JPH09157091A - Production of 4h type single-crystalline silicon carbide - Google Patents

Production of 4h type single-crystalline silicon carbide

Info

Publication number
JPH09157091A
JPH09157091A JP31995995A JP31995995A JPH09157091A JP H09157091 A JPH09157091 A JP H09157091A JP 31995995 A JP31995995 A JP 31995995A JP 31995995 A JP31995995 A JP 31995995A JP H09157091 A JPH09157091 A JP H09157091A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
impurity
type single
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31995995A
Other languages
Japanese (ja)
Other versions
JP3590464B2 (en
Inventor
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Kozo Onoe
浩三 尾上
Hirokatsu Yashiro
弘克 矢代
Masatoshi Kanetani
正敏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18116164&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09157091(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31995995A priority Critical patent/JP3590464B2/en
Publication of JPH09157091A publication Critical patent/JPH09157091A/en
Application granted granted Critical
Publication of JP3590464B2 publication Critical patent/JP3590464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high-quality large-sized 4H type single-crystalline SiC with high reproducibility by introducing a specified amt. of an impurity at the positions of C atoms when single-crystalline SiC is grown by a sublimation- recrystallization method using a seed crystal. SOLUTION: An SiC substrate 1 as a seed crystal is fixed on the inside of the lid 4 of a crucible 3 and this crucible 3 is filled with SiC powder whose particle diameter is preferably >=150μm as starting material 2. The crucible 3 is then coated with graphite felt 7, put on a graphite support rod 6 and disposed in a double quartz tube 5. This tube 5 is evacuated and electric current is supplied to a work coil 8 to increase the temp. of the starting material 2 to about 2,000 deg.C. Atmospheric gas contg. N used as an impurity is then allowed to flow into the tube 5 and single-crystalline SiC is grown by a sublimation- recrystallization method. The impurity is introduced at the positions of C atoms by >=5×10<18> cm<-3> and the objective 4H type single-crystalline SiC is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶炭化珪素の
製造方法に係わり、特に、青色発光ダイオードや電子デ
バイスなどの基板ウェハとなる良質で大型の単結晶イン
ゴットの成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single crystal silicon carbide, and more particularly to a method for growing a large-sized single crystal ingot of good quality which is used as a substrate wafer for blue light emitting diodes and electronic devices.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は耐熱性及び機械的
強度も優れ、放射線に強いなどの物理的、化学的性質か
ら耐環境性半導体材料として注目されている。6H型の
炭化珪素結晶は室温で約3eVの禁制帯幅を持ち、青色
発光ダイオード材料として用いられている。また、4H
型の単結晶炭化珪素は、高い電子移動度を有し、高周波
高耐圧電子デバイスへの適用が期待されている。しかし
ながら、大面積を有する高品質の単結晶炭化珪素を、工
業的規模で安定に供給し得る結晶成長技術は、いまだ確
立されていない。それゆえ、炭化珪素は、上述のような
多くの利点及び可能性を有する半導体材料にもかかわら
ず、その実用化が阻まれていた。
2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material due to its physical and chemical properties such as excellent heat resistance and mechanical strength and resistance to radiation. A 6H type silicon carbide crystal has a band gap of about 3 eV at room temperature and is used as a blue light emitting diode material. Also, 4H
Type single crystal silicon carbide has high electron mobility and is expected to be applied to high frequency and high breakdown voltage electronic devices. However, a crystal growth technique capable of stably supplying a high-quality single crystal silicon carbide having a large area on an industrial scale has not yet been established. Therefore, silicon carbide has been hampered in practical use despite the semiconductor material having many advantages and possibilities as described above.

