オーステナイト化温度という)
に加熱保持した後、油焼き入れし、ついで低温焼戻し処
理することにより製造されることも知られている。かか
る熱処理して得られた焼結合金はマルテンサイト組織を
有している(例えば、特公平5−61339号公報参
照)。
2. Description of the Related Art Conventionally, as members of mechanical parts such as gears, rotors, pulleys, sprockets and valve seats,
At least one of Ni and Cu: 1 to 4% by weight,
An iron-based sintered alloy containing Mo: 0.5 to 4% by weight, C: 0.5 to 0.9% by weight, and the balance of Fe and inevitable impurities is known. The sintered alloy is C: 0.05% or less, Mo: 0.2 to 2% by weight, O
2 : 0.2% by weight or less, the balance: Fe and 2% by weight or less of a low alloy iron powder consisting of inevitable impurities, 0.2 to 1.0% by weight of graphite powder, and at least Ni powder and Cu powder. 1 type: 0.5 to 4.0% by weight is added and mixed, and then the mixed powder is compacted into a predetermined shape, and then sintered in a non-oxidizing atmosphere to prepare a sintered body, and this sintered body is baked. Temperature range where the aggregate becomes completely austenite (this temperature is usually higher than the austenite transformation temperature + 50 ° C., hereinafter referred to as complete austenitization temperature)
It is also known that it is produced by heating and holding at 0 ° C., oil quenching, and then low temperature tempering treatment. The sintered alloy obtained by such heat treatment has a martensitic structure (see, for example, Japanese Patent Publication No. 5-61339).

【0003】[0003]

【発明が解決しようとする課題】しかし、近年、作業の
高性能化、高出力化および高速化にともない、機械装置
に組み込まれている機械部品は従来よりも一段と苛酷な
条件での繰り返し負荷が加えられ、このため、高強度の
鉄基焼結合金からなる機械部品が求められている。
However, in recent years, as the performance, output and speed of work have become higher, the mechanical parts incorporated in the machine are subject to repeated load under more severe conditions than before. In addition, therefore, there is a demand for machine parts made of high-strength iron-based sintered alloys.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上述のような観点から、機械部品の材料として、従来よ
りも高強度の鉄基焼結合金を得るべく研究を行った結
果、焼結して得られたNi:1〜4重量%および/また
はCu:1〜4重量%、Mo:0.5〜4重量%、C:
0.5〜0.9重量%を含有し、残りがFeおよび不可
避不純物からなる組成の鉄基焼結体を室温まで炉冷した
後、再び、オーステナイト変態温度〜オーステナイト変
態温度+50℃の温度領域(以下、オーステナイト直上
温度という)に加熱保持したのち、さらに油焼き入れし
た後焼戻し処理すると、マルテンサイト素地中に平均粒
径:0.1〜5μmの微細な粒状炭化物が分散した組織
が生成され、この粒状炭化物が分散した組織を有する鉄
基焼結合金は、従来よりも強度が一層向上するという知
見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have:
From the above viewpoints, as a result of conducting research to obtain an iron-based sintered alloy having higher strength than conventional materials as a material for machine parts, Ni obtained by sintering: 1 to 4% by weight and / or Cu: 1 to 4% by weight, Mo: 0.5 to 4% by weight, C:
After the iron-based sintered body containing 0.5 to 0.9% by weight and the balance consisting of Fe and unavoidable impurities is furnace-cooled to room temperature, the temperature range is again from austenite transformation temperature to austenite transformation temperature + 50 ° C. After heating and holding (hereinafter referred to as a temperature just above austenite), further oil quenching and then tempering treatment, a structure in which fine granular carbides with an average particle size of 0.1 to 5 μm are dispersed in the martensite matrix is generated. It has been found that the iron-based sintered alloy having a structure in which the granular carbides are dispersed has further improved strength as compared with the conventional one.

