JPH09157747A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JPH09157747A
JPH09157747A JP7321664A JP32166495A JPH09157747A JP H09157747 A JPH09157747 A JP H09157747A JP 7321664 A JP7321664 A JP 7321664A JP 32166495 A JP32166495 A JP 32166495A JP H09157747 A JPH09157747 A JP H09157747A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
rolling
temperature
recrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7321664A
Other languages
Japanese (ja)
Inventor
Tomoki Fukagawa
智機 深川
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7321664A priority Critical patent/JPH09157747A/en
Publication of JPH09157747A publication Critical patent/JPH09157747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain, more stably, a high Mn grain oriented silicon steel sheet having superior magnetic properties by using a slab containing an appreciable amount of C and specifying a metallic structure before cold rolling. SOLUTION: A steel plate, which has a composition consisting of, by weight, >0.010-0.030% C, 1.5-4.0% Si, 1.0-5.0% Mn, <=0.01% S, 0.003-0.03% sol.Al, 0.0010-0.010% N, and the balance Fe and satisfying Si(%)-0.5×Mn(%)<=2.0% and in which 10-70% of the whole plate thickness from both surfaces is formed into recrystallized part, is used. This steel plate is cold-rolled once or is cold- rolled twice while process-annealed between the cold rolling stages to the final sheet thickness, and the resultant cold rolled steel sheet is rapidly heated to undergo annealing and then finish-annealed at 825-1050 deg.C. Moreover, in order to form 10-70% of the whole plate thickness from both surfaces into recrystallized part, hot rolling is performed under the condition that the relation between finishing temp. (FT: deg.C) and coiling temp. (CT: deg.C) satisfies an inequality and also 780<=FT<=930 or CT<=600 is satisfied, and further, annealing is clone at 625-950 deg.C after hot rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は変圧器や発電機、
電動機の鉄心材料や磁気シールド材として広く用いられ
る方向性電磁鋼板の製造方法に関する。
TECHNICAL FIELD The present invention relates to a transformer, a generator,
The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet widely used as a core material and a magnetic shield material for an electric motor.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、その金属組織として
ゴス方位と呼ばれる 110 <001> 方位の結晶配向を持
ち、とくに圧延方向に優れた励磁特性と鉄損特性を有す
る軟磁性材料である。この鋼板の従来の一般的な製造方
法は、Siを 3%程度含有する鋼のスラブを熱間圧延
し、そのまま、あるいは焼鈍(熱延板焼鈍)をおこな
い、1回または中間焼鈍を挟んで2回以上の冷延を施し
て最終板厚とし、その後連続焼鈍炉にて一次再結晶およ
び雰囲気ガス脱炭し、焼付き防止のための焼鈍分離剤を
塗布してコイルに巻取り、更に1100〜1200℃の超高温に
て仕上げ焼鈍する。その後、分離剤除去、平坦化焼鈍、
表面絶縁コーティング等をおこなって製品にする。仕上
げ焼鈍の目的は、二次再結晶によりゴス方位に集積した
集合組織を形成させること、およびその後に、この二次
再結晶の方位形成に用いたインヒビターの微細析出物を
除去することにある。この析出物の除去工程は純化焼鈍
とも呼ばれ、二次再結晶と共に良好な磁気特性を得るた
めには必須の工程である。
2. Description of the Related Art Grain-oriented electrical steel sheets are soft magnetic materials that have a crystal orientation of 110 <001> orientation called Goss orientation as their metallographic structure and have excellent excitation characteristics and iron loss characteristics particularly in the rolling direction. The conventional general manufacturing method of this steel sheet is to hot-roll a slab of steel containing about 3% of Si, and directly or after annealing (hot-rolled sheet annealing), perform 2 times with one or intermediate annealing. After cold rolling more than one time to the final thickness, then primary recrystallization and atmospheric gas decarburization in a continuous annealing furnace, apply an annealing separating agent for seizure prevention and wind it into a coil. Finish annealing at ultra high temperature of 1200 ℃. After that, remove the separating agent, flattening annealing,
Surface insulation coating is applied to make the product. The purpose of the finish annealing is to form a texture that is integrated in the Goss orientation by secondary recrystallization, and thereafter to remove the fine precipitates of the inhibitor used for forming the orientation of this secondary recrystallization. This step of removing the precipitate is also called purification annealing and is an essential step for obtaining good magnetic properties together with secondary recrystallization.

【0003】この二次再結晶のインヒビターには、Mn
Sのような硫化物系の析出物が利用されているが、硫化
物系の析出物は溶解度積が小さいので、効果的な微細析
出物を均一に分散させるには、Mn量を抑え、熱間圧延
のスラブ加熱温度をできるだけ高くし、硫化物を充分固
溶させねばならない。一方、電磁鋼板は電気抵抗を高め
る目的で高Si含有とするが、高Si量にて極低Cにす
るとγ相が現われなくなって常温から高温までα一相に
なる。そうなるとインヒビターの分散が悪くなるばかり
でなく、熱間圧延過程でα−γ変態がないために、スラ
ブの高温加熱とあいまって熱延板の結晶粒が粗大とな
る。粗大結晶粒になった熱延板は、冷間圧延時の割れ発
生、最終製品でのリジングの発生、あるいはその磁気特
性の劣化を来す。そこである程度Cを含んだスラブを用
い、γ相が出るようにしてインヒビターの分散と細粒化
をはかる。ところがこのCは磁気特性を著しく劣化させ
るので、冷間圧延後の焼鈍工程において雰囲気で脱炭し
て極低炭素化する。さらにゴス方位の二次再結晶粒を発
達させるのに必須であった微細析出物は、最終製品の電
磁鋼板の磁気特性には極めて有害なので除去する必要が
あり、二次再結晶後、水素ガス雰囲気により鋼中のSを
表面から排除する。この場合、硫化物を分解し固溶Sと
して表面へ拡散させ、その上で水素と反応させるため
に、1100〜1200℃の超高温域で長時間処理しなければな
らない。
Mn is an inhibitor of this secondary recrystallization.
Although sulfide-based precipitates such as S are used, the solubility product of sulfide-based precipitates is small. Therefore, in order to effectively disperse fine precipitates uniformly, the amount of Mn should be suppressed and The heating temperature of the slab during hot rolling should be as high as possible and the sulfide should be dissolved sufficiently. On the other hand, the electrical steel sheet has a high Si content for the purpose of increasing the electrical resistance, but when the Si content is extremely low and the carbon content is extremely low, the γ phase does not appear and the α phase becomes from normal temperature to high temperature. In that case, not only the inhibitor dispersion becomes worse, but since the α-γ transformation does not occur during the hot rolling process, the crystal grains of the hot rolled sheet become coarse together with the high temperature heating of the slab. The hot-rolled sheet with coarse crystal grains causes cracking during cold rolling, ridging in the final product, or deterioration of its magnetic properties. Therefore, a slab containing C to some extent is used so that the γ phase appears so that the inhibitor is dispersed and atomized. However, since this C remarkably deteriorates the magnetic characteristics, it is decarburized in the atmosphere in the annealing process after cold rolling to be extremely low carbon. Furthermore, fine precipitates, which were essential for developing the secondary recrystallized grains in the Goss orientation, are extremely harmful to the magnetic properties of the electrical steel sheet of the final product and must be removed. The atmosphere removes S in the steel from the surface. In this case, in order to decompose the sulfide and diffuse it as solid solution S to the surface and then react with hydrogen, it has to be treated for a long time in an ultrahigh temperature range of 1100 to 1200 ° C.

【0004】以上のような製造法により作られる方向性
電磁鋼板は、製造の過程で1300℃以上のスラブ加熱によ
る熱間圧延、連続脱炭焼鈍、あるいは1100℃以上の超高
温の仕上げ焼鈍というような特殊な工程が必要であり、
専用の設備を要するために極めてコストの高いものにな
る。
The grain-oriented electrical steel sheet produced by the above-mentioned manufacturing method is said to be hot-rolled by slab heating at 1300 ° C or higher, continuously decarburized annealed, or finish-annealed at an ultrahigh temperature of 1100 ° C or higher during the manufacturing process. Requires a special process,
This is extremely expensive because it requires dedicated equipment.