【0003】従来、研究室程度の規模では、例えば昇華
再結晶法(レーリー法)で単結晶炭化珪素を成長させ、
半導体素子の作製が可能なサイズの単結晶炭化珪素を得
ていた。しかしながら、この方法では、得られた単結晶
の面積が小さく、その寸法及び形状を高精度に制御する
ことは困難である。また、炭化珪素が有する結晶多形及
び不純物キャリア濃度の制御も容易ではない。また、化
学気相成長法(CVD法)を用いて珪素(Si)等など
の異種基板上にヘテロエピタキシャル成長させることに
より立方晶の単結晶炭化珪素を成長させることも行われ
ている。この方法では、大面積の単結晶は得られるが、
基板との格子不整合が約20%もあること等により多く
の欠陥を含む(〜107 cm-2)単結晶炭化珪素しか成
長させることができず、高品質の単結晶炭化珪素を得る
ことは容易でない。
Conventionally, on a laboratory scale, for example, single crystal silicon carbide is grown by a sublimation recrystallization method (Rayleigh method),
A single crystal silicon carbide having a size capable of manufacturing a semiconductor element has been obtained. However, in this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high precision. Further, it is not easy to control the crystal polymorphism and impurity carrier concentration of silicon carbide. In addition, cubic single crystal silicon carbide is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). With this method, a large area single crystal can be obtained,
Due to the fact that the lattice mismatch with the substrate is about 20%, it is possible to grow only single crystal silicon carbide containing many defects (-10 7 cm -2 ), and obtain high quality single crystal silicon carbide. Is not easy.

【0004】これらの問題点を解決するために、種結晶
を用いて昇華再結晶を行う改良型のレーリー法が提案さ
れている(Yu.M. Tairov and V.F. Tsvetkov, Journal
of Crystal Growth vol.52 (1981) pp.146-150)。この
方法では、種結晶を用いているため結晶の核形成過程が
制御でき、また不活性ガスにより雰囲気圧力を数Tor
rから100Torr程度に制御することにより結晶の
成長速度等を再現性良くコントロールできる。さらに、
結晶の抵抗率は、不活性ガスからなる雰囲気中に不純物
ガスを添加する、あるいは炭化珪素原料粉末中に不純物
元素あるいはその化合物を混合することにより、制御可
能である。単結晶炭化珪素中の置換型不純物として代表
的なものに、窒素(N型)、ホウ素、アルミニウム(P
型)がある。この内、窒素は単結晶炭化珪素中で炭素原
子位置を、ホウ素、アルミニウムは珪素原子位置を置換
する。
In order to solve these problems, an improved Rayleigh method for sublimation recrystallization using a seed crystal has been proposed (Yu.M. Tairov and VF Tsvetkov, Journal.
of Crystal Growth vol.52 (1981) pp.146-150). In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the atmosphere pressure is controlled to several Torr by the inert gas.
By controlling from r to about 100 Torr, the crystal growth rate and the like can be controlled with good reproducibility. further,
The crystal resistivity can be controlled by adding an impurity gas into an atmosphere of an inert gas or mixing an impurity element or its compound in the silicon carbide raw material powder. Typical substitutional impurities in single crystal silicon carbide include nitrogen (N type), boron, aluminum (P
Type). Of these, nitrogen substitutes carbon atom positions in the single crystal silicon carbide, and boron and aluminum substitute silicon atom positions.

【0005】このように種結晶を用いた昇華再結晶法を
用いれば、結晶多形(ポリタイプ)、形状、及び抵抗率
を制御しながら、大型の単結晶炭化珪素を再現性良く成
長させることができる。
By using the sublimation recrystallization method using a seed crystal as described above, a large single crystal silicon carbide can be reproducibly grown while controlling the crystal polymorph (polytype), the shape, and the resistivity. You can

【0006】[0006]