【0005】この発明は、かかる知見にもとづいて成さ
れたものであって、(1) Ni:1〜4重量%、M
o:0.5〜4重量%、C:0.5〜0.9重量%を含
有し、残りがFeおよび不可避不純物からなる組成、並
びにマルテンサイト素地中に平均粒径:0.1〜5μm
の粒状炭化物が分散した組織を有する高強度鉄基焼結合
金、(2) Cu:1〜4重量%、Mo:0.5〜4重
量%、C:0.5〜0.9重量%を含有し、残りがFe
および不可避不純物からなる組成、並びにマルテンサイ
ト素地中に平均粒径:0.1〜5μmの粒状炭化物が分
散した組織を有する高強度鉄基焼結合金、(3) N
i:1〜4重量%、Cu:1〜4重量%、Mo:0.5
〜4重量%、C:0.5〜0.9重量%を含有し、残り
がFeおよび不可避不純物からなる組成、並びにマルテ
ンサイト素地中に平均粒径:0.1〜5μmの粒状炭化
物が分散した組織を有する高強度鉄基焼結合金、に特徴
を有するものである。
The present invention was made on the basis of such findings, and (1) Ni: 1 to 4% by weight, M
O: 0.5 to 4% by weight, C: 0.5 to 0.9% by weight, the balance consisting of Fe and unavoidable impurities, and average particle size in the martensite matrix: 0.1 to 5 μm
A high-strength iron-based sintered alloy having a structure in which the granular carbide of (2) Cu: 1-4 wt%, Mo: 0.5-4 wt%, C: 0.5-0.9 wt% Contains, balance Fe
And a composition consisting of inevitable impurities, and a high-strength iron-based sintered alloy having a structure in which granular carbide having an average particle size of 0.1 to 5 μm is dispersed in a martensite matrix, (3) N
i: 1 to 4% by weight, Cu: 1 to 4% by weight, Mo: 0.5
˜4% by weight, C: 0.5 to 0.9% by weight, the rest consisting of Fe and inevitable impurities, and granular carbide with an average particle size of 0.1 to 5 μm dispersed in the martensite matrix. It is characterized by a high-strength iron-based sintered alloy having the above structure.

【0006】この発明のマルテンサイト素地中に粒状炭
化物が分散した組織を有する高強度鉄基焼結合金は、原
料粉末として、Fe−Mo粉末、Ni粉末、Cu粉末お
よび黒鉛粉末を用意し、これら原料粉末を金型成形時の
潤滑剤であるステアリン酸亜鉛粉末とともに混合しプレ
ス成形して圧粉体を作製し、得られた圧粉体を窒素雰囲
気中で焼結して焼結体を作製し、この焼結体を室温まで
空冷する。このようにして得られた焼結体を、その後、
窒素雰囲気中、オーステナイト直上温度に加熱保持した
のち、さらに焼入れおよび焼戻し処理することにより製
造される。
The high-strength iron-based sintered alloy of the present invention having a structure in which granular carbides are dispersed in the martensite matrix is prepared by using Fe-Mo powder, Ni powder, Cu powder and graphite powder as raw material powders. Raw material powder is mixed with zinc stearate powder, which is a lubricant at the time of die molding, and press-molded to produce a green compact, and the obtained green compact is sintered in a nitrogen atmosphere to produce a sintered body. Then, this sintered body is air-cooled to room temperature. The sintered body thus obtained is then
It is manufactured by heating and holding at a temperature just above austenite in a nitrogen atmosphere, and then further quenching and tempering.

【0007】つぎに、この発明の鉄基焼結合金の成分組
成および組織を上記のごとく限定した理由について説明
する。
Next, the reasons for limiting the component composition and structure of the iron-based sintered alloy of the present invention as described above will be explained.

【0008】A:成分組成 (a)Ni Niは、若干量のオーステナイト残留させ、疲労強度お
よび靭性を向上させる作用があるが、その含有量が1重
量%未満ではその効果が十分でなく、一方、4重量%を
越えて含有してもその効果が少ないところから、Niの
含有量は、1〜4重量%に定めた。Niの含有量の一層
好ましい範囲は2〜3重量%である。
A: Component composition (a) Ni Ni Ni has the effect of allowing a small amount of austenite to remain and improving fatigue strength and toughness, but if its content is less than 1% by weight, its effect is insufficient. Since the effect is small even if the content exceeds 4% by weight, the content of Ni is set to 1 to 4% by weight. A more preferable range of the Ni content is 2-3% by weight.

【0009】(b)Cu Cuは、素地を強化し、強度を向上させる作用がある
が、その含有量が1重量%未満ではその効果が十分でな
く、一方、4重量%を越えると材料の脆化を促進させる
ようになることから、Cuの含有量は、1〜4重量%に
定めた。Cuの含有量の一層好ましい範囲は2〜3重量
%である。
(B) Cu Cu has the effect of strengthening the base material and improving the strength, but if its content is less than 1% by weight, its effect is not sufficient, while if it exceeds 4% by weight, the material Since the embrittlement is promoted, the content of Cu is set to 1 to 4% by weight. A more preferable range of the Cu content is 2-3% by weight.