【0005】このコストの問題あるいは工程条件の簡易
化の問題を解決すべく、種々の研究開発が進められてい
る。本発明者らは、先にC:0.01%以下、Si: 0.5〜
2.5 %、Mn: 1.0〜 2.0%の、従来よりは低Siか
つ高Mnであることを主な特徴とする方向性電磁鋼板
と、中間工程での脱炭焼鈍を必要とせず仕上焼鈍の低温
化が可能なその製造方法とを発明した(特公平 5−6470
1 号公報)。この方法はSiを低くすることにより素材
の硬さを下げて圧延を容易にし、脱炭焼鈍の省略と仕上
げ焼鈍温度の低下によって、方向性電磁鋼板のコスト低
減に大きく貢献し得るものである。さらに特開平 6−96
66号公報ではこの方法を改善し、極低炭素にてSi:1.
5 〜 3.0%、Mn: 1.0〜 3.0%、かつSi(%)−
0.5×Mn(%)≦ 2.0である鋼による、高Mn系方向
性電磁鋼板とその製造方法を提示している。
Various researches and developments have been made in order to solve the problems of cost and simplification of process conditions. The present inventors previously found that C: 0.01% or less, Si: 0.5-
2.5%, Mn: 1.0 to 2.0%, a grain-oriented electrical steel sheet mainly characterized by lower Si and higher Mn than before, and low temperature finish annealing without the need for decarburization annealing in the intermediate step. Inventing a method of manufacturing the same (Japanese Patent Publication No.
No. 1). This method lowers the hardness of the material by lowering Si to facilitate rolling, and can greatly contribute to the cost reduction of the grain-oriented electrical steel sheet by omitting decarburization annealing and lowering the finish annealing temperature. Further, JP-A-6-96
In Japanese Patent Publication No. 66, this method is improved and Si: 1.
5 to 3.0%, Mn: 1.0 to 3.0%, and Si (%)-
A high-Mn-type grain-oriented electrical steel sheet and a method for manufacturing the same are presented, which are steels in which 0.5 × Mn (%) ≦ 2.0.

【0006】この高Mn系方向性電磁鋼板の製造方法の
最大の特徴は、インヒビターに窒化物系の析出物(鉄と
鋼:Vol.80(1994),No8,659頁参照)を用いることにあ
る。このためにMnを多量に含有させることができ、そ
れによって、極低炭素化したスラブを用いてもγ相が現
われるのでα−γ変態を生じ、後の焼鈍工程での脱炭が
不要となっている。また、Mnの含有量増加は電気抵抗
上昇の効果もある。この窒化物系の析出物は、硫化物系
よりも溶解度積が大きく低温で充分固溶するため、スラ
ブ加熱温度を通常の熱延鋼板の製造と同じ温度(1150〜
1250℃)にまで下げることが可能になる。さらに、イン
ヒビターとして二次再結晶に用いたこの微細析出物は固
溶温度が低く、しかもNの鋼中拡散速度はSよりもはる
かに速いので、1000℃以下の低温でかつ短時間に除去で
きる。このように、高Mn系方向性電磁鋼板の製造方法
は、従来高温を要した工程の処理温度を大きく低下させ
ることができ、特殊な専用設備を必要としないという点
において画期的な方法である。
The greatest feature of this method for producing a high Mn-type grain-oriented electrical steel sheet is that it uses a nitride-based precipitate (iron and steel: Vol.80 (1994), No. 8, page 659) as an inhibitor. is there. For this reason, Mn can be contained in a large amount, and thus, even if a slab with extremely low carbon is used, the γ phase appears, so that α-γ transformation occurs, and decarburization in the subsequent annealing step becomes unnecessary. ing. In addition, increasing the Mn content also has the effect of increasing the electrical resistance. This nitride-based precipitate has a larger solubility product than the sulfide-based precipitate and is sufficiently solid-solved at a low temperature. Therefore, the slab heating temperature should be the same as that for the production of ordinary hot-rolled steel sheet (1150-
It is possible to reduce the temperature to 1250 ℃). Further, since the fine precipitate used as the inhibitor in the secondary recrystallization has a low solid solution temperature and the diffusion rate of N in steel is much faster than that of S, it can be removed at a low temperature of 1000 ° C or less and in a short time. . As described above, the method for producing a high Mn-type grain-oriented electrical steel sheet is an epoch-making method in that the processing temperature of the process that conventionally required a high temperature can be greatly reduced and no special dedicated equipment is required. is there.

【0007】しかしながら、この高Mn系方向性電磁鋼
板の製造方法の量産の場での適用に関しては、まだすべ
ての製造条件が充分に確立されているとは言い難く、改
良すべき点が多く残されている。
However, it is difficult to say that all the manufacturing conditions are sufficiently established for application of this method for manufacturing a high Mn-type grain-oriented electrical steel sheet in mass production, and many points to be improved remain. Has been done.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の特開
平 6−9666号公報に示された高Mn系方向性電磁鋼板の
製造方法に関連し、その製造の安定性や到達性能のレベ
ルを、より一層向上させることを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a method for producing a high Mn-type grain-oriented electrical steel sheet disclosed in the above-mentioned Japanese Patent Laid-Open No. 6-9666, and the level of stability and ultimate performance of the production. Is further improved.

【0009】[0009]

【課題を解決するための手段】本発明者らは、高Mn系
方向性電磁鋼板の製造方法に関して、製品の特性レベル
の向上とその安定化のために種々製造条件の検討をおこ
なってきた。その場合、途中の工程において脱炭処理を
おこなわないため、これまでは、特性に有害なCは製鋼
段階において溶鋼の真空処理により十分に脱炭すること
にしていた。ところが、検討を進める過程で、製鋼時の
スラブないしは熱間圧延終了時点での鋼中のCは、多少
残存していても製造工程中に低減し、最終製品ではこれ
までと同等のC含有レベルとなることが明らかになって
きた。これは、工程中の焼鈍時、とくに仕上げ焼鈍の高
温長時間の水素を含む雰囲気中での加熱により、鋼中の
Cが鋼表面で雰囲気中の水素や微量の水分と反応し、炭
化水素や一酸化炭素等となって排除されたものと考えら
れる。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied various manufacturing conditions in order to improve the characteristic level of the product and stabilize it in the method of manufacturing a high Mn-type grain-oriented electrical steel sheet. In that case, since decarburization is not performed in the process in the middle, until now, C harmful to the characteristics has been sufficiently decarburized by vacuum treatment of molten steel in the steelmaking stage. However, in the process of studying, C in the slab during steelmaking or at the end of hot rolling is reduced during the manufacturing process even if some remains, and the final product has the same C content level as before. It has become clear that This is because C in the steel reacts with hydrogen and a small amount of water in the atmosphere on the surface of the steel during the annealing during the process, especially by heating in the atmosphere containing hydrogen for a long time at high temperature during finish annealing. It is considered that carbon monoxide and the like were eliminated.

【0010】もし、製鋼段階での脱炭の到達目標レベル
を多少高くできれば、溶鋼の真空処理時間を短縮でき、
その上鋼中の酸化物系介在物量をより少なくすることが
できる。酸化物系介在物の低減は磁気特性の向上をもた
らす。さらに、使用原料の純度の規制を緩和することに
よるコスト低減の可能性もある。そこで、この熱間圧延
を終了した素材の段階でのC量の許容限界を明らかにす
べく調査をすすめた結果、素材における適量のCの存在
は、磁気特性が安定するばかりでなく、より一層向上す
ることが判明したのである。これは、上述の介在物減少
もあるが、それよりも、鋼中に侵入型固溶元素であるC
が存在することにより、冷間圧延および一次再結晶の際
に、次にゴス方位に発達する結晶の核がより多く発生し
て、二次再結晶後の鋼板の集合組織を改善し、その結果
磁気特性が向上したと推定された。
If the target level of decarburization at the steelmaking stage can be increased to some extent, the vacuum processing time of molten steel can be shortened,
In addition, the amount of oxide inclusions in the steel can be reduced. Reduction of oxide inclusions leads to improvement of magnetic properties. Furthermore, there is a possibility of cost reduction by relaxing restrictions on the purity of raw materials used. Therefore, as a result of conducting an investigation to clarify the allowable limit of the amount of C at the stage of the material after the hot rolling, the presence of an appropriate amount of C in the material not only stabilizes the magnetic properties, It turned out to improve. This is because the inclusions are reduced as described above, but rather than that, C which is an interstitial solid solution element in the steel.
By the presence of, the nuclei of crystals that develop next in the Goss orientation are generated more during cold rolling and primary recrystallization, improving the texture of the steel sheet after secondary recrystallization, and as a result, It was estimated that the magnetic properties were improved.

【0011】さらにCの含有量が上記範囲にある場合、
温間で圧延することによって、二次再結晶後の鋼板の集
合組織を改善する効果が、より顕著になることがわかっ
てきた。これは圧延加工のすべり系が変化して加工状態
が変り、引き続く焼鈍の一次再結晶の際に、上述の二次
再結晶にてゴス方位に発達する結晶の核が、より多く発
生するためと考えられる。
Further, when the content of C is in the above range,
It has been found that the effect of improving the texture of the steel sheet after secondary recrystallization becomes more remarkable by performing the warm rolling. This is because the slip system of the rolling process changes and the working state changes, and during subsequent primary recrystallization of annealing, more nuclei of crystals that develop in the Goss orientation in the above secondary recrystallization are generated. Conceivable.