【発明が解決しようとする課題】上記従来方法で単結晶
炭化珪素を成長した場合、通常の温度条件(摂氏220
0度から2400度)では、W.F.Nippenberg, Philips
Research Reports vol.18 (1963) pp.161-274 に記載さ
れているように、6H型の単結晶炭化珪素が高い確率で
形成されてしまい、高周波高耐圧電子デバイスに適した
4H型の単結晶炭化珪素を得るのは困難である。また、
M.Kanaya et al., Applied Physics Letters vol.58 (1
988) pp.56-58 に、種結晶の温度を低下させ、さらに雰
囲気圧力を低下させることにより結晶成長の過飽和度を
上昇させ、4H型単結晶炭化珪素の形成確率を高める方
法が記載されているが、一般に過飽和度を高めると欠陥
発生の確率も上昇してしまい、やはり好ましくない。ま
た、Yu.M.Tairov et al., Physica Status Solidi vol.
25 (1974) p.349、A. Ito et al., Applied PhysicsLet
ters vol. 65 (1994) pp.1400-1402 に、Sc、Ceと
いった希土類金属を炭化珪素成長表面に供給し、表面エ
ネルギーを変化させ4H型結晶の核発生を促進する方法
が記載されているが、半導体デバイスへの応用を考えた
場合には、これらの重金属の使用は好ましくない。
When a single crystal silicon carbide is grown by the above-mentioned conventional method, the normal temperature condition (220 degrees Celsius) is used.
0 to 2400 degrees), WFNippenberg, Philips
As described in Research Reports vol.18 (1963) pp.161-274, 6H-type single crystal silicon carbide is formed with high probability, and 4H-type single crystal suitable for high-frequency and high-voltage electronic devices. It is difficult to obtain silicon carbide. Also,
M. Kanaya et al., Applied Physics Letters vol.58 (1
988) pp.56-58 describes a method of increasing the supersaturation degree of crystal growth by lowering the temperature of the seed crystal and further lowering the atmospheric pressure to increase the formation probability of 4H type single crystal silicon carbide. However, if the degree of supersaturation is increased, the probability of defect generation also increases, which is also undesirable. In addition, Yu.M.Tairov et al., Physica Status Solidi vol.
25 (1974) p.349, A. Ito et al., Applied PhysicsLet
ters vol. 65 (1994) pp.1400-1402 describes a method of supplying rare earth metals such as Sc and Ce to the growth surface of silicon carbide to change the surface energy and promote nucleation of 4H type crystals. In consideration of application to semiconductor devices, the use of these heavy metals is not preferable.

【0007】本発明は上記事情に鑑みてなされたもので
あり、大型のウェハを切り出せる、欠陥が少なく良質の
4H型単結晶インゴットを再現性良く製造し得る単結晶
炭化珪素の製造方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for producing a single crystal silicon carbide capable of producing a 4H-type single crystal ingot of good quality with small defects and capable of cutting a large-sized wafer with good reproducibility. To do.

【0008】[0008]

【課題を解決するための手段】本発明の単結晶炭化珪素
の製造方法は、炭化珪素からなる原材料を加熱昇華さ
せ、単結晶炭化珪素からなる種結晶上に供給し、この種
結晶上に単結晶炭化珪素を成長する方法において、炭素
原子位置に不純物を5×1018cm-3以上導入すること
を特徴とするものである。
In the method for producing single crystal silicon carbide of the present invention, a raw material made of silicon carbide is heated and sublimated and supplied onto a seed crystal made of single crystal silicon carbide. The method for growing crystalline silicon carbide is characterized by introducing impurities at 5 × 10 18 cm −3 or more at carbon atom positions.

【0009】また本発明においては、前記不純物が窒素
であることを特徴とする。
Further, the present invention is characterized in that the impurity is nitrogen.

【0010】さらに、本発明においては、前記4H型単
結晶炭化珪素の製造方法に用いる炭化硅素原料として、
粒径が150μm以上の炭化珪素粉末を使用することを
特徴とする。
Further, in the present invention, as a silicon carbide raw material used in the method for producing the 4H type single crystal silicon carbide,
A feature is that a silicon carbide powder having a particle size of 150 μm or more is used.

【0011】[0011]

【発明の実施の形態】本発明の製造方法では、炭素原子
位置に不純物を導入することにより、結晶多形を4H型
に制御しようとするものである。炭化珪素の結晶多形と
結晶中の炭素/珪素元素比の関係はTairovらによって調
べられている(Yu.M.Tairov and V.F.Tsvetkov, Progre
ss of Crystal Growth and Characterization vol.4 (1
982) p.111)。一般に、単結晶炭化珪素中の炭素元素と
珪素元素の含有比率は理想的な化学量論比(炭素と珪素
の元素の比が1対1)からずれている。また、この結晶
中の炭素/珪素元素比を増すと、結晶は4H多形をとる
ことが知られている。したがって、4H型単結晶炭化珪
素を得るには、この結晶中炭素/珪素元素比を増加させ
ればよいことになるが、昇華再結晶法で良質な結晶が成
長する温度領域(摂氏2200〜2400度)におい
て、この比を再現性良く制御することは極めて困難であ
る。これは、上記W.F.Nippenbergの論文において、同じ
成長条件下でも僅かな成長条件のゆらぎによって、6H
型と4H型の両方が発生してしまっていることからも理
解される。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, the crystal polymorphism is controlled to the 4H type by introducing impurities at the carbon atom positions. The relationship between the polymorph of silicon carbide and the carbon / silicon element ratio in the crystal has been investigated by Tairov et al. (Yu.M. Tairov and VFTsvetkov, Progre.
ss of Crystal Growth and Characterization vol.4 (1
982) p.111). Generally, the content ratio of carbon element and silicon element in single crystal silicon carbide deviates from the ideal stoichiometric ratio (the ratio of carbon and silicon elements is 1: 1). It is also known that if the carbon / silicon elemental ratio in this crystal is increased, the crystal takes on a 4H polymorph. Therefore, in order to obtain 4H type single crystal silicon carbide, the carbon / silicon element ratio in the crystal should be increased, but it is in the temperature range (2200 to 2400 degrees Celsius) where a good quality crystal grows by the sublimation recrystallization method. It is extremely difficult to control this ratio with good reproducibility. This is due to the slight fluctuation of the growth condition even under the same growth condition in the above WF Nippenberg article, which is 6H.
It can be understood from the fact that both the mold and the 4H type have already occurred.