【0010】(c)Mo Moは、耐摩耗性、強度、耐熱性を向上させる作用があ
るが、その含有量が0.5重量%未満では所望の効果が
得られず、一方、4重量%を越えると炭化物の粒状かが
困難であり、また、原料として用いるFe−Mo粉末の
圧縮性および成形性が低下する様になるところから、そ
の含有量を0.5〜4重量%に定めた。Moの含有量の
一層好ましい範囲は0.8〜3.5重量%である。
(C) Mo Mo has the effect of improving wear resistance, strength, and heat resistance, but if its content is less than 0.5% by weight, the desired effect cannot be obtained, while 4% by weight If it exceeds, it becomes difficult to granulate the carbide, and the compressibility and moldability of the Fe-Mo powder used as a raw material deteriorates. Therefore, the content was set to 0.5 to 4% by weight. . A more preferable range of the Mo content is 0.8 to 3.5% by weight.

【0011】(b)C Cは、素地に固溶して強度を向上させる効果があるほ
か、Moと炭化物を形成して耐摩耗性を向上させる作用
があるが、その含有量が0.5重量%未満では効果が十
分でなく、一方、0.9重量%を越えて含有すると材料
を脆化を促進させるので好ましくない。したがって、C
の含有量は、0.5〜0.9重量%に定めた。Cの含有
量の一層好ましい範囲は0.6〜0.8重量%である。
(B) C C has the effect of forming a solid solution in the base material to improve the strength, and the effect of forming carbides with Mo to improve the wear resistance, but the content of C is 0.5. If it is less than wt%, the effect is not sufficient, while if it exceeds 0.9 wt%, embrittlement of the material is promoted, which is not preferable. Therefore, C
The content of was determined to be 0.5 to 0.9% by weight. A more preferable range of the C content is 0.6 to 0.8% by weight.

【0012】B:組織 この発明の鉄基焼結合金は、マルテンサイト素地中に分
散する炭化物の粒径が強度に多大な影響を及ぼし、その
平均粒径が0.1μm未満では耐摩耗性向上効果が小さ
いので好ましくなく、一方、粒状炭化物の平均粒径が5
μmを越えると、強度が低下するので好ましくない。し
たがって、粒状炭化物の平均粒径は、0.1〜5μmに
限定した。粒状炭化物の平均粒径の一層好ましい範囲
は、0.5〜3.5μmである。
B: Microstructure In the iron-based sintered alloy of the present invention, the grain size of the carbide dispersed in the martensite matrix has a great influence on the strength, and if the average grain size is less than 0.1 μm, the wear resistance is improved. It is not preferable because the effect is small. On the other hand, the average particle size of the granular carbides is 5
When it exceeds μm, the strength is lowered, which is not preferable. Therefore, the average particle size of the granular carbide is limited to 0.1 to 5 μm. A more preferable range of the average particle size of the granular carbide is 0.5 to 3.5 μm.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例 原料粉末として、平均粒径:47μmのFe−Mo粉
末、平均粒径:3μmのNi粉末、平均粒径:37μm
のCu粉末および平均粒径:18μmの黒鉛粉末を用意
し、これら原料粉末を金型成形時の潤滑剤であるステア
リン酸亜鉛粉末とともにダブルコーンミキサーで混合
し、プレス成形して90mm×13mm×10mmの寸
法および圧粉密度:7.0g/ccの圧粉体を作製し、
この圧粉体をN2 −5%H2 の雰囲気中、温度:112
0℃、30分保持の条件で焼結したのち室温まで炉冷
し、表1に示される成分組成を有する焼結体A〜Kを作
製した。
Example As the raw material powder, Fe-Mo powder having an average particle size of 47 μm, Ni powder having an average particle size of 3 μm, and average particle size of 37 μm
Cu powder and graphite powder having an average particle size of 18 μm are prepared, and these raw material powders are mixed with a zinc stearate powder which is a lubricant at the time of mold molding in a double cone mixer, and press-molded to 90 mm × 13 mm × 10 mm. And the green compact density: 7.0g / cc
This green compact was heated at a temperature of 112 in an atmosphere of N 2 -5% H 2.
After sintering at 0 ° C. for 30 minutes, the furnace was cooled to room temperature, and sintered bodies A to K having the component compositions shown in Table 1 were prepared.