【0012】高Siで極低炭素の場合、鋼板断面の金属
組織の光学顕微鏡観察において、熱延条件により鋼板の
表面近くは再結晶し、内部は加工組織が残ったような状
態が観察される場合が多くある。この再結晶状態の部分
と加工組織状態の部分との比率が変ると最終製品の磁気
特性が大きく変化し、特定の比率で磁気特性がより改善
される。この作用をやや炭素の高い場合に応用した結
果、同様に効果的であった。なお、ここで再結晶部分ま
たは加工組織部分というのは、厳密な意味で再結晶して
いるとか未再結晶状態であるということではなく、光学
顕微鏡観察において組織の状態がそのように見える部分
を指す。
When the Si content is high and the carbon content is extremely low, when the metallographic structure of the steel plate cross section is observed under an optical microscope, it is observed that the vicinity of the surface of the steel sheet is recrystallized and that the work structure remains inside due to the hot rolling conditions. There are many cases. When the ratio between the recrystallized state portion and the processed structure state portion changes, the magnetic properties of the final product change significantly, and the magnetic properties are further improved at a specific ratio. As a result of applying this effect to a slightly high carbon, it was similarly effective. The term "recrystallized portion or processed texture portion" does not mean that the material is recrystallized or is in a non-recrystallized state in a strict sense, but a portion in which the state of the texture looks like that in an optical microscope observation. Point to.

【0013】そこで、素材の炭素含有量と、冷間圧延前
の金属組織とに関し、とくにすぐれた磁気特性を得るた
めの条件を詳細に検討して、本発明の方法を完成するに
至った。
Therefore, with respect to the carbon content of the raw material and the metallographic structure before cold rolling, the conditions for obtaining particularly excellent magnetic characteristics were studied in detail, and the method of the present invention was completed.

【0014】本発明の製造方法の特徴は次の通りであ
る。
The features of the manufacturing method of the present invention are as follows.

【0015】(1) 重量%にてC:0.01%超〜 0.030%、
Si: 1.5〜 4.0%、Mn: 1.0〜5.0%、S:0.01%
以下、sol.Al: 0.003〜0.03%、N:0.0010〜 0.010
%、かつ Si(%)− 0.5×Mn(%)≦ 2.0 ・・・・・・・・ であって、残部はFeおよび不可避的不純物からなる組
成で、両表面から全板厚の10〜70%を再結晶部分とした
鋼板を、1回の冷間圧延、または中間焼鈍を挟む2回の
冷間圧延の後、急速加熱して焼鈍し、次いで 825〜1050
℃の温度域にて仕上げ焼鈍する。
(1) C by weight%: more than 0.01% to 0.030%,
Si: 1.5-4.0%, Mn: 1.0-5.0%, S: 0.01%
Below, sol.Al: 0.003 to 0.03%, N: 0.0010 to 0.010
%, And Si (%)-0.5 x Mn (%) ≤ 2.0, with the balance being Fe and inevitable impurities, and the total thickness from 10 to 70 from both surfaces. % Of the recrystallized steel sheet is cold-rolled once, or cold-rolled twice with intermediate annealing, then rapidly heated and annealed.
Finish annealing in the temperature range of ℃.

【0016】(2) 上記組成の部分的に再結晶した鋼板
を、1回または中間焼鈍を挟む2回の圧延をおこなって
最終板厚とする際、少なくとも1回の圧延を50〜 250℃
の温度域での温間圧延とし、その後急速加熱して焼鈍
し、次いで 825〜1050℃の温度域にて仕上げ焼鈍する。
(2) When the partially recrystallized steel sheet having the above composition is rolled once or twice with intermediate annealing to obtain the final thickness, at least one rolling is performed at 50 to 250 ° C.
It is warm-rolled in the temperature range, then rapidly heated and annealed, and then finish annealed in the temperature range of 825 to 1050 ° C.

【0017】(3) 上記 (1)または(2) の製造方法におい
て、熱間圧延工程の仕上げ温度(FT:℃)と、巻取り
温度(CT:℃)とを下記の式および式を満足させ
ることにより、冷間圧延前に両表面から全板厚の10〜70
%を再結晶部分とした鋼板にする。
(3) In the manufacturing method of (1) or (2) above, the finishing temperature (FT: ° C) and the coiling temperature (CT: ° C) of the hot rolling process satisfy the following equations and equations. By doing so, the total thickness of 10 to 70
The steel plate with the% as the recrystallized portion is used.

【0018】 1250−(2/3)×FT≦CT≦1300−(2/3)×FT ・・・ 780≦FT≦ 930 ・・・・・・・・・・・・・・・ (4) 上記 (1)または(2) の製造方法において、熱間圧延
の巻取り温度を 600℃以下とし、得られたコイルを脱ス
ケール後、 625〜 950℃の温度域で焼鈍して、冷間圧延
前に両表面から全板厚の10〜70%を再結晶部分とした鋼
板にする。
1250- (2/3) × FT ≦ CT ≦ 1300- (2/3) × FT 780 ≦ FT ≦ 930 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (4) In the manufacturing method of (1) or (2) above, the coiling temperature of hot rolling is set to 600 ° C or less, the obtained coil is descaled, annealed in the temperature range of 625 to 950 ° C, and cold rolled. First, make a steel sheet with 10 to 70% of the total thickness from both surfaces as the recrystallized portion.

【0019】なお、ここで両表面から全板厚の10〜70%
を再結晶部分とした状態とは、必ずしも板の上下面から
均等、例えば再結晶部分が全板厚の40%の場合に上下面
それぞれが表面から20%づつになっている必要はない
が、再結晶部分の少ない側が少なくとも全板厚の 5%と
なっていることが望ましい。
Here, 10 to 70% of the total plate thickness from both surfaces
The state of the recrystallized part is not necessarily equal from the upper and lower surfaces of the plate, for example, when the recrystallized part is 40% of the total plate thickness, it is not necessary that each of the upper and lower surfaces is 20% from the surface, It is desirable that at least 5% of the total plate thickness is on the side with few recrystallized portions.

【0020】[0020]

【発明の実施の形態】本発明の製造方法では、C、N以
外の元素は製鋼段階で定った含有量がほとんどそのまま
最終製品の含有量になるが、CおよびNについては熱間
圧延後の含有量と、最終製品とでは大きく異る。ここで
の成分含有量は、熱間圧延後の鋼板に対するものであ
る。なお、以下の説明において「%」はすべて重量%で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, the contents of elements other than C and N determined in the steelmaking stage are almost the same as the contents of the final product. There is a big difference between the content of and the final product. The component contents here are for the steel sheet after hot rolling. In the following description, all "%" are% by weight.

【0021】(1) C Cは磁気特性に悪影響をおよぼすので、最終製品では0.
0050%以下にすることが望ましい。しかし、素材の鋼ス
ラブないしは冷間圧延前の素材鋼板の段階では、C含有
量は 0.010%を超え 0.030%以下とする。これは製鋼段
階で 0.010%以下にすると鋼中の酸化物系介在物が増加
し、その上、極低炭素化のための溶鋼の脱ガス処理時間
が増加してコスト高を招くためである。また、固溶Cの
存在による集合組織改善効果が、 0.010%以下では顕著
でないためでもある。一方、 0.030%を超えると、仕上
げ焼鈍の段階では十分極低炭素化できなくなり、さら
に、上述の熱延条件の管理や熱延板焼鈍により冷間圧延
前、両表面から全板厚の10〜70%を再結晶部分とするこ
とが困難になってくる。
(1) C C has an adverse effect on the magnetic properties, so that it is less than 0 in the final product.
It is desirable that the content be 0050% or less. However, at the stage of the raw material steel slab or the raw steel sheet before cold rolling, the C content is more than 0.010% and 0.030% or less. This is because if the content is made 0.010% or less in the steelmaking stage, the amount of oxide inclusions in the steel will increase, and in addition, the degassing treatment time of molten steel for extremely low carbonization will increase, leading to higher costs. Also, the effect of improving the texture due to the presence of the solid solution C is not significant below 0.010%. On the other hand, if it exceeds 0.030%, it will not be possible to achieve extremely low carbon at the stage of finish annealing, and further, by the above-mentioned hot rolling condition management and hot rolled sheet annealing, before cold rolling, the total thickness of 10 to 10 It becomes difficult to make 70% into the recrystallized portion.