【0012】本発明では、炭素原子位置に不純物を導入
することにより、この炭素/珪素元素比を実効的に変化
させようというものである。炭素原子位置に導入された
不純物は、結晶中の炭素/珪素元素比を実効的に増加さ
せ、成長温度等の成長条件を大きく変化させることな
く、良質の4H型単結晶炭化珪素の成長を可能とする。
この際、炭素原子位置に不純物を5×1018cm-3
上、より好ましくは5×1019cm-3以上導入する必要
がある。また、導入する不純物の濃度の上限は6×10
20cm-3程度である。これは、不純物濃度が6×1020
cm-3程度を越えると、結晶性が劣化するためである。
In the present invention, the carbon / silicon element ratio is effectively changed by introducing impurities at the carbon atom positions. Impurities introduced at the carbon atom positions effectively increase the carbon / silicon element ratio in the crystal and enable the growth of good quality 4H single crystal silicon carbide without significantly changing the growth conditions such as the growth temperature. And
At this time, it is necessary to introduce impurities at the carbon atom positions of 5 × 10 18 cm −3 or more, more preferably 5 × 10 19 cm −3 or more. The upper limit of the concentration of impurities to be introduced is 6 × 10.
It is about 20 cm -3 . This is because the impurity concentration is 6 × 10 20.
This is because if it exceeds about cm −3 , the crystallinity deteriorates.

【0013】炭素原子位置に導入された5×1018cm
-3以上の不純物は、結晶中の炭素/珪素元素比を実効的
に約0.01%増加させ、4H型の結晶核発生を促進す
る。また、炭素原子位置に入る不純物としては、窒素が
最も望ましい。これは、窒素が元素周期律表上で炭素の
隣に位置し、炭素原子位置に導入された際に、炭素原子
と最も類似した化学的特性を示すためである。
5 × 10 18 cm introduced at the carbon atom position
An impurity of -3 or more effectively increases the carbon / silicon element ratio in the crystal by about 0.01% and promotes generation of 4H-type crystal nuclei. Nitrogen is most desirable as the impurity entering the carbon atom position. This is because nitrogen is located next to carbon on the periodic table of the elements and, when introduced at the carbon atom position, exhibits the chemical properties most similar to those of the carbon atom.

【0014】粒径の大きい(150μm以上)炭化珪素
粉末を原料として使用することは、上記炭素原子位置へ
の不純物導入をより効果的なものにする。これは、粒径
の大きな炭化珪素粉末を使用すると、原料昇華蒸気中の
炭素/珪素元素比が増大するためである。炭化珪素原料
粉末の粒径としては、従来0.010〜3mm程度のも
のが用いられており、粒径が大きくなるに従って、原料
昇華蒸気中の炭素/珪素元素比が0.2から2と一桁程
度増加することが知られている。ただし、この原料昇華
蒸気中の炭素/珪素元素比増大だけでは、4H型炭化珪
素を得ることはできない。なお、使用する炭化珪素粉末
原料の粒径の上限は3mm程度であり、これ以上粒径を
大きくすると充分な昇華蒸気が得られないため好ましく
ない。
The use of a silicon carbide powder having a large particle size (150 μm or more) as a raw material makes the introduction of impurities into the carbon atom positions more effective. This is because the use of silicon carbide powder having a large particle size increases the carbon / silicon element ratio in the raw material sublimation vapor. The particle size of the silicon carbide raw material powder is conventionally about 10 to 3 mm, and as the particle size becomes larger, the carbon / silicon element ratio in the raw material sublimation steam becomes 0.2 to 2, which is a constant. It is known to increase by several orders of magnitude. However, it is not possible to obtain 4H type silicon carbide only by increasing the carbon / silicon element ratio in the raw material sublimation vapor. The upper limit of the particle size of the silicon carbide powder raw material used is about 3 mm, and if the particle size is made larger than this, sufficient sublimation vapor cannot be obtained, which is not preferable.