【0014】[0014]

【表1】 [Table 1]

【0015】つぎに、これら焼結体A〜Kを、焼結雰囲
気と同じN2 −5%H2 の雰囲気中、表2に示されるオ
ーステナイト直上温度に表2に示される時間保持したの
ち、ただちに油焼入れし、つづいて180℃、60分保
持の条件で焼戻しすることにより、マルテンサイト素地
中に表2に示される平均粒径の粒状化炭化物が分散した
組織を有する本発明鉄基焼結合金1〜11を作製した。
この本発明鉄基焼結合金1〜11を機械加工して試験片
を作製し、この試験片を用いて引張速度:1mm/mi
nで引張り試験を行うことにより引張り強さを測定し、
さらにノッチ無しシャルピー試験片を用いてシャルピー
衝撃試験を行うことによりシャルピー衝撃エネルギーを
測定し、それらの測定結果を表2に示した。
Next, after holding these sintered bodies A to K in the same N 2 -5% H 2 atmosphere as the sintering atmosphere at the temperature just above the austenite shown in Table 2 for the time shown in Table 2, Immediately oil quenching, followed by tempering under the conditions of holding at 180 ° C. for 60 minutes, the iron-based firing bond of the present invention having a structure in which a granular carbide having an average particle size shown in Table 2 is dispersed in the martensite matrix. Gold 1 to 11 were produced.
The iron-based sintered alloys 1 to 11 of the present invention were machined to produce a test piece, and the test piece was used to pull at a speed of 1 mm / mi.
The tensile strength is measured by performing a tensile test with n.
Further, the Charpy impact energy was measured by performing a Charpy impact test using a notched Charpy test piece, and the measurement results are shown in Table 2.

【0016】この発明の鉄基焼結合金の組織を一層理解
しやすくするために、本発明鉄基焼結合金1の組織を金
属顕微鏡により観察し、その写生図を図1に示した。図
1の写生図から、本発明鉄基焼結合金1にはマルテンサ
イト素地中に微細な炭化物粒が分散した組織を有するこ
とが分かる。
In order to make the structure of the iron-based sintered alloy of the present invention easier to understand, the structure of the iron-based sintered alloy 1 of the present invention was observed with a metallurgical microscope, and its sketch is shown in FIG. From the drawing of FIG. 1, it can be seen that the iron-based sintered alloy 1 of the present invention has a structure in which fine carbide grains are dispersed in the martensite matrix.

【0017】[0017]

【表2】 [Table 2]

【0018】従来例 さらに比較のために、実施例で作製した表1の焼結体A
〜Kを、オーステナイト直上温度に加熱保持して炭化物
粒状化処理を行うことなく、完全オーステナイト化温度
に加熱保持したのち油焼き入れし、ついで温度:180
℃に60分間の低温焼戻し処理して表3に示される従来
鉄基焼結合金1〜11を作製した。この従来鉄基焼結合
金1〜11を機械加工して試験片を作製し、この試験片
を用いて実施例と同様にして引張り強さおよびシャルピ
ー衝撃エネルギーを測定し、それらの測定結果を表3に
示した。さらに、従来鉄基焼結合金1の組織を金属顕微
鏡により観察し、その写生図を図2に示した。図2の写
生図から、従来鉄基焼結合金1はマルテンサイト組織を
有することが分かる。
Conventional Example Further, for comparison, the sintered body A of Table 1 produced in the example.
-K is heated and maintained at a temperature just above austenite and is not heated to be completely austenitized, and then oil-quenched, and then the temperature is 180.
A low temperature tempering treatment was performed at 60 ° C. for 60 minutes to produce the conventional iron-based sintered alloys 1 to 11 shown in Table 3. The conventional iron-based sintered alloys 1 to 11 were machined to prepare a test piece, and the test piece was used to measure the tensile strength and the Charpy impact energy in the same manner as in the example, and the measurement results are shown in a table. Shown in 3. Furthermore, the structure of the conventional iron-based sintered alloy 1 was observed with a metallurgical microscope, and its sketch is shown in FIG. From the drawing of FIG. 2, it can be seen that the conventional iron-based sintered alloy 1 has a martensite structure.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】表1〜表3に示した結果から、本発明鉄
基焼結合金1と従来鉄基焼結合金1を比較すると、本発
明鉄基焼結合金1と従来鉄基焼結合金1とは成分組成は
同じであっても組織が異なることによって一段と優れた
引張り強さおよびシャルピー衝撃エネルギー値を有する
ようになることが分かる。同様にして、本発明鉄基焼結
合金2〜11と従来鉄基焼結合金2〜11をそれぞれ比
較すると、本発明鉄基焼結合金2〜11と従来鉄基焼結
合金2〜11とはそれぞれ成分組成は同じであっても組
織が異なることによって一段と優れた引張り強さおよび
シャルピー衝撃エネルギー値を有するようになることが
分かる。
From the results shown in Tables 1 to 3, when comparing the iron-based sintered alloy 1 of the present invention and the conventional iron-based sintered alloy 1, the iron-based sintered alloy 1 of the present invention and the conventional iron-based sintered bond are compared. It can be seen that even if the composition of the composition is the same as that of gold 1, the composition has a different structure, so that the composition has much more excellent tensile strength and Charpy impact energy value. Similarly, comparing the iron-based sintered alloys 2 to 11 of the present invention and the conventional iron-based sintered alloys 2 to 11 with the iron-based sintered alloys 2 to 11 of the present invention and the conventional iron-based sintered alloys 2 to 11, respectively. It can be seen that, even though the respective component compositions are the same, due to the different structures, the tensile strength and Charpy impact energy value become more excellent.