【0022】(2) Si Siは磁気特性に大きな影響を与える元素であり、含有
量が増加するほど鋼板の電気抵抗は上昇し渦電流損が低
下し、結果として鉄損が低減する。しかし 4.0%を超え
る含有量では、たとえMn量を増したとしても、二次再
結晶が不安定になるとともに、加工性が低下して冷間圧
延が困難となる。一方、 1.5%未満の含有量では鋼板の
電気抵抗が小さすぎるため、鉄損の低減が不十分にな
る。従って、Siの含有量は 1.5〜4.0 %の範囲とす
る。
(2) Si Si is an element that greatly affects the magnetic properties, and as the content increases, the electrical resistance of the steel sheet increases and the eddy current loss decreases, resulting in a reduction in iron loss. However, if the content exceeds 4.0%, even if the Mn content is increased, the secondary recrystallization becomes unstable, and the workability is reduced to make cold rolling difficult. On the other hand, if the content is less than 1.5%, the electric resistance of the steel sheet is too small, and the reduction of iron loss becomes insufficient. Therefore, the Si content is in the range of 1.5 to 4.0%.

【0023】(3) Mn Mnは、高Siの低炭素鋼スラブの熱間圧延の加熱時に
γ相を出現させ、したがってα−γ変態を生じさせるの
に必要な元素である。変態の発生が熱間圧延工程途中で
の熱延板の組織の均質化やインヒビター均一分散化を促
進し、その結果として仕上げ焼鈍でゴス方位への集積度
の高い二次再結晶を安定して進行させる。このためMn
の添加が必要であるが、一方、仕上げ焼鈍の際のγ相の
出現は、二次再結晶で得られたゴス方位を破壊するので
多すぎるのは好ましくない。このようなγ変態はフェラ
イト形成元素であるSiと、オーステナイト形成元素で
あるMnとの含有量のバランスで決まるから、SiとM
nの含有量は関連させて調整しなければならない。本発
明においては、 Si(%)− 0.5×Mn(%)≦ 2.0 ・・・・・・・・ となるようにSiに対してMnを含有させる。これによ
って熱間圧延工程における変態の発生が可能で、かつ仕
上げ焼鈍時の変態を阻止できる。
(3) Mn Mn is an element necessary for causing the γ phase to appear during heating in the hot rolling of a high Si, low carbon steel slab, and therefore for causing the α-γ transformation. The occurrence of transformation promotes homogenization of the structure of the hot-rolled sheet and homogenization of the inhibitor during the hot rolling process, and as a result stabilizes secondary recrystallization with high integration in the Goss orientation during finish annealing. Make progress. Therefore, Mn
On the other hand, the appearance of the γ phase during finish annealing destroys the Goss orientation obtained by secondary recrystallization, and therefore it is not preferable to add too much. Such γ transformation is determined by the balance of the contents of Si, which is a ferrite-forming element, and Mn, which is an austenite-forming element.
The content of n must be adjusted accordingly. In the present invention, Mn is added to Si so that Si (%) − 0.5 × Mn (%) ≦ 2.0. This makes it possible to cause transformation in the hot rolling process and prevent transformation during finish annealing.

【0024】Si量が本発明の上限である 4.0%含有の
場合に上式を満足させるには、 4.0%以上のMnが必要
である。また、Si量が 2.0%未満の材料でも 1.0%以
上のMn含有が二次再結晶の安定化に必要である。Mn
は鋼板の電気抵抗の増加に有効であり、鉄損低減の目的
からも 1.0%以上のMnの含有は必要である。しかし5.
0 %を超えるMnは冷間加工性を劣化させるので、含有
量の上限は 5.0%とする。即ち、Mn含有量は 1.0〜5.
0 %で、かつ上記式の条件を満足しなければならな
い。
In order to satisfy the above formula when the Si content is 4.0%, which is the upper limit of the present invention, 4.0% or more of Mn is required. Further, even for a material having a Si content of less than 2.0%, a Mn content of 1.0% or more is necessary for stabilizing secondary recrystallization. Mn
Is effective in increasing the electric resistance of the steel sheet, and it is necessary to contain 1.0% or more of Mn for the purpose of reducing iron loss. But 5.
Since Mn exceeding 0% deteriorates the cold workability, the upper limit of the content is 5.0%. That is, the Mn content is 1.0 to 5.
It must be 0% and satisfy the above condition.

【0025】(4) S SはMnとともにMnSを形成し、従来の方向性電磁鋼
板の製造方法においてはこれをインヒビターとして活用
するため、スラブである程度以上の含有が必須であっ
た。しかし、本発明では主要なインヒビターに窒化物を
使っているので、Sを多量に含有させる必要はなく、し
かも本発明の方法では、仕上げ焼鈍が1050℃以下と低い
ため、脱硫効果は期待できない。さらに、最終製品にて
多量のMnS粒子が鋼中に残存すると鉄損の劣化を来
す。したがって、S含有量は製品においても、素材の鋼
スラブにおいても 0.010%以下とするが、磁気特性への
影響からは少なければ少ないほどよく、望ましいのは
0.005%以下である。
(4) S S forms Mn S together with Mn and is utilized as an inhibitor in the conventional method for producing grain-oriented electrical steel sheet, so it is essential that the slab is contained in a certain amount or more. However, in the present invention, since nitride is used as the main inhibitor, it is not necessary to add a large amount of S, and in the method of the present invention, the desulfurization effect cannot be expected because the finish annealing is as low as 1050 ° C or less. Furthermore, if a large amount of MnS particles remain in the final product, iron loss will be deteriorated. Therefore, the S content is 0.010% or less in both the product and the steel slab as the raw material, but the smaller the S content, the better, and the more desirable it is.
It is 0.005% or less.

【0026】(5) sol.Al(酸可溶Al) Alは、本発明においてゴス方位の二次再結晶の発生に
重要な役割を果たす主要なインヒビターであるAlN、
(Al,Si) N、あるいは (Al,Si,Mn) Nの
ような窒化物を形成させるのに重要な元素である。sol.
Alが 0.003%未満では窒化物量が不足し十分なインヒ
ビター効果が得られず、0.03%を超えるとインヒビター
量が多くなりすぎるとともに、その分散状態も不適切に
なり安定した二次再結晶が生じない。したがって、sol.
Al含有量は 0.003〜0.03%に限定する。
(5) sol.Al (acid-soluble Al) Al is a major inhibitor AlN which plays an important role in the occurrence of secondary recrystallization in the Goss orientation in the present invention.
It is an important element for forming a nitride such as (Al, Si) N or (Al, Si, Mn) N. sol.
When Al is less than 0.003%, the amount of nitride is insufficient and a sufficient inhibitory effect cannot be obtained, and when it exceeds 0.03%, the amount of inhibitor becomes too large and its dispersion state becomes improper and stable secondary recrystallization does not occur. . Therefore, sol.
The Al content is limited to 0.003 to 0.03%.

【0027】(6) N Nは上記のインヒビターとなる窒化物を形成するのに必
要で、二次再結晶が完了するまでは重要な元素である。
スラブないしは素材の熱延鋼板の段階において、 0.001
%未満では二次再結晶時に窒化物の析出量が少なすぎて
所望のインヒビター効果が得られず、0.010 %を超えて
含有させてもその効果は飽和することから 0.001〜 0.0
10%の範囲が適当である。ただし、最終製品での存在は
磁気特性を劣化させるので、その含有量は少なければ少
ないほどよい。この最終製品でのN含有量は 0.005%以
下が望ましく、仕上げ焼鈍時にこの所望の低い値にまで
低減させる。
(6) N N is necessary for forming the above-mentioned inhibitor nitride, and is an important element until the secondary recrystallization is completed.
0.001 at the stage of hot rolled steel sheet of slab or material
If the content is less than 0.1%, the desired inhibitory effect cannot be obtained because the precipitation amount of nitride is too small during the secondary recrystallization, and if the content exceeds 0.010%, the effect is saturated.
A range of 10% is suitable. However, since the presence in the final product deteriorates the magnetic properties, the smaller the content, the better. The N content in the final product is preferably 0.005% or less and is reduced to this desired low value during finish annealing.

【0028】(7) 冷間または温間圧延前の金属組織 高Mn系方向性電磁鋼板の製造における本発明の方法の
特徴の一つは、冷間または温間圧延前の鋼板の金属組織
を、表面から特定の範囲だけ部分的に再結晶状態にして
おくことである。熱延ままであっても、熱延板を焼鈍し
ていても、断面の光学顕微鏡観察の範囲において、表面
に再結晶部分が存在し内部に加工組織部分が残っておれ
ばよい。
(7) Metallographic Structure Before Cold or Warm Rolling One of the features of the method of the present invention in the production of a high Mn-type grain-oriented electrical steel sheet is that the metallographic structure of the steel sheet before cold or warm rolling is That is, a specific range from the surface is partially recrystallized. Whether it is hot rolled or the hot rolled sheet is annealed, it suffices that a recrystallized portion exists on the surface and a processed texture portion remains inside in the range of optical microscope observation of the cross section.