【0015】また従来、単結晶炭化珪素への不純物の導
入は結晶の電気的特性(伝導型、抵抗率)を変化させる
目的では行われていたが、本発明のように結晶多形(ポ
リタイプ)の制御を目的として用いられたことはない。
Conventionally, the introduction of impurities into single crystal silicon carbide has been carried out for the purpose of changing the electrical characteristics (conductivity type, resistivity) of the crystal. However, as in the present invention, crystal polymorphism (polytype) is used. ) Has never been used for control purposes.

【0016】[0016]

【実施例】以下に、本発明の詳細を実施例に基づき述べ
る。
EXAMPLES The details of the present invention will be described below based on examples.

【0017】図1は、本発明の実施に用いられる製造装
置であり、種結晶を用いた改良型レーリー法によって単
結晶炭化珪素を成長させる装置の一例である。まず、こ
の単結晶成長装置について簡単に説明する。結晶成長
は、種結晶として用いた単結晶炭化珪素基板1の上に、
原料である炭化珪素粉末2を昇華再結晶させることによ
り行われる。種結晶の炭化珪素結晶基板1は、黒鉛製坩
堝3の蓋4の内面に取り付けられる。原料の炭化珪素粉
末2は、黒鉛製坩堝3の内部に充填されている。このよ
うな黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支
持棒6により設置される。黒鉛製坩堝3の周囲には、熱
シールドのための黒鉛製フェルト7が設置されている。
二重石英管5は、真空排気装置13により高真空排気
(10-5Torr以下)でき、かつ内部雰囲気をArガ
ス供給源(不図示)に接続されている配管9を通じてA
rガス用マスフローコントローラ10を介して供給され
るArガスによって圧力制御することができる。また、
二重石英管5の外周には、ワークコイル8が設置されて
おり、高周波電流を流すことにより黒鉛製坩堝3を加熱
し、原料及び種結晶を所望の温度に加熱することができ
る。坩堝温度の計測は、坩堝上部及び下部を覆うフェル
トの中央部に直径2〜4mmの光路を設け坩堝上部及び
下部からの光を取りだし、二色温度計を用いて行う。坩
堝下部の温度を原料温度、坩堝上部の温度を種温度とす
る。さらに、二重石英管5には、不純物(本実施例では
窒素)を供給するために、不純物供給源(不図示)に接
続された配管11と供給する不純物の量を制御するため
の不純物用マスフローコントローラ12が接続されてい
る。
FIG. 1 shows a manufacturing apparatus used for carrying out the present invention, which is an example of an apparatus for growing single crystal silicon carbide by an improved Rayleigh method using a seed crystal. First, the single crystal growth apparatus will be briefly described. Crystal growth is performed on the single crystal silicon carbide substrate 1 used as a seed crystal,
It is performed by subliming and recrystallizing the silicon carbide powder 2 as a raw material. Seed silicon carbide crystal substrate 1 is attached to the inner surface of lid 4 of crucible 3 made of graphite. Silicon carbide powder 2 as a raw material is filled in a crucible 3 made of graphite. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is provided.
The double quartz tube 5 can be evacuated to a high vacuum (10 -5 Torr or less) by a vacuum exhaust device 13, and the internal atmosphere is connected to a pipe 9 connected to an Ar gas supply source (not shown).
The pressure can be controlled by Ar gas supplied via the r-gas mass flow controller 10. Also,
A work coil 8 is installed on the outer periphery of the double quartz tube 5, and a graphite crucible 3 can be heated by passing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured by using a two-color thermometer by providing an optical path with a diameter of 2 to 4 mm at the center of the felt that covers the upper and lower parts of the crucible and extracting light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature. Further, the double quartz tube 5 is provided with a pipe 11 connected to an impurity supply source (not shown) for supplying impurities (nitrogen in this embodiment) and an impurity for controlling the amount of impurities supplied. The mass flow controller 12 is connected.

【0018】次に、この結晶成長装置を用いた単結晶炭
化珪素の製造について実施例を説明する。
Next, an example of the production of single crystal silicon carbide using this crystal growth apparatus will be described.

【0019】まず、種結晶として、成長面方位が<00
01>方向である六方晶系の炭化珪素からなる基板1を
用意した。そして、この基板1を黒鉛製坩堝3の蓋4の
内面に取り付けた。また、黒鉛製坩堝3の内部には、原
料2を充填した。原料の炭化珪素粉末の粒径は200μ
mのものを用いた。炭素原子位置への不純物導入の効果
をより顕著なものにするには、原料の粒径は150μm
以上が望ましい。これは、粒径150μm以下では、原
料昇華蒸気中の炭素/珪素元素比が小さくなってしまう
ためである。
First, as a seed crystal, the growth plane orientation is <00.
A substrate 1 made of hexagonal silicon carbide having a 01> direction was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material 2 was filled in the graphite crucible 3. The particle size of the raw material silicon carbide powder is 200μ
m. In order to make the effect of introducing impurities at the carbon atom position more remarkable, the particle size of the raw material should be 150 μm.
The above is desirable. This is because when the particle size is 150 μm or less, the carbon / silicon element ratio in the raw material sublimation vapor becomes small.

【0020】次いで、原料を充填した黒鉛製坩堝3を、
種結晶を取り付けた蓋4で閉じ、黒鉛製フェルト7で被
覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の
内部に設置した。そして、石英管の内部を真空排気した
後、ワークコイル8に電流を流し原料温度を摂氏200
0度まで上げた。その後、雰囲気ガスとしてArガスに
窒素ガスを7%含んだ混合ガスを流入させ、石英管内圧
力を約600Torrに保ちながら、原料温度を目標温
度である摂氏2400度まで上昇させた。
Next, the graphite crucible 3 filled with the raw materials was
The seed crystal was closed with a lid 4 attached thereto, covered with a graphite felt 7, and then placed on a graphite support rod 6 and placed inside a double quartz tube 5. Then, after evacuating the inside of the quartz tube, an electric current is applied to the work coil 8 to set the raw material temperature to 200 degrees Celsius.
I raised it to 0 degrees. After that, a mixed gas containing 7% of nitrogen gas in Ar gas was introduced as an atmospheric gas, and the raw material temperature was raised to a target temperature of 2400 degrees Celsius while maintaining the internal pressure of the quartz tube at about 600 Torr.

【0021】本実施例では、窒素を、炭素原子位置に導
入される不純物として用いた。なお、本発明を適用した
改良レーリー法における不純物の導入方法としては、
(1)不純物あるいは不純物元素を含有する化合物をガ
スとして導入する方法(本実施例に相当)、(2)不純
物粉末を炭化珪素粉末と混合したものを原料として用い
る方法、(3)事前に炭化珪素粉末と不純物の混合物を
高温で熱処理したものを原料として用いる方法、あるい
は(4)不純物をドープした炭化珪素粉末を原料とする
方法が考えられる。成長圧力である20Torrには約
30分かけて減圧し、その後約20時間成長を続けた。
この際の成長速度は約1mm毎時であった。
In this example, nitrogen was used as an impurity introduced at the carbon atom position. As a method for introducing impurities in the improved Rayleigh method to which the present invention is applied,
(1) A method of introducing a compound containing an impurity or an impurity element as a gas (corresponding to this example), (2) a method of using as a raw material a mixture of an impurity powder and a silicon carbide powder, (3) carbonization in advance A method of using a raw material obtained by heat-treating a mixture of silicon powder and impurities at a high temperature, or (4) a method of using a silicon carbide powder doped with impurities as a raw material can be considered. The pressure was reduced to 20 Torr, which is the growth pressure, over about 30 minutes, and then the growth was continued for about 20 hours.
The growth rate at this time was about 1 mm per hour.

【0022】こうして得られた単結晶炭化珪素を二次イ
オン質量分析法により調べたところ、結晶中に窒素が8
×1018cm-3含有されていることが分かった。また、
ホール測定、容量−電圧特性等の電気測定より窒素原子
はすべて炭素原子位置に導入されていることを確認し
た。得られた結晶をX線回折及びラマン散乱により分析
したところ、4H型の単結晶炭化珪素が成長しているこ
とを確認できた。成長した結晶は種結晶上より成長最表
面まで均一で、高品質の4H型単結晶炭化珪素であっ
た。
When the single crystal silicon carbide thus obtained was examined by secondary ion mass spectrometry, nitrogen was found to be 8 in the crystal.
It was found to contain x10 18 cm -3 . Also,
From electrical measurements such as Hall measurement and capacitance-voltage characteristics, it was confirmed that all nitrogen atoms were introduced at carbon atom positions. When the obtained crystal was analyzed by X-ray diffraction and Raman scattering, it was confirmed that 4H type single crystal silicon carbide was grown. The grown crystal was high quality 4H type single crystal silicon carbide, which was uniform from the seed crystal to the outermost growth surface.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
種結晶を用いた昇華再結晶法による単結晶炭化珪素の製
造方法において、炭素原子位置を置換する不純物を導入
することによって良質の4H型単結晶炭化珪素を再現性
良く成長させることができる。このような4H型単結晶
炭化珪素を成長用基板として用い、気相エピタキシャル
成長法により、この基板上に単結晶炭化珪素薄膜を成長
させれば、電気的特性の優れた高耐圧・耐環境性電子デ
バイスを製作することができる。
As described above, according to the present invention,
In the method for producing single crystal silicon carbide by the sublimation recrystallization method using a seed crystal, good quality 4H type single crystal silicon carbide can be grown with good reproducibility by introducing an impurity substituting a carbon atom position. If such a 4H type single crystal silicon carbide is used as a substrate for growth and a single crystal silicon carbide thin film is grown on this substrate by a vapor phase epitaxial growth method, a high withstand voltage and environment resistant electron with excellent electrical characteristics can be obtained. Devices can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法に用いられる単結晶成長装
置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a single crystal growth apparatus used in a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶炭化珪素基板(種結晶) 2 炭化珪素粉末原料 3 黒鉛製坩堝 4 黒鉛製坩堝蓋 5 二重石英管 6 支持棒 7 黒鉛製フェルト 8 ワークコイル 9 Arガス配管 10 Arガス用マスフローコントローラ 11 不純物ガス配管 12 不純物ガス用マスフローコントローラ 13 真空排気装置 1 Single Crystal Silicon Carbide Substrate (Seed Crystal) 2 Silicon Carbide Powder Raw Material 3 Graphite Crucible 4 Graphite Crucible Lid 5 Double Quartz Tube 6 Support Rod 7 Graphite Felt 8 Work Coil 9 Ar Gas Pipe 10 Ar Mass Flow Controller 11 Impurity gas piping 12 Mass flow controller for impurity gas 13 Vacuum exhaust device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢代 弘克 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 (72)発明者 金谷 正敏 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirokatsu Yashiro 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Nippon Steel Co., Ltd. Technical Development Division (72) Masatoshi Kanaya 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Address: Nippon Steel Corporation, Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 種結晶を用いた昇華再結晶法により単結
晶炭化珪素を成長させる際に、炭素原子位置に不純物を
5×1018cm-3以上導入することを特徴とする4H型
単結晶炭化珪素の製造方法。
1. A 4H type single crystal characterized by introducing impurities at 5 × 10 18 cm −3 or more at a carbon atom position when growing a single crystal silicon carbide by a sublimation recrystallization method using a seed crystal. Manufacturing method of silicon carbide.
【請求項2】 前記不純物が窒素であることを特徴とす
る請求項1記載の4H型単結晶炭化珪素の製造方法。
2. The method for producing 4H type single crystal silicon carbide according to claim 1, wherein the impurity is nitrogen.
【請求項3】 前記4H型単結晶炭化珪素の製造方法に
用いる炭化硅素原料として、粒径が150μm以上の炭
化珪素粉末を使用することを特徴とする請求項1または
2記載の4H型単結晶炭化珪素の製造方法。
3. The 4H type single crystal according to claim 1, wherein silicon carbide powder having a particle size of 150 μm or more is used as a silicon carbide raw material used in the method for producing the 4H type single crystal silicon carbide. Manufacturing method of silicon carbide.
JP31995995A 1995-12-08 1995-12-08 Method for producing 4H type single crystal silicon carbide Expired - Lifetime JP3590464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31995995A JP3590464B2 (en) 1995-12-08 1995-12-08 Method for producing 4H type single crystal silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31995995A JP3590464B2 (en) 1995-12-08 1995-12-08 Method for producing 4H type single crystal silicon carbide

Publications (2)

Publication Number Publication Date
JPH09157091A true JPH09157091A (en) 1997-06-17
JP3590464B2 JP3590464B2 (en) 2004-11-17

Family

ID=18116164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31995995A Expired - Lifetime JP3590464B2 (en) 1995-12-08 1995-12-08 Method for producing 4H type single crystal silicon carbide

Country Status (1)

Country Link
JP (1) JP3590464B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239496A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
WO2010044484A1 (en) 2008-10-15 2010-04-22 新日本製鐵株式会社 Silicon carbide single crystal and silicon carbide single crystal wafer
JP2010270000A (en) * 2010-07-06 2010-12-02 Nippon Steel Corp Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
US8574529B2 (en) 2010-04-26 2013-11-05 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
US8642153B2 (en) 2011-06-07 2014-02-04 Sumitomo Electric Industries, Ltd. Single crystal silicon carbide substrate and method of manufacturing the same
JP2014189419A (en) * 2013-03-26 2014-10-06 Sumitomo Electric Ind Ltd Ingot, silicon carbide substrate, and production method of ingot
CN108070909A (en) * 2016-11-17 2018-05-25 上海新昇半导体科技有限公司 The growing method of crucible, the preparation method of crucible and 4H-SiC crystal
CN113818081A (en) * 2020-06-18 2021-12-21 盛新材料科技股份有限公司 Semi-insulating single crystal silicon carbide block and powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239496A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
WO2010044484A1 (en) 2008-10-15 2010-04-22 新日本製鐵株式会社 Silicon carbide single crystal and silicon carbide single crystal wafer
US9777403B2 (en) 2008-10-15 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Single-crystal silicon carbide and single-crystal silicon carbide wafer
US8574529B2 (en) 2010-04-26 2013-11-05 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
US9725823B2 (en) 2010-04-26 2017-08-08 Sumitomo Electric Industries, Ltd. Silicon carbide crystal and method of manufacturing silicon carbide crystal
JP2010270000A (en) * 2010-07-06 2010-12-02 Nippon Steel Corp Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
US8642153B2 (en) 2011-06-07 2014-02-04 Sumitomo Electric Industries, Ltd. Single crystal silicon carbide substrate and method of manufacturing the same
JP2014189419A (en) * 2013-03-26 2014-10-06 Sumitomo Electric Ind Ltd Ingot, silicon carbide substrate, and production method of ingot
US9546437B2 (en) 2013-03-26 2017-01-17 Sumitomo Electric Industries, Ltd. Ingot, silicon carbide substrate, and method for producing ingot
CN108070909A (en) * 2016-11-17 2018-05-25 上海新昇半导体科技有限公司 The growing method of crucible, the preparation method of crucible and 4H-SiC crystal
CN113818081A (en) * 2020-06-18 2021-12-21 盛新材料科技股份有限公司 Semi-insulating single crystal silicon carbide block and powder

Also Published As

Publication number Publication date
JP3590464B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US5433167A (en) Method of producing silicon-carbide single crystals by sublimation recrystallization process using a seed crystal
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
JP2006290635A (en) Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JPH0455397A (en) Production of alpha-sic single crystal
JP4460236B2 (en) Silicon carbide single crystal wafer
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
TWI785467B (en) Semi-insulating single crystal silicon carbide wafer with high purity and silicon carbide crystal
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
JPH09157092A (en) Production of silicon carbide single crystal
JP2002274994A (en) Method and apparatus of manufacturing silicon carbide single crystal and silicon carbide single crystal ingot
JPH04292499A (en) Production of silicon carbide single crystal
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH06219898A (en) Production of n-type silicon carbide single crystal
JP2005239465A (en) Silicon carbide single crystal production device
JP4585137B2 (en) Method for producing silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term