【0021】上述のように、この発明の鉄基焼結合金
は、引張り強さおよびシャルピー衝撃値が優れているの
で、機械装置の部品の材料として、優れた性能を長期に
わたって発揮することができ、工業上優れた効果をもた
らすものである。
As described above, since the iron-based sintered alloy of the present invention is excellent in tensile strength and Charpy impact value, it can exhibit excellent performance as a material of parts of machinery for a long period of time. , Which brings an excellent industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の鉄基焼結合金の金属顕微鏡組織の写
生図である。
FIG. 1 is a drawing of a metallographic structure of an iron-based sintered alloy of the present invention.

【図2】従来の鉄基焼結合金の金属顕微鏡組織の写生図
である。
FIG. 2 is a drawing of a metallographic structure of a conventional iron-based sintered alloy.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ni:1〜4重量%、Mo:0.5〜4
重量%、C:0.5〜0.9重量%を含有し、残りがF
eおよび不可避不純物からなる組成、並びにマルテンサ
イト素地中に平均粒径:0.1〜5μmの粒状炭化物が
分散した組織を有することを特徴とする高強度鉄基焼結
合金。
1. Ni: 1 to 4% by weight, Mo: 0.5 to 4
% By weight, C: 0.5 to 0.9% by weight, the balance being F
A high-strength iron-based sintered alloy having a composition comprising e and unavoidable impurities, and a structure in which granular carbide having an average particle diameter of 0.1 to 5 μm is dispersed in a martensite matrix.
【請求項2】 Cu:1〜4重量%、Mo:0.5〜4
重量%、C:0.5〜0.9重量%を含有し、残りがF
eおよび不可避不純物からなる組成、並びにマルテンサ
イト素地中に平均粒径:0.1〜5μmの粒状炭化物が
分散した組織を有することを特徴とする高強度鉄基焼結
合金。
2. Cu: 1 to 4% by weight, Mo: 0.5 to 4
% By weight, C: 0.5 to 0.9% by weight, the balance being F
A high-strength iron-based sintered alloy having a composition comprising e and unavoidable impurities, and a structure in which granular carbide having an average particle diameter of 0.1 to 5 μm is dispersed in a martensite matrix.
【請求項3】 Ni:1〜4重量%、Cu:1〜4重量
%、Mo:0.5〜4重量%、C:0.5〜0.9重量
%を含有し、残りがFeおよび不可避不純物からなる組
成、並びにマルテンサイト素地中に平均粒径:0.1〜
5μmの粒状炭化物が分散した組織を有することを特徴
とする高強度鉄基焼結合金。
3. Ni: 1 to 4% by weight, Cu: 1 to 4% by weight, Mo: 0.5 to 4% by weight, C: 0.5 to 0.9% by weight, the balance being Fe and Composition consisting of inevitable impurities and average particle size in the martensite matrix: 0.1
A high-strength iron-based sintered alloy having a structure in which granular carbides of 5 μm are dispersed.
JP31537495A 1995-12-04 1995-12-04 High strength iron base sintered alloy Withdrawn JPH09157805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31537495A JPH09157805A (en) 1995-12-04 1995-12-04 High strength iron base sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31537495A JPH09157805A (en) 1995-12-04 1995-12-04 High strength iron base sintered alloy