【0029】加工組織部分を除いた、両表面からの再結
晶部分の全板厚に対する比率が10%未満または70%を超
える場合は、仕上げ焼鈍後のゴス方位の発達が不十分
で、鉄損が増大する。これは再結晶部分が10%未満の場
合、一次再結晶後に表層近くのゴス方位結晶粒が少な
く、70%以上になると二次再結晶時に表層から離れた部
分でゴス方位以外の結晶粒が発達しやすくなるためと考
えられた。なお、両表面からの再結晶部分は、必ずしも
上下面から均等な厚さである必要はないが、ゴス方位結
晶粒の発達の要因を減じないために、少ない方の側でも
表面から全厚の 5%以上はあることが望ましい。。
When the ratio of the recrystallized portion from both surfaces to the total plate thickness excluding the worked structure portion is less than 10% or more than 70%, the development of the Goss orientation after finish annealing is insufficient and the iron loss Will increase. This is because when the recrystallized portion is less than 10%, there are few Goss-oriented crystal grains near the surface layer after primary recrystallization, and when it is 70% or more, grains other than the Goss orientation develop in the portion away from the surface layer during secondary recrystallization. It was thought to be easier to do. The recrystallized portion from both surfaces does not necessarily have to have a uniform thickness from the upper and lower surfaces, but in order not to reduce the factor of the development of the Goss-oriented crystal grains, the smaller thickness of the total thickness from the surface It is desirable to be 5% or more. .

【0030】この再結晶部分の比率が、全板厚の10〜70
%である鋼板は、次に述べる (8)または (9)の方法で製
造することができる。
The ratio of this recrystallized portion is 10 to 70 of the total plate thickness.
A steel sheet having a percentage of 10% can be produced by the method (8) or (9) described below.

【0031】(8) 熱間圧延条件 熱間圧延の仕上げ温度(FT)および巻取り温度(C
T)により、熱間圧延後の鋼板の再結晶部分の比率が変
化する。FTおよびCTとも高温の場合は板厚中心部ま
で再結晶部分が拡がっており、FTおよびCTとも低温
では表層の再結晶部分が少なくなる。再結晶部分の比率
を目的とする範囲内に入れるには、FTが高い場合CT
は低目、FTが低い場合にはCTを高めに選べばよい。
(8) Hot rolling conditions Finishing temperature (FT) and winding temperature (C) of hot rolling
T) changes the ratio of the recrystallized portion of the steel sheet after hot rolling. When both FT and CT are at a high temperature, the recrystallized portion extends to the center of the plate thickness, and at both FT and CT at a low temperature, the recrystallized portion of the surface layer is small. In order to put the ratio of the recrystallized portion within the target range, if FT is high, CT
Is low, and CT is higher when FT is low.

【0032】本発明範囲の鋼成分内で、両表面から全板
厚の10〜70%が再結晶部分になっている熱延鋼板を得る
ための、FT(℃)およびCT(℃)の関係は下記の式
で表せる範囲内である。ただし、FTおよびCTの関係
がこの式を満足していても、FTが 930℃を超えると内
部まで再結晶部分の範囲が拡がり、 780℃未満では再結
晶部分の範囲が不足し、目的とする比率の再結晶部分が
得られない。
Within the steel composition within the scope of the present invention, the relationship between FT (° C) and CT (° C) for obtaining a hot-rolled steel sheet in which 10 to 70% of the total sheet thickness is a recrystallized portion from both surfaces. Is within the range that can be expressed by the following formula. However, even if the relationship between FT and CT satisfies this formula, the range of the recrystallized portion expands to the inside when FT exceeds 930 ° C, and the range of the recrystallized portion becomes insufficient below 780 ° C. The recrystallized part of the ratio cannot be obtained.

【0033】すなわち、両表面からの再結晶部分が全板
厚の10〜70%になっている熱延板を得るための熱間圧延
条件は、 1250−(2/3)×FT≦CT≦1300−(2/3)×FT ・・・ 780≦FT≦ 930 ・・・・・・・・・・・・・・・ である。
That is, the hot rolling conditions for obtaining the hot rolled sheet in which the recrystallized portions from both surfaces are 10 to 70% of the total sheet thickness are: 1250- (2/3) × FT ≦ CT ≦ 1300- (2/3) x FT ... 780 ≤ FT ≤ 930 .....

【0034】(9) 熱延板焼鈍 冷間圧延前の熱延板において、両表面から全板厚の10〜
70%が再結晶部分になっている状態は、熱間圧延後焼鈍
しても得ることができる。本発明方法で定める成分範囲
の鋼にて、目的とする比率の再結晶部分を得るために
は、熱間圧延のCTを 600℃以下とし、焼鈍の温度範囲
を 625〜 950℃とする。FTはとくには定めないが、 7
80〜 930℃が望ましい。
(9) Hot-rolled sheet annealing In a hot-rolled sheet before cold rolling, the total thickness of 10 to 10
The state where 70% is the recrystallized portion can also be obtained by annealing after hot rolling. In order to obtain a target recrystallized portion in the steel having the composition range defined by the method of the present invention, the CT of hot rolling is set to 600 ° C or lower and the annealing temperature range is set to 625 to 950 ° C. FT is not specified, but 7
80 to 930 ℃ is desirable.

【0035】CTは 600℃以下であれば常温まで冷却し
てもかまわないが、 600℃を超えると焼鈍時に再結晶部
分が大きくなりすぎることがある。焼鈍の方法は箱焼鈍
法でも連続焼鈍法でもよく、 625℃未満では再結晶部分
の発達が不十分であり、 950℃を超えると発達しすぎ
る。目的とする比率の再結晶部分を得るのに、箱焼鈍法
の場合 625〜750 ℃にて30min 〜20hの均熱が望まし
く、連続焼鈍法の場合は750 〜 950℃にて10s〜 5min
の均熱が望ましい。ただし、焼鈍方法により同じ焼鈍温
度でも再結晶部分の比率が異る。すなわち焼鈍の均熱温
度が規制範囲内であっても、箱焼鈍法では温度の高すぎ
る場合、連続焼鈍法では低すぎる場合においては、目的
とする再結晶の範囲を逸脱することがある。
If CT is 600 ° C. or lower, it may be cooled to room temperature, but if it exceeds 600 ° C., the recrystallized portion may become too large during annealing. The annealing method may be either a box annealing method or a continuous annealing method. If the temperature is lower than 625 ° C, the recrystallized portion is insufficiently developed, and if it exceeds 950 ° C, it is excessively developed. In order to obtain the recrystallized part of the target ratio, in the case of box annealing, soaking at 625 to 750 ℃ for 30 min to 20 h is desirable, and in the case of continuous annealing, 750 to 950 ℃ for 10 s to 5 min.
Soaking is desirable. However, the ratio of the recrystallized portion varies depending on the annealing method even at the same annealing temperature. That is, even if the soaking temperature of the annealing is within the regulation range, if the temperature is too high in the box annealing method or too low in the continuous annealing method, it may deviate from the intended recrystallization range.

【0036】(10)冷間圧延および中間焼鈍 素材鋼板を所要の板厚まで冷間圧延するための圧下率は
40〜90%であればよい。40%未満では、二次再結晶を充
分促進させるだけの一次再結晶組織が得られず、90%を
超えるとゴス方位の発達がよくないためである。より安
定して二次再結晶をおこなわせるためには60〜90%の圧
下率が望ましい。
(10) Cold Rolling and Intermediate Annealing The reduction ratio for cold rolling a raw steel sheet to a required thickness is
It should be 40-90%. This is because if it is less than 40%, a primary recrystallized structure sufficient to promote secondary recrystallization cannot be obtained, and if it exceeds 90%, the development of the Goss orientation is not good. A reduction rate of 60 to 90% is desirable for more stable secondary recrystallization.

【0037】磁気特性の一層の向上や、より薄い電磁鋼
板が必要な場合、中間焼鈍をはさんで2回の冷間圧延を
おこなって所要板厚にする。1回目の冷間圧延の圧下率
は特には定めないが40〜90%が望ましい。これは40%未
満では中間焼鈍で異常粒成長することがあり、90%を超
える圧下は高Siの場合実現困難になる。中間焼鈍温度
の望ましい範囲は、 600〜 950℃である。 600℃未満で
は充分な歪み取りができず、 950℃を超えると結晶粒が
粗大化し、仕上げ焼鈍での2次再結晶が不十分になるた
めである。なお、焼鈍方法は箱焼鈍法でも連続焼鈍法で
もかまわない。
When the magnetic properties are further improved or a thinner magnetic steel sheet is required, cold rolling is performed twice with intermediate annealing to obtain the required sheet thickness. Although the rolling reduction of the first cold rolling is not specified, it is preferably 40 to 90%. If it is less than 40%, abnormal grain growth may occur during intermediate annealing, and if it exceeds 90%, it becomes difficult to achieve it in the case of high Si. The desirable range of intermediate annealing temperature is 600 to 950 ° C. This is because if the temperature is less than 600 ° C, sufficient strain relief cannot be achieved, and if the temperature exceeds 950 ° C, the crystal grains become coarse and the secondary recrystallization during finish annealing becomes insufficient. The annealing method may be a box annealing method or a continuous annealing method.

【0038】2回目の冷間圧延の圧下率の望ましい範囲
は50〜80%である。この範囲を超えても、下回っても最
終製品の磁気特性は悪くなる。
The desirable range of the reduction ratio of the second cold rolling is 50 to 80%. If it exceeds or falls below this range, the magnetic properties of the final product will deteriorate.

【0039】(11)温間圧延 Cが 0.010%を超えて含まれる場合、上記の冷間圧延を
おこなう際に板の温度を温めることにより、最終製品の
磁気特性が向上する。その温度は50〜 250℃とする。50
℃未満の場合は効果が小さく、 250℃を超えると板厚精
度の低下、平坦度の劣化、表面性状の劣化等の問題が生
じるためである。
(11) Warm rolling When the content of C exceeds 0.010%, the magnetic properties of the final product are improved by warming the temperature of the plate during the cold rolling. The temperature shall be 50-250 ℃. 50
When the temperature is lower than 250 ° C, the effect is small, and when the temperature exceeds 250 ° C, problems such as deterioration of plate thickness accuracy, deterioration of flatness, deterioration of surface quality and the like occur.

【0040】中間焼鈍を挟む2回の圧延の場合は、どち
らの圧延も温間圧延としてよいが、どちらか1回の圧延
だけを温間圧延としても十分に効果がある。またコイル
を温める方法は圧延前に炉に装入して加熱する方法、ま
たは圧延中に高周波加熱や通電加熱する方法、熱風を吹
き付ける方法等、のいずれでもよい。
In the case of two rollings sandwiching the intermediate annealing, either rolling may be warm rolling, but it is sufficiently effective that only one rolling is warm rolling. The coil may be warmed by charging it in a furnace before rolling, heating it, heating it by high-frequency or electric current during rolling, blowing hot air, or the like.

【0041】(12)一次再結晶焼鈍 後述の仕上げ焼鈍で安定して二次再結晶を発生させ、ゴ
ス方位を発達させるには、急速加熱焼鈍により一次再結
晶させておく必要があり、このために連続焼鈍法とす
る。望ましい条件は、加熱速度としては 5〜20℃/s程
度、焼鈍温度としては、 700〜1000℃程度、均熱時間と
しては 5〜 300s程度である。
(12) Primary Recrystallization Annealing In order to stably generate secondary recrystallization and develop the Goss orientation in the finish annealing described later, it is necessary to perform primary recrystallization by rapid heating annealing. The continuous annealing method is used. Desirable conditions are a heating rate of about 5 to 20 ° C./s, an annealing temperature of about 700 to 1000 ° C., and a soaking time of about 5 to 300 s.

【0042】(13)仕上げ焼鈍 一次再結晶焼鈍後の仕上げ焼鈍は、 825〜1050℃の温度
域とするが、二次再結晶によるゴス方位発達を目的とす
る前半の焼鈍と、その後の析出物除去または純化を目的
とする後半の焼鈍とが含まれる。
(13) Finish Annealing The finish annealing after the primary recrystallization annealing is performed in the temperature range of 825 to 1050 ° C., but the annealing in the first half for the purpose of developing the Goss orientation by the secondary recrystallization and subsequent precipitates Includes late annealing for removal or purification.

【0043】ゴス方位の二次再結晶粒を充分に発達させ
るためには、窒素を含有する水素雰囲気中で焼鈍するこ
とが望ましい。その理由は、インヒビターである窒化物
が脱窒により減少し二次再結晶の進行が不安定になるの
を防止するためと、更に積極的には焼鈍雰囲気からの吸
窒によりインヒビターとなる窒化物の析出量を増加さ
せ、より効果的にゴス方位への集積度の高い二次再結晶
をおこなわせるためである。この目的には焼鈍雰囲気中
の窒素含有量は10%以上であることが望ましい。
In order to sufficiently develop the secondary recrystallized grains in the Goss orientation, it is desirable to anneal in a hydrogen atmosphere containing nitrogen. The reason is to prevent the nitride, which is an inhibitor, from decreasing due to denitrification and to make the progress of the secondary recrystallization unstable, and more positively, to prevent the nitride from becoming an inhibitor due to nitrogen absorption from the annealing atmosphere. This is for increasing the amount of precipitates and more effectively performing secondary recrystallization with a high degree of integration in the Goss orientation. For this purpose, the nitrogen content in the annealing atmosphere is desirably 10% or more.

【0044】ただし、雰囲気中の窒素量の上限は、 100
%とするよりも吸窒の進行を配慮すれば 1%以上の水素
が存在している方がよい。
However, the upper limit of the amount of nitrogen in the atmosphere is 100
Considering the progress of nitrification, it is better that 1% or more of hydrogen is present.

【0045】二次再結晶をおこなわせる温度としては 8
25〜925 ℃の範囲が望ましい。 825℃未満ではインヒビ
ターの粒成長抑制力が強すぎて二次再結晶が発生せず、
925℃を超える温度域ではインヒビター効果が弱いた
め、ゴス方位の集積度の弱い二次再結晶粒が発生する
か、通常の粒成長により一次再結晶粒が粗大化するため
である。 825〜 925℃の範囲での保持時間は少なくとも
7hは必要であるが、100hを超える保持はそれ以上の
粒成長がなく経済的にも不利である。これらの理由か
ら、仕上げ焼鈍の前半の二次再結晶粒の発達を目的とす
る過程では、窒素含有雰囲気中において825 〜 925℃で
7〜100 h保持することが望ましい。
The temperature at which the secondary recrystallization is performed is 8
A range of 25-925 ° C is desirable. If the temperature is lower than 825 ° C., the inhibitory effect on the grain growth of the inhibitor is too strong to cause secondary recrystallization,
This is because in the temperature range exceeding 925 ° C., the inhibitor effect is weak, so that secondary recrystallized grains having a low degree of Goss orientation accumulation are generated, or primary recrystallized grains are coarsened by ordinary grain growth. The retention time in the range of 825 to 925 ° C is at least
7h is required, but holding for more than 100h is economically disadvantageous because there is no further grain growth. For these reasons, in the process aiming at the development of secondary recrystallized grains in the first half of finish annealing, at a temperature of 825 to 925 ° C in a nitrogen-containing atmosphere,
It is desirable to hold for 7 to 100 hours.

【0046】インヒビターとして活用した窒化物は磁気
特性上有害なものであり、二次再結晶が完了した後は除
去する必要がある。このためには水素雰囲気中での焼鈍
が有効で、同時に磁気特性に有害なCも除去される。こ
の純化の目的には、 850℃未満の温度では長時間要する
ので、 850℃以上で焼鈍するのが望ましい。ただし、10
50℃を超える温度になるとγ相が現われ、ゴス方位のα
粒組織を破壊するばかりでなく、CおよびNの除去速度
が低下してくる。この純化焼鈍の保持時間は少なくとも
7hが必要であるが、 100hを超える保持は除去が飽和
するため不必要である。したがって、仕上げ焼鈍の後半
は水素雰囲気中において925 ℃を超え1050℃までの温度
域にて、望ましくは 7〜 100h保持する純化焼鈍をおこ
なう。
The nitride used as an inhibitor is harmful in terms of magnetic properties and must be removed after the secondary recrystallization is completed. For this purpose, annealing in a hydrogen atmosphere is effective, and at the same time, C harmful to magnetic properties is also removed. For the purpose of this purification, it takes a long time at a temperature lower than 850 ° C., so it is desirable to anneal at 850 ° C. or higher. However, 10
When the temperature exceeds 50 ° C, the γ phase appears and the Goss orientation α
In addition to destroying the grain structure, the removal rate of C and N is reduced. The holding time of this purification annealing is at least
7 h is required, but holding for more than 100 h is not necessary because removal is saturated. Therefore, in the latter half of the finish annealing, a purification annealing is performed in a hydrogen atmosphere in a temperature range from 925 ° C. to 1050 ° C., preferably for 7 to 100 hours.