Publications (1)

Publication Number Publication Date
JPH09157805A true JPH09157805A (en) 1997-06-17

Family

ID=18064643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31537495A Withdrawn JPH09157805A (en) 1995-12-04 1995-12-04 High strength iron base sintered alloy

Country Status (1)

Country Link
JP (1) JPH09157805A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390372A (en) * 2002-06-03 2004-01-07 Tsubakimoto Chain Co Sintered sprocket and manufacturing method
GB2395762A (en) * 2002-11-29 2004-06-02 Tsubakimoto Chain Co Ratchet type tensioner having a pawl composed of high-density sintered alloy
GB2398853A (en) * 2003-02-28 2004-09-01 Tsubakimoto Chain Co Ratchet type tensioner pawl
CN100338373C (en) * 2003-07-22 2007-09-19 日产自动车株式会社 Sintered chain gear for silent chain and producing method thereof
CN102990066A (en) * 2012-11-25 2013-03-27 安徽普源分离机械制造有限公司 Powder metallurgy forming and preparation method of valve rod of diaphragm valve
CN103264158A (en) * 2013-05-27 2013-08-28 无锡市恒特力金属制品有限公司 Powder metallurgy material for rotor of oil pump of gearbox
RU2570141C2 (en) * 2013-10-21 2015-12-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Powder sparingly alloyed material based on iron to produce surface hardened wear-resistant parts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390372A (en) * 2002-06-03 2004-01-07 Tsubakimoto Chain Co Sintered sprocket and manufacturing method
GB2390372B (en) * 2002-06-03 2005-06-08 Tsubakimoto Chain Co Sintered sprocket
GB2395762A (en) * 2002-11-29 2004-06-02 Tsubakimoto Chain Co Ratchet type tensioner having a pawl composed of high-density sintered alloy
GB2395762B (en) * 2002-11-29 2006-06-14 Tsubakimoto Chain Co Ratchet type tensioner
GB2398853A (en) * 2003-02-28 2004-09-01 Tsubakimoto Chain Co Ratchet type tensioner pawl
GB2398853B (en) * 2003-02-28 2005-10-12 Tsubakimoto Chain Co Ratchet type tensioner
CN100338373C (en) * 2003-07-22 2007-09-19 日产自动车株式会社 Sintered chain gear for silent chain and producing method thereof
CN102990066A (en) * 2012-11-25 2013-03-27 安徽普源分离机械制造有限公司 Powder metallurgy forming and preparation method of valve rod of diaphragm valve
CN103264158A (en) * 2013-05-27 2013-08-28 无锡市恒特力金属制品有限公司 Powder metallurgy material for rotor of oil pump of gearbox
RU2570141C2 (en) * 2013-10-21 2015-12-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Powder sparingly alloyed material based on iron to produce surface hardened wear-resistant parts

Similar Documents

Publication Publication Date Title
RU2216433C2 (en) Iron base powder, method for making sintered article and sintered article made by such method
JP5671526B2 (en) High strength low alloy sintered steel
US4954171A (en) Composite alloy steel powder and sintered alloy steel
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
KR100505933B1 (en) Low alloy steel manufacturing powder by sinter hardening method
WO1994027764A1 (en) Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter
JPH09157805A (en) High strength iron base sintered alloy
Cundill et al. Mechanical properties of sinter/forged low-alloy steels
JPH09157806A (en) High-strength ferrous sintered alloy
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
WO1988000505A1 (en) Alloy steel powder for powder metallurgy
JP2006283177A (en) Ferrous sintered alloy and its production method
JP4301657B2 (en) Manufacturing method of high strength sintered alloy steel
JP2016145418A (en) Iron-based sintered alloy and manufacturing method therefor
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
EP0648851A1 (en) Sulfur-containing powder-metallurgy tool steel article and its method of manufacture
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JPH06212368A (en) Low alloy sintered steel excellent in fatigue strength and its production
JPH08218101A (en) Steel powdery mixture for powder metallurgy and material for sintering containing the same
JP3314596B2 (en) Iron-based sintered alloy with excellent fatigue strength
JP7039692B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPH07103442B2 (en) Manufacturing method of high strength sintered alloy steel
JPH11303847A (en) Connecting rod having high fatigue strength and excellent toughness and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204