【0047】以上の二次再結晶過程と純化焼鈍過程とは
必ずしも明確に区分する必要はなく、 825〜1050℃の温
度域にて、焼鈍の初期は相対的に低い温度で窒素を含む
雰囲気、中期から後期にかけてはより高温で窒素量を減
じ水素量を多くした雰囲気とし、仕上げ焼鈍の合計時間
を 200hまでとしてもよい。
It is not always necessary to clearly distinguish the secondary recrystallization process and the purification annealing process as described above. In the temperature range of 825 to 1050 ° C., an atmosphere containing nitrogen at a relatively low temperature in the initial stage of annealing, From the middle stage to the latter stage, an atmosphere in which the amount of nitrogen is reduced and the amount of hydrogen is increased at a higher temperature may be used, and the total time of finish annealing may be up to 200 hours.

【0048】なお、仕上げ焼鈍の前に焼鈍時の焼き付き
防止のための焼鈍分離剤を塗布することは、通常の方向
性電磁鋼板の製造方法と同じである。仕上げ焼鈍後の工
程としては通常の方向性電磁鋼板と同様に、焼鈍分離剤
を除去した後、絶縁コーティングを施したり平坦化焼鈍
をおこなえばよい。
The application of the annealing separating agent for preventing the seizure during the annealing before the finish annealing is the same as the usual method for producing a grain-oriented electrical steel sheet. As a process after the finish annealing, as in the case of a normal grain-oriented electrical steel sheet, after removing the annealing separator, an insulating coating may be applied or a flattening annealing may be performed.

【0049】[0049]

【実施例】【Example】

〔実施例1〕表1に示す鋼組成のスラブを加熱温度1253
℃、仕上げ温度(FT) 870℃、および巻取り温度(C
T) 700℃として熱間圧延し板厚 2.3mm厚にした。この
段階で、各鋼板の断面の光学顕微鏡組織を観察したとこ
ろ、いずれの鋼板も両表面からの再結晶部分が全板厚の
約20%、すなわち片面約10%づつであることが確認され
た。これらを酸洗して0.35mm厚まで冷間圧延した後、 8
80℃にて30s均熱として連続焼鈍し、次いで焼鈍分離剤
を塗布して仕上げ焼鈍をおこなった。仕上げ焼鈍は、窒
素25%残部水素の雰囲気中にて 875℃で24hの均熱によ
り二次再結晶させ、その後水素 100%の雰囲気として 9
50℃にて30h均熱とした。平坦化燒鈍後、JISに規定
の方法により各鋼板から圧延方向に平行に試験片を切出
し、エプスタイン枠を用いて磁気特性を測定した。
[Example 1] A slab having a steel composition shown in Table 1 was heated at a temperature of 1253.
℃, finishing temperature (FT) 870 ℃, and winding temperature (C
T) Hot rolling was performed at 700 ° C. to obtain a plate thickness of 2.3 mm. At this stage, when observing the optical microscope structure of the cross section of each steel sheet, it was confirmed that the recrystallized portions from both surfaces of each steel sheet were about 20% of the total plate thickness, that is, about 10% on each side. . After pickling these and cold rolling to 0.35 mm thickness,
Continuous annealing was performed at 80 ° C. for 30 s soaking, and then an annealing separator was applied to finish annealing. For finish annealing, secondary recrystallization was performed by soaking at 875 ° C for 24 hours in an atmosphere of 25% nitrogen and the balance of hydrogen, and then an atmosphere of 100% hydrogen was used.
It was soaked at 50 ° C for 30 hours. After the flattening and annealing, a test piece was cut out from each steel sheet in parallel with the rolling direction by the method specified in JIS, and the magnetic properties were measured using an Epstein frame.

【0050】[0050]

【表1】 [Table 1]

【0051】磁気特性の測定結果を表1に併せて示す
が、試験番号 1や 9〜12のC含有量が0.01%を下回る極
低Cスラブによる製品の磁気特性に比較し、本発明で定
める範囲のCを多少含むスラブによる試験番号 2、 5お
よび 8は、磁束密度も、鉄損も共にすぐれている。ここ
で、試験番号 3はCが高すぎ、焼鈍工程で十分脱炭でき
ていない。試験番号 4および 6はAl含有量が本発明で
定める範囲を外れており、試験番号 7はSiとMnが式
で定める規制範囲を超えたため、仕上げ焼鈍時にγ相
が現われたと考えられ、いずれもゴス方位の発達が不十
分であった。
The measurement results of the magnetic properties are also shown in Table 1. The magnetic properties of the test Nos. 1 and 9-12 are compared with the magnetic properties of the products of the extremely low C slab having a C content of less than 0.01%, and are determined by the present invention. Test Nos. 2, 5 and 8 with slabs containing some C in the range have excellent magnetic flux density and iron loss. Here, in the test number 3, C is too high, and decarburization cannot be sufficiently performed in the annealing process. In Test Nos. 4 and 6, the Al content was out of the range defined by the present invention, and in Test No. 7 since Si and Mn exceeded the regulation range defined by the formula, it is considered that the γ phase appeared during finish annealing. The development of Goss orientation was insufficient.

【0052】〔実施例2〕表1に示したB鋼を用いてス
ラブ加熱温度を1250℃とし、FTおよびCTを変えて熱
間圧延後、鋼板によってはさらに熱延板の焼鈍をおこな
った。これらの条件を表2に示す。この各鋼板の冷間圧
延前の断面の光学顕微鏡組織を観察し、再結晶部分の比
率を調べた結果を併せて表2に記す。次にこれらの鋼板
を冷間圧延して最終板厚とした。また一部の鋼はさらに
中間焼鈍および二次冷間圧延をおこなった。これらの製
造工程条件もまとめて表2に示す。
Example 2 Using the B steel shown in Table 1, the slab heating temperature was set to 1250 ° C., FT and CT were changed, and hot rolling was performed. Then, depending on the steel sheet, the hot rolled sheet was further annealed. Table 2 shows these conditions. The optical microscope structure of the cross section of each of the steel sheets before cold rolling was observed, and the results of examining the ratio of the recrystallized portion are also shown in Table 2. Next, these steel plates were cold-rolled to obtain the final plate thickness. In addition, some steels were further subjected to intermediate annealing and secondary cold rolling. The manufacturing process conditions are also shown in Table 2.

【0053】[0053]

【表2】 [Table 2]

【0054】冷間圧延後 890℃にて30s均熱の連続焼鈍
後、焼鈍分離剤を塗布し仕上げ焼鈍した。仕上げ焼鈍の
条件は、窒素25%残部水素の雰囲気中にて 875℃で24h
の均熱後、水素 100%の雰囲気に変えて 950℃にて24h
の均熱とした。平坦化燒鈍後各鋼板から試験片を切出
し、エプスタイン枠を用いて磁気特性を測定した。これ
らの磁気特性の測定結果も表2に併せて示す。
After cold rolling, continuous annealing was performed at 890 ° C. for 30 seconds soaking, and then an annealing separator was applied and finish annealing was performed. The finish annealing conditions are 875 ° C and 24 hours in an atmosphere of 25% nitrogen and the balance hydrogen.
After soaking, the atmosphere was changed to 100% hydrogen and 950 ℃ for 24 hours.
And soaking. After flattening and annealing, a test piece was cut out from each steel sheet, and magnetic properties were measured using an Epstein frame. The measurement results of these magnetic properties are also shown in Table 2.

【0055】試験番号15および20は、冷間圧延前の鋼板
の再結晶部分比率が本発明で定める範囲を外れている。
それらに比較して、他の試験番号の場合はいずれも磁束
密度、鉄損ともすぐれた値を示しており、冷間圧延前の
鋼板の再結晶部分の比率が本発明方法の定める範囲を逸
脱すると磁気特性は劣る結果となることが明らかであ
る。
In Test Nos. 15 and 20, the recrystallized portion ratio of the steel sheet before cold rolling is out of the range defined by the present invention.
In comparison with them, in the case of all other test numbers, magnetic flux density and iron loss both show excellent values, and the ratio of the recrystallized portion of the steel sheet before cold rolling deviates from the range determined by the method of the present invention. It is clear that this results in poor magnetic properties.

【0056】〔実施例3〕表1に示したE鋼のスラブに
より、加熱温度1200℃、FT 820℃、CT 500℃として
熱間圧延し板厚 2.3mmとし、酸洗後 650℃にて 3h焼鈍
した。この鋼板を用いて次に表3に示す温度にて温間圧
延をおこない、0.35mm厚に仕上げ、 850℃、1 min 均熱
の連続焼鈍後、窒素25%残部水素の雰囲気中にて 875℃
で24hの均熱後、水素 100%の雰囲気により 950℃、24
h均熱の仕上げ焼鈍をおこなった。
[Example 3] Using the E steel slabs shown in Table 1, hot rolling was performed at a heating temperature of 1200 ° C, FT 820 ° C and CT 500 ° C to obtain a plate thickness of 2.3 mm, and after pickling for 3 hours at 650 ° C. Annealed. Using this steel sheet, warm rolling was performed at the temperature shown in Table 3 to finish it to a thickness of 0.35 mm, and after continuous annealing at 850 ° C for 1 min soaking, 875 ° C in an atmosphere of 25% nitrogen and the balance hydrogen.
After soaking for 24 h at 950 ° C, 24 hours in an atmosphere of 100% hydrogen.
h Soaking finish annealing was performed.

【0057】なお、試験番号27の場合は 0.9mmに圧延後
900℃にて30sの中間焼鈍をおこない、さらに圧延して
0.35mmとした。この場合の圧延温度はいずれも 235℃
とした。
In the case of test number 27, after rolling to 0.9 mm
Intermediate annealing is performed at 900 ° C for 30 s, then rolled
It was 0.35 mm. Rolling temperature in this case is 235 ℃
And

【0058】得られた鋼板の磁気測定結果を表3に併記
するが、通常の冷間圧延に比し温間圧延の適用により、
鉄損および磁束密度共向上していることがわかる。
The magnetic measurement results of the obtained steel sheet are also shown in Table 3. By applying warm rolling as compared with ordinary cold rolling,
It can be seen that both iron loss and magnetic flux density are improved.

【0059】[0059]

【表3】 [Table 3]

【0060】図1は、製品鋼板の鉄損と磁束密度との関
係を示したものである。ここでは、実施例1〜3の結果
の製品鋼板の板厚が0.35mmの場合について、本発明例
と、熱間圧延から最終焼鈍までの製造条件は同じである
が、素材鋼板のC含有量が本発明の定める範囲を外れる
例とを区分して表示してある。これから明らかなよう
に、素材鋼板のC含有量が本発明で定める範囲にある場
合は、極低Cの場合に比較してより鉄損が低く、さらに
温間圧延を適用すれば、より一層鉄損も磁束密度も改善
されることが明らかである。
FIG. 1 shows the relationship between the iron loss of the product steel sheet and the magnetic flux density. Here, the production conditions from the hot rolling to the final annealing are the same as in the case of the present invention for the case where the plate thickness of the product steel sheet as a result of Examples 1 to 3 is 0.35 mm, but the C content of the material steel sheet is the same. Is displayed separately from an example outside the range defined by the present invention. As is clear from this, when the C content of the raw steel sheet is in the range defined by the present invention, the iron loss is lower than that in the case of extremely low C, and further, if warm rolling is applied, the iron content is further improved. It is clear that both loss and magnetic flux density are improved.

【0061】[0061]

【発明の効果】以上の説明から明らかなように、本発明
の製造方法によれば、高Mn系方向性電磁鋼板の製造に
おいて、多少のCを含むスラブを使用することにより、
より磁気特性のすぐれた鋼板をより安定して製造するこ
とが可能になる。
As is clear from the above description, according to the manufacturing method of the present invention, by using a slab containing a small amount of C in the manufacture of a high Mn-type grain-oriented electrical steel sheet,
It becomes possible to more stably manufacture a steel sheet having more excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品鋼板の鉄損(W17/50 )と磁束密度
(B8 )との関係を示す図である。
FIG. 1 is a diagram showing a relationship between iron loss (W 17/50 ) and magnetic flux density (B 8 ) of a product steel sheet.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%にて、C: 0.010%超〜 0.030%、
Si: 1.5〜 4.0%、Mn: 1.0〜5.0%、S:0.01%
以下、sol.Al: 0.003〜0.03%、N:0.0010〜 0.010
%、かつ Si(%)− 0.5×Mn(%)≦ 2.0 ・・・・・・・・ であって、残部はFeおよび不可避的不純物からなる組
成で、両表面から全板厚の10〜70%を再結晶部分とした
鋼板を、1回の冷間圧延、または中間焼鈍を挟む2回の
冷間圧延をおこなって最終板厚とした後、急速加熱して
焼鈍し、次いで 825〜1050℃の温度域にて仕上げ焼鈍す
ることを特徴とする高Mn系方向性電磁鋼板の製造方
法。
1. In weight%, C: more than 0.010% to 0.030%,
Si: 1.5-4.0%, Mn: 1.0-5.0%, S: 0.01%
Below, sol.Al: 0.003 to 0.03%, N: 0.0010 to 0.010
%, And Si (%)-0.5 x Mn (%) ≤ 2.0, with the balance being Fe and inevitable impurities, and the total thickness from 10 to 70 from both surfaces. % Of the recrystallized steel sheet is cold-rolled once or cold-rolled twice with intermediate annealing to obtain the final thickness, then rapidly heated and annealed, and then at 825 to 1050 ° C. A method for producing a high Mn-type grain-oriented electrical steel sheet, which comprises performing finish annealing in the temperature range of 1.
【請求項2】請求項1に記載の、両表面から全板厚の10
〜70%を再結晶部分とした鋼板を、1回または中間焼鈍
を挟む2回の圧延をおこなって最終板厚とする際、少な
くとも1回の圧延を50〜 250℃の温度域での温間圧延と
し、その後急速加熱して焼鈍し、次いで 825〜1050℃の
温度域にて仕上げ焼鈍することを特徴とする高Mn系方
向性電磁鋼板の製造方法。
2. The total plate thickness of 10 from both surfaces according to claim 1.
When the steel sheet with 70% to 70% recrystallized is rolled once or twice with intermediate annealing to obtain the final thickness, at least one rolling is performed in a temperature range of 50 to 250 ° C. A method for producing a high Mn-type grain-oriented electrical steel sheet, which comprises rolling, followed by rapid heating and annealing, and then finish annealing in a temperature range of 825 to 1050 ° C.
【請求項3】熱間圧延工程の仕上げ温度(FT:℃)
と、巻取り温度(CT:℃)とを下記の式および式
を満足させることにより、冷間圧延前に両表面から全板
厚の10〜70%を再結晶部分とした鋼板にすることを特徴
とする、請求項1または請求項2の高Mn系方向性電磁
鋼板の製造方法。 1250−(2/3)×FT≦CT≦1300−(2/3)×FT ・・ 780≦FT≦ 930 ・・・・・・・・・・・・・・・
3. Finishing temperature in hot rolling process (FT: ° C.)
And the coiling temperature (CT: ° C.) satisfy the following formulas and formulas to make a steel sheet with 10 to 70% of the total plate thickness from both surfaces before re-rolling. The method for producing a high Mn-type grain-oriented electrical steel sheet according to claim 1 or 2, which is characterized. 1250- (2/3) × FT ≦ CT ≦ 1300- (2/3) × FT ··· 780 ≦ FT ≦ 930 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
【請求項4】熱間圧延の巻取り温度を 600℃以下とし、
得られたコイルを脱スケール後、 625〜 950℃の温度域
で焼鈍して、冷間圧延前に両表面から全板厚の10〜70%
を再結晶部分とした鋼板にすることを特徴とする、請求
項1または請求項2の高Mn系方向性電磁鋼板の製造方
法。
4. A coiling temperature of hot rolling is set to 600 ° C. or lower,
After descaling the obtained coil, it is annealed in the temperature range of 625 to 950 ℃, and 10 to 70% of the total thickness from both surfaces before cold rolling.
3. The method for producing a high Mn-based grain-oriented electrical steel sheet according to claim 1 or 2, wherein the steel sheet is a recrystallized portion.
JP7321664A 1995-12-11 1995-12-11 Production of grain oriented silicon steel sheet Pending JPH09157747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7321664A JPH09157747A (en) 1995-12-11 1995-12-11 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7321664A JPH09157747A (en) 1995-12-11 1995-12-11 Production of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH09157747A true JPH09157747A (en) 1997-06-17

Family

ID=18135037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7321664A Pending JPH09157747A (en) 1995-12-11 1995-12-11 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH09157747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152387A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Grain oriented silicon steel sheet having excellent magnetic characteristic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152387A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Grain oriented silicon steel sheet having excellent magnetic characteristic
US8177920B2 (en) 2004-11-30 2012-05-15 Jfe Steel Corporation Grain-oriented electrical steel sheet and process for producing the same

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
JPH0885825A (en) Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0121851B2 (en)
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH09157747A (en) Production of grain oriented silicon steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JPH10273725A (en) Manufacture of grain oriented silicon steel sheet
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH10158740A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties