JPH0915545A - Polarization independent optical control element - Google Patents

Polarization independent optical control element

Info

Publication number
JPH0915545A
JPH0915545A JP15949995A JP15949995A JPH0915545A JP H0915545 A JPH0915545 A JP H0915545A JP 15949995 A JP15949995 A JP 15949995A JP 15949995 A JP15949995 A JP 15949995A JP H0915545 A JPH0915545 A JP H0915545A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
traveling
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15949995A
Other languages
Japanese (ja)
Other versions
JP3250712B2 (en
Inventor
Hiroshi Miyazawa
弘 宮澤
Osamu Mitomi
修 三冨
Kazuto Noguchi
一人 野口
Yasuyuki Inoue
靖之 井上
Shinji Ando
慎治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15949995A priority Critical patent/JP3250712B2/en
Publication of JPH0915545A publication Critical patent/JPH0915545A/en
Application granted granted Critical
Publication of JP3250712B2 publication Critical patent/JP3250712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/17Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity

Abstract

PURPOSE: To make high-speed operation possible with low driving voltage with a small size and without depending on the polarization state of input light by specifying the optical waveguides formed on an optical substrate, a wavelength plate and the lengths of turn-back optical waveguides having reflection layers and traveling-wave type electrodes. CONSTITUTION: The traveling-wave type electrodes 3 are arranged on the optical waveguides 2 formed on the z plate LiNbO3 substrate 1 having an electro-optical effect of, for example, a Mach-Zehunder type optical intensity modulator and the luminous intensity conversion type turn-back optical waveguide parts 10 are formed in the optical waveguides 2. A quarter-wave plate 4 formed with a high-reflection film 5 is joined to the end faces of these waveguide parts by inclining its main axis at 45 deg. with the substrate plane. Interaction regions 13, 14 of the optical waveguides 2 and the traveling-wave type electrodes 3 are formed by the voltage induced by impressing microwaves on the traveling- wave type electrodes 3. The lengths of the optical waveguides 2, the turn-back optical waveguide parts 10 and the traveling-wave type electrodes 3 are set at the lengths at which the effective traveling time of the microwaves and light in the interaction regions 13, 14 nearly coincides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光変調器や光スイッチ
などの光制御素子の中で、小型で駆動電圧が小さく高速
動作が可能で、かつ入力光の偏波状態に依存しない偏波
無依存光制御素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control element such as an optical modulator or an optical switch, which is small in size, has a small driving voltage, can operate at high speed, and is independent of the polarization state of input light. The present invention relates to an independent light control element.

【0002】[0002]

【従来の技術】高速かつ大容量の光伝送システムや、光
交換システムにおいては、高速で駆動するために、駆動
電圧が小さい光制御素子が有用である。この種の光制御
素子の一例としては、光スイッチや位相変調器や、光強
度変調器等があり、基本技術として、プリズムや光ファ
イバを機械的に移動させるメカニカル型、石英系ガラス
導波路等で用いられる熱光学効果型、Ti拡散LiNb
3 導波路等で用いられる電気光学効果型、等に大別さ
れる。この中でメカニカル型や熱光学効果型の光制御素
子は偏波依存性はないが、その応答速度は1msec程
度以上と遅いという問題がある。
2. Description of the Related Art In a high-speed and large-capacity optical transmission system or an optical switching system, an optical control element having a low driving voltage is useful for driving at a high speed. Examples of this type of light control element include an optical switch, a phase modulator, a light intensity modulator, and the like. As a basic technique, a mechanical type that mechanically moves a prism or an optical fiber, a silica-based glass waveguide, or the like. Optical effect type, Ti diffusion LiNb used in
It is roughly classified into an electro-optical effect type used in O 3 waveguides and the like. Among them, the mechanical type and thermo-optical effect type optical control elements do not have polarization dependence, but there is a problem that their response speed is as slow as about 1 msec or more.

【0003】一方、電気光学効果型光制御素子は、応答
速度が極めて速いという特徴を持っている。しかしなが
ら、同じ電圧あるいは電界を印加しても、屈折率変化が
光の偏波方向によって異なり、その動作が偏波方向に依
存したものになってしまうという問題があった。
On the other hand, the electro-optical effect type light control element is characterized by an extremely fast response speed. However, even if the same voltage or electric field is applied, there is a problem that the change in the refractive index differs depending on the polarization direction of light, and the operation becomes dependent on the polarization direction.

【0004】従来の光制御素子としてマッハツェンダ型
光強度変調器の例を、図15および16に示す。図15
は該光強度変調器の透視的に見た平面図であり、図16
は図15のA−A’線に沿う断面図である。
An example of a Mach-Zehnder type light intensity modulator as a conventional light control element is shown in FIGS. FIG.
FIG. 16 is a perspective plan view of the light intensity modulator.
FIG. 16 is a sectional view taken along the line AA ′ of FIG. 15.

【0005】この光強度変調器では、例えば、電気光学
効果を有するz板LiNbO3 基板1に、Ti熱拡散に
より光導波路2が形成されている。この基板1の上には
SiO2 バッファ層8が0.3〜1μm程度形成され、
バッファ層8の上には進行波型電極3が形成されてい
る。進行波型電極3間に給電線11からマイクロ波電圧
Vが供給される。
In this light intensity modulator, for example, an optical waveguide 2 is formed on a z-plate LiNbO 3 substrate 1 having an electro-optic effect by Ti thermal diffusion. A SiO 2 buffer layer 8 having a thickness of about 0.3 to 1 μm is formed on the substrate 1.
The traveling wave electrode 3 is formed on the buffer layer 8. A microwave voltage V is supplied from the power supply line 11 between the traveling wave electrodes 3.

【0006】ここで、強度が一定の入射光6を光導波路
2に入射させると、光はマッハツェンダ干渉計を構成す
るY分岐部9aで二つの光導波路にパワーを分配する。
光導波路2、2と、電極3に印加した電圧とが相互作用
する領域で、その入力電圧に応じて光の屈折率あるいは
位相が変化し、Y分岐部9bで光が干渉し合い出射光7
の強度が変化する。
Here, when the incident light 6 having a constant intensity is incident on the optical waveguide 2, the light is distributed to the two optical waveguides at the Y branch portion 9a which constitutes the Mach-Zehnder interferometer.
In the region where the optical waveguides 2 and 2 interact with the voltage applied to the electrode 3, the refractive index or the phase of the light changes according to the input voltage, and the light beams interfere with each other at the Y branch portion 9b and the emitted light 7
Intensity changes.

【0007】このような光導波路2内では、基板面に垂
直な電界成分を有するTMモードと水平方向に電界成分
を有するTEモードと呼ばれる直交する二つの偏波モー
ドが伝搬する。光導波路2と、電極3に印加した電圧と
が相互作用する領域(領域の長さをLとする)では、光
の伝搬方向をLiNbO3 結晶のx軸方向とし、光導波
路2内における実効的な電界をEzとした場合、TMモ
ードに対する屈折率変化Δn(TM)はTEモードに対
する屈折率変化Δn(TE)の約3倍である。ここで、
駆動電圧Vpと相互作用長Lとは、
In such an optical waveguide 2, two orthogonal polarization modes called a TM mode having an electric field component perpendicular to the substrate surface and a TE mode having an electric field component in the horizontal direction propagate. In the region where the optical waveguide 2 interacts with the voltage applied to the electrode 3 (the length of the region is L), the light propagation direction is set to the x-axis direction of the LiNbO 3 crystal, and the effective optical waveguide 2 When the electric field is Ez, the refractive index change Δn (TM) for the TM mode is about three times the refractive index change Δn (TE) for the TE mode. here,
The drive voltage Vp and the interaction length L are

【0008】[0008]

【数1】 Vp・L=Γ …(1) Γ:光変調器の材質、構造等により決まる定数 で示される関係があるため、従来例においては、TMモ
ードに対する定数ΓをΓ(TM)とし、TEモードに対
する定数ΓをΓ(TE)とすると、
## EQU00001 ## Vp.L = .GAMMA .... (1) .GAMMA .: Since there is a relationship represented by a constant determined by the material and structure of the optical modulator, in the conventional example, the constant .GAMMA. For the TM mode is .GAMMA. , And the constant Γ for the TE mode is Γ (TE),

【0009】[0009]

【数2】 Γ(TE)〜3Γ(TM) …(2) と表記できる。[Expression 2] Γ (TE) to 3Γ (TM) (2)

【0010】この光強度変調器の場合、進行波型電極3
は分布定数回路として構成されているので、理想的には
電気回路的な帯域制限はない。しかし、実際にはマイク
ロ波と光には位相速度差があり、これによって動作周波
数の上限が制限される。
In the case of this light intensity modulator, the traveling wave type electrode 3
Is configured as a distributed constant circuit, so ideally there is no electric circuit band limitation. However, in reality, there is a phase velocity difference between the microwave and light, which limits the upper limit of the operating frequency.

【0011】マイクロ波に対する基板の実効的な屈折率
をnm 、光に対する光導波路の実効的な屈折率をn0
表すと、この位相速度によって生じる上限周波数fv
は、次式で与えられる[参考文献:信学論(C),J6
4−C,p264−271,1981]。
When the effective refractive index of the substrate for microwaves is n m and the effective refractive index of the optical waveguide for light is n 0 , the upper limit frequency f v generated by this phase velocity is shown.
Is given by the following formula [Reference: Theological theory (C), J6
4-C, p264-271, 1981].

【0012】[0012]

【数3】 fv =1.4c/(πL|nm −n0 |) …(3) ただし、cは真空中における光速である。上記屈折率n
m は基板の実効的な比誘電率εeff に対して、
F v = 1.4c / (πL | n m −n 0 |) (3) where c is the speed of light in vacuum. The refractive index n
m is the effective relative permittivity ε eff of the substrate,

【0013】[0013]

【数4】 nm =εeff 1/2 …(4) で与えられる。## EQU4 ## given by n m = ε eff 1/2 (4).

【0014】電気光学効果を持つ基板材料では、一般に
マイクロ波に対する屈折率nm は、光に対する屈折率n
0 とは必ずしも一致しない。基板の実効的な比誘電率ε
effは、構造や材質によって異なるが、従来例において
はnm が3.2程度の値となる。
In a substrate material having an electro-optical effect, the refractive index n m for microwaves is generally the refractive index n for light.
Does not necessarily match 0 . Effective relative permittivity of substrate ε
eff varies depending on the structure and the material, but in the conventional example, nm has a value of about 3.2.

【0015】図17は、図15、図16の光強度変調器
において、電極の長さ(相互作用長)を20mmとした
場合に、波長1.3μmにおいて得られた特性の一例で
ある。光がON/OFFするのに要する電圧(駆動電
圧)はVp(TM)が5Vであるのに対し、Vp(T
E)は15Vであった。これは、上述した(1)式およ
び(2)式の関係から推定される値と一致している。な
お、周波数帯域としては、TMモードの屈折率n0 (T
M)=2.15、TEモードの屈折率n0 (TE)=
2.22で、屈折率nm は屈折率n0 の約1.5倍の大
きさになるので、式(3)から7GHz程度になる。
FIG. 17 shows an example of characteristics obtained at a wavelength of 1.3 μm in the light intensity modulator shown in FIGS. 15 and 16 when the electrode length (interaction length) is 20 mm. The voltage (driving voltage) required to turn on / off the light is Vp (TM) of 5V, while Vp (TM) is 5V.
E) was 15V. This agrees with the value estimated from the relationships of the above-described expressions (1) and (2). As the frequency band, the TM mode refractive index n 0 (T
M) = 2.15, TE mode refractive index n 0 (TE) =
At 2.22, the refractive index n m is about 1.5 times as large as the refractive index n 0 , so that it is about 7 GHz from the formula (3).

【0016】[0016]

【発明が解決しようとする課題】しかしながら、上記従
来例によれば、TMおよびTEモードとも同時にON/
OFFする場合には、電圧がそれぞれ0Vおよび15V
において達成されるため、駆動電圧として最低15V必
要であり、高速で動作させる場合に駆動電源にとって大
きな負担となる。
However, according to the above conventional example, both the TM and TE modes are simultaneously turned on / off.
When turned off, the voltage is 0V and 15V respectively
In order to achieve this, a minimum drive voltage of 15 V is required, which imposes a heavy burden on the drive power supply when operating at high speed.

【0017】また、光強度変調器の高速動作化は、上記
(3)式から明らかなように、動作周波数に応じて、相
互作用長Lを短くすることにより達成できるものの、相
互作用長Lを短くすると、上記(1)式で示されるよう
に、駆動電圧が大きくなるという欠点があった。
Further, as is apparent from the above equation (3), the high speed operation of the optical intensity modulator can be achieved by shortening the interaction length L according to the operating frequency, but the interaction length L is reduced. When the length is shortened, there is a drawback that the driving voltage becomes large as shown in the above formula (1).

【0018】さらに、両モードのOFF電圧がずれる
と、消光比劣化が生じてしまい、システム上許容される
消光比を確保できなくなることが予想される。
Further, if the OFF voltages of both modes are deviated, the extinction ratio is deteriorated, and it is expected that the extinction ratio allowed in the system cannot be secured.

【0019】本発明の課題は、上述した従来の問題点を
解消し、低駆動電圧で高速動作が可能な、小型で入力光
の偏波状態に依存しない偏波無依存光制御素子を提供す
ることにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a small polarization independent optical control element which can operate at high speed with a low driving voltage and which does not depend on the polarization state of input light. Especially.

【0020】[0020]

【課題を解決するための手段】上記課題を達成するた
め、本発明の請求項1の偏波無依存光制御素子は、電気
光学効果を有する光学基板と、該光学基板の表面付近に
形成された光導波路と、該光導波路が形成された前記光
学基板面上に配置された進行波型電極とを備え、前記電
極にマイクロ波を印加して誘起される電圧により前記光
導波路と前記電極との相互作用領域が形成される偏波無
依存光制御素子であって、波長板および反射層を有する
とともに光偏波面を実質的に90°前後回転して折り返
す折り返し部を前記光導波路の少なくとも一ケ所に具備
し、かつ前記光導波路、前記折り返し光導波路および前
記進行波型電極の長さを、前記相互作用部におけるマイ
クロ波と光との実効的な走行時間がほぼ一致する長さ
に、設定したことを特徴とする。
In order to achieve the above object, the polarization-independent light control element according to claim 1 of the present invention is formed on an optical substrate having an electro-optical effect and near the surface of the optical substrate. Optical waveguide and a traveling wave type electrode arranged on the surface of the optical substrate on which the optical waveguide is formed, and the optical waveguide and the electrode are formed by a voltage induced by applying a microwave to the electrode. Is a polarization-independent light control element in which an interaction region of the optical waveguide is formed. The optical waveguide, the folded optical waveguide, and the traveling-wave electrode, which are provided at a certain position, are set to have a length at which the effective traveling time of the microwave and the light in the interaction portion is substantially the same. Special feature To.

【0021】また、本発明の請求項2の偏波無依存光制
御素子は、電気光学効果を有する光学基板と、該光学基
板の表面付近に形成された光導波路と、該光導波路が形
成された前記光学基板面上に配置された進行波型電極と
を備え、前記電極にマイクロ波を印加して誘起される電
圧により前記光導波路と前記電極との相互作用領域が形
成される偏波無依存光制御素子であって、波長板および
反射層を有するとともに光偏波面を実質的に90°前後
回転して折り返す折り返し部を前記光導波路の少なくと
も一ケ所に具備し、かつ前記光導波路、前記折り返し光
導波路および前記進行波型電極の長さを、直交する伝搬
光モードの前記相互作用部におけるマイクロ波の実効的
な電圧の総和がほぼ一致する長さに、設定したことを特
徴とする。
According to a second aspect of the polarization independent light control element of the present invention, an optical substrate having an electro-optical effect, an optical waveguide formed near the surface of the optical substrate, and the optical waveguide are formed. And a traveling wave type electrode disposed on the surface of the optical substrate, and a non-polarized wave in which an interaction region between the optical waveguide and the electrode is formed by a voltage induced by applying a microwave to the electrode. A dependent light control element, which comprises a turnback portion having a wave plate and a reflection layer and turning back and forth a light polarization plane substantially at 90 ° back and forth in at least one position of the light guide, and the light guide, It is characterized in that the lengths of the folded optical waveguide and the traveling wave type electrode are set to such a length that the total sum of the effective voltages of the microwaves in the interaction portion of the orthogonal propagating light modes substantially coincides with each other.

【0022】本発明の請求項3の偏波無依存性光制御素
子は、前記請求項2の光制御素子において、進行波型電
極を二つ以上に分割したことを特徴とする。
A polarization-independent light control element according to a third aspect of the present invention is characterized in that, in the light control element according to the second aspect, the traveling wave type electrode is divided into two or more.

【0023】本発明の請求項4の偏波無依存光制御素子
は、前記請求項2または3に記載の光制御素子におい
て、光導波路の折り返し部を二つ以上具備したことを特
徴とする。
A polarization-independent light control element according to a fourth aspect of the present invention is characterized in that, in the light control element according to the second or third aspect, two or more folded portions of the optical waveguide are provided.

【0024】本発明の請求項5の偏波無依存光制御素子
は、前記請求項2ないし4のいずれかに記載の光制御素
子において、光導波路、折り返し光導波路および進行波
型電極の長さを、相互作用部におけるマイクロ波と光と
の実効的な走行時間がほぼ一致する長さに、設定したこ
とを特徴とする。
A polarization-independent light control element according to a fifth aspect of the present invention is the light control element according to any one of the second to fourth aspects, wherein the lengths of the optical waveguide, the folded optical waveguide and the traveling wave type electrode are the same. Is set to a length at which the effective traveling times of the microwave and the light in the interaction section are substantially equal to each other.

【0025】[0025]

【作用】本発明によれば、光導波路の折り返し部におい
て、波長板により偏波方向を90°回転させて反射させ
ることでTEモードとTMモードが変換されるので、入
射時にTEおよびTMモードであった入射光が、分岐後
再び合波するまでに受ける位相変化は同じになり、偏波
依存性がなくなる。また、電気光学効果を有する光学基
板の大きさには制限があるが、本発明のように光導波路
を折り返すと相互作用長を長くすることができ、駆動電
圧を非常に低減することができる。また、折り返し部で
電極と光導波路の長さに差を設けることができるので、
マイクロ波と光の位相速度差を補償することができ、従
来より高速動作を行うことが可能となる。また、同じ駆
動電圧に対して全素子長を短くすることができるため、
小型化も図ることができる。
According to the present invention, in the folded portion of the optical waveguide, the TE mode and the TM mode are converted by rotating the polarization direction by 90 ° and reflecting by the wave plate. The existing incident light undergoes the same phase change until it is recombined after being split, and the polarization dependence disappears. Further, although the size of the optical substrate having the electro-optical effect is limited, when the optical waveguide is folded back as in the present invention, the interaction length can be increased and the driving voltage can be greatly reduced. Also, since it is possible to provide a difference in length between the electrode and the optical waveguide at the folded portion,
The phase velocity difference between the microwave and the light can be compensated, and the high speed operation can be performed as compared with the conventional case. Also, since the total element length can be shortened for the same drive voltage,
It can be downsized.

【0026】さらに、TEモードとTMモードを2回以
上入れ変えられるので、マイクロ波の伝搬損失によって
生じる各偏波モードの実効的な電圧の不均衡を解消する
ことができ、従って、高速動作においても偏波依存性の
無い特性が得られる。
Further, since the TE mode and the TM mode can be exchanged twice or more, it is possible to eliminate the effective voltage imbalance of each polarization mode caused by the propagation loss of microwaves, and therefore, in high speed operation. Also, the characteristics without polarization dependence can be obtained.

【0027】これらの動作原理は、次の実施例の中で実
際のデバイスに沿ってより具体的に説明する。
These operating principles will be described more specifically along with actual devices in the following embodiments.

【0028】[0028]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0029】(実施例1)図1は、本発明による偏波無
依存光制御素子として、マッハツェンダ型光強度変調器
の第1の実施例を説明するための平面図であり、図2は
図1のA−A′線に沿う拡大断面図である。
(Embodiment 1) FIG. 1 is a plan view for explaining a first embodiment of a Mach-Zehnder type optical intensity modulator as a polarization independent light control element according to the present invention, and FIG. It is an expanded sectional view which follows the AA 'line of FIG.

【0030】本実施例では、図15および16に示した
従来例と同様に電気光学効果を有するz板LiNbO3
基板1上にTi熱拡散法により光導波路2を形成してい
る。この光導波路2には、光度変換型折り返し光導波路
部10が形成されている。光導波路2上に進行波型電極
3を配置している。光導波路2を伝搬する光が電極3に
よる吸収損失を少なくするために、例えばSiO2 でバ
ッファ層8を基板1と電極3との間に1μm程度形成し
ている。進行波型電極3に給電線11からマイクロ波電
圧Vが供給される。
In this example, a z-plate LiNbO 3 having an electro-optical effect similar to the conventional example shown in FIGS. 15 and 16 was used.
The optical waveguide 2 is formed on the substrate 1 by the Ti thermal diffusion method. In this optical waveguide 2, a light intensity conversion type folded optical waveguide portion 10 is formed. A traveling wave electrode 3 is arranged on the optical waveguide 2. In order to reduce the absorption loss of the light propagating through the optical waveguide 2 due to the electrode 3, the buffer layer 8 is formed of, for example, SiO 2 between the substrate 1 and the electrode 3 by about 1 μm. The microwave voltage V is supplied to the traveling wave electrode 3 from the power supply line 11.

【0031】図3に、第1の実施例の光路変換型折り返
し光導波路部10の端部近傍の拡大一部断面視した平面
図の一例を示す。研磨等で形成した光路変換型光導波路
の折り返し部10の端部に、片側に高反射膜5を形成し
た1/4波長板4を、その主軸が基板面と45°となる
ように傾けて接合した。ここで、波長板4は、(2n+
1)/4波長板(nは0以上の整数)でもよい。また、
光導波路端部と波長板4との屈折率不整合による不要な
反射光を除去するため、光導波路端部と波長板4との間
に反射防止膜を形成している。なお、波長板4の厚さ
は、厚い程損失が大きくなるため、薄い方が望ましい。
FIG. 3 shows an example of a plan view of an enlarged partial cross-sectional view of the vicinity of the end of the optical path conversion type folded optical waveguide portion 10 of the first embodiment. At the end of the folded portion 10 of the optical path conversion type optical waveguide formed by polishing or the like, a quarter wavelength plate 4 having a high reflection film 5 formed on one side is tilted so that its main axis is at 45 ° to the substrate surface. Joined. Here, the wave plate 4 is (2n +
1) / 4 wavelength plate (n is an integer of 0 or more) may be used. Also,
An antireflection film is formed between the end portion of the optical waveguide and the wavelength plate 4 in order to remove unnecessary reflected light due to the refractive index mismatch between the end portion of the optical waveguide and the wavelength plate 4. It should be noted that the thickness of the wave plate 4 is preferably thin because the loss increases as the thickness increases.

【0032】次に、上記構成による光強度変調器の動作
について説明する。
Next, the operation of the light intensity modulator having the above structure will be described.

【0033】強度が一定の入射光を光導波路2に入射さ
せると、光はマッハツェンダ干渉計を構成するY分岐部
9aで二つの光導波路にパワーを分配する。光導波路2
と電極3とが第1の相互作用領域(PQ間:長さL1 )
13でその入力信号に応じて光の屈折率あるいは位相が
変化する。折り返し部10において、光が45°傾いた
1/4波長板4を往復するため、実効的に1/2波長板
を通過したことと同じになり、TMモードがTEモード
へ、TEモードがTMモードへ変換される。第2の相互
作用領域(RS間:長さL2 )14を経てY分岐部9b
で光が合波する。ここで、L1 とL2 が等しい場合(L
=L1 =L2 )、分岐してから合波するまでの間に、異
なる入射光モードが受ける位相変化が等しくなり、各モ
ードとも二つの光導波路間の屈折率変化を同じように受
ける。従って、各入射モードとも同じ電圧において合波
部(Y分岐部9b)で干渉し合い出射光7の強度が変化
する。
When incident light having a constant intensity is incident on the optical waveguide 2, the light is distributed to the two optical waveguides at the Y branch portion 9a which constitutes the Mach-Zehnder interferometer. Optical waveguide 2
And the electrode 3 are the first interaction area (between PQ: length L1)
At 13, the refractive index or phase of light changes according to the input signal. In the folding part 10, the light reciprocates the quarter-wave plate 4 inclined by 45 °, which is the same as effectively passing through the half-wave plate, and the TM mode is changed to the TE mode and the TE mode is changed to the TM mode. Converted to mode. The second branching region 9b via the second interaction region (RS: length L 2 ) 14
The light is combined at. Here, if L1 and L 2 is equal to (L
= L1 = L 2), until multiplexing from the branch, different incident light mode the phase change is equal to undergo, undergoing a change in refractive index between the two optical waveguides in the same way in each mode. Therefore, in each incident mode, the same voltage causes interference at the combining portion (Y branch portion 9b) and the intensity of the emitted light 7 changes.

【0034】ここで、図15、図16で示した従来構造
におけるTMモード(TEモード)における駆動電圧を
Vp(TM)(Vp(TE))とすると、駆動電圧Vp
(TM+TE)は、
Here, assuming that the driving voltage in the TM mode (TE mode) in the conventional structure shown in FIGS. 15 and 16 is Vp (TM) (Vp (TE)), the driving voltage Vp
(TM + TE) is

【0035】[0035]

【数5】 Vp(TM+TE)=(2/(1/Vp(TM)+1/Vp(TE)) =2Vp(TM)Vp(TE)/(Vp(TM+Vp(TE)) …(5) で与えられる。この時、相互作用長LとTMモード(T
Eモード)に対するΓ(TM)(Γ(TE))は、従来
構造の値とほぼ同じとする。
[Equation 5] Vp (TM + TE) = (2 / (1 / Vp (TM) + 1 / Vp (TE)) = 2Vp (TM) Vp (TE) / (Vp (TM + Vp (TE))… (5) At this time, the interaction length L and the TM mode (T
Γ (TM) (Γ (TE)) for E mode) is almost the same as that of the conventional structure.

【0036】一方、TMモードとTEモード光の平均的
な実効屈折率をn0 、マイクロ波の実効的な屈折率をn
m 、QR間に実効的な光導波路の長さをL3 、QR間の
実効的な電極の長さをL3 ′とした時に、
On the other hand, the average effective refractive index of TM mode and TE mode light is n 0 , and the effective refractive index of microwaves is n.
When the effective optical waveguide length between m and QR is L 3 and the effective electrode length between QR is L 3 ′,

【0037】[0037]

【数6】 nm (L1 +L3 ′)=n0 (L1 +L3 ) …(6) の関係が成り立つように設定すると、P点におけるマイ
クロ波と光の各位相面が、R点においても一致する。つ
まり、相互作用部における実効的な走行時間を一致させ
ることができる。従って、上限周波数は前記(3)式の
LをL1 とした値となる。図15、図16の光制御素子
の相互作用長Lと図1の光制御素子の相互作用長L1 を
等しくすると、周波数帯域は同じとなり、かつ上記で示
したように入射光の偏波モードに依存せずに駆動電圧を
低減することができる。
[Equation 6] If the relationship of n m (L1 + L 3 ′) = n 0 (L1 + L 3 ) ... (6) is established, each phase plane of the microwave and light at the point P is also at the R point. Match. That is, it is possible to match the effective travel times in the interaction units. Therefore, the upper limit frequency is a value where L in the equation (3) is L1. If the interaction length L of the light control element of FIGS. 15 and 16 and the interaction length L1 of the light control element of FIG. 1 are made equal, the frequency bands become the same, and as described above, the polarization mode of the incident light is changed. The drive voltage can be reduced without depending on it.

【0038】なお、上記(6)式から僅かにずれた場合
でも、低電圧化、高速動作化等に大きな影響は与えな
い。
Even if the equation (6) is slightly deviated, it does not have a great influence on the reduction of the voltage and the increase of the operation speed.

【0039】図4は、全相互作用長を40mmとして、
波長1.3μmの光を用いたときの印加電圧に対する光
出力特性である。ここで、横軸は電極に印加した電圧を
縦軸に出射光強度を示す。駆動電圧は3.8Vであり、
入射光の偏波によらず同じ特性を示すことがわかる。図
15、図16で示した従来例におけるVp(TM)=5
V、Vp(TE)=15Vの値から、上記(5)式を用
いて駆動電圧Vp(TM+TE)を推定した値と良く一
致していることがわかる。よって、本発明による構成に
よって偏波無依存光強度変調器は、従来の構成によるも
のと比較して1/4程度の駆動電圧ですむことになる。
また、周波数帯域は図15、図16の従来例と同程度で
あった。さらに、入射光の偏波に対してON/OFF電
圧が一致しているため、消光比劣化はほとんとない。
FIG. 4 shows that the total interaction length is 40 mm,
It is a light output characteristic with respect to an applied voltage when light having a wavelength of 1.3 μm is used. Here, the horizontal axis represents the voltage applied to the electrodes and the vertical axis represents the intensity of emitted light. The drive voltage is 3.8V,
It can be seen that the same characteristics are exhibited regardless of the polarization of the incident light. Vp (TM) = 5 in the conventional example shown in FIGS.
From the values of V and Vp (TE) = 15V, it can be seen that the values are in good agreement with the values obtained by estimating the drive voltage Vp (TM + TE) using the above equation (5). Therefore, with the configuration according to the present invention, the polarization-independent optical intensity modulator requires a driving voltage of about 1/4 as compared with the conventional configuration.
Further, the frequency band was about the same as that of the conventional example shown in FIGS. Further, since the ON / OFF voltage matches the polarized wave of the incident light, the extinction ratio is hardly deteriorated.

【0040】このように、本発明の光強度変調器は、偏
波依存性を無くし、かつその駆動電圧を従来より大幅に
低減することができ、またマイクロ波と光の位相速度差
を補償することができるため高速動作を実現することが
できる。
As described above, the optical intensity modulator of the present invention can eliminate the polarization dependence, can drastically reduce the drive voltage thereof, and can compensate the phase velocity difference between the microwave and the light. Therefore, high-speed operation can be realized.

【0041】(実施例2)図5は、2×2光スイッチと
した本発明の第2の実施例である。図1と同一構成要素
には同一符号を付して説明を簡略化した。図1の第1の
実施例のY分岐部9a,9bを2×2カプラ部15に置
き換えた2×2光スイッチの構成となっている。2×2
カプラは部15、方向性結合器やX分岐等で構成し、各
偏波に対してそれぞれ3dBとなるように設定してあ
る。
(Embodiment 2) FIG. 5 shows a second embodiment of the present invention in which a 2 × 2 optical switch is used. The same components as those in FIG. 1 are designated by the same reference numerals to simplify the description. The configuration is a 2 × 2 optical switch in which the Y branch units 9a and 9b of the first embodiment of FIG. 1 are replaced with a 2 × 2 coupler unit 15. 2x2
The coupler is composed of the unit 15, the directional coupler, the X branch, and the like, and is set to be 3 dB for each polarized wave.

【0042】以上の実施例では、マイクロ波と光の速度
不整合による帯域制限が主要因で、マイクロ波の伝搬に
伴う損失が無視できるような場合を示した。
In the above-mentioned embodiments, the case where the loss due to the propagation of microwaves can be neglected is mainly due to the band limitation due to the speed mismatch between microwaves and light.

【0043】一方、マイクロ波と光の速度不整合によ
り、マイクロ波の伝搬に伴う損失が帯域制限の主要因と
なる場合は、TMモードとTEモードの全相互作用領域
で受ける実効的な電圧の総和が異なり、偏波依存性が生
じてしまう問題がある。
On the other hand, when the loss due to the propagation of microwaves is the main factor of band limitation due to the speed mismatch between microwaves and light, the effective voltage received in the entire interaction region of TM mode and TE mode is There is a problem that the total sum is different and polarization dependence occurs.

【0044】(実施例3)図6は、マイクロ波の伝搬損
失が無視できない場合の本発明の第3の実施例である。
図中、図1および図5と同一構成要素には同一符号を付
して説明を簡略化した。第1のマイクロ波給電線16と
第2のマイクロ波給電線17からの入力は、P点におけ
るマイクロ波と光の各位相面が、R点においても一致す
るように、P点からR点までの光の到達時間Δtだけ遅
延時間を有する。図7は、マイクロ波と光速度が一致し
た場合におけるマイクロ波の伝搬距離に対する実効的な
電圧(パワー)を示している。電圧は伝搬距離に対して
指数関数的に減衰する。特に周波数が高い場合、図1に
示す第1の実施例では、図8で示すように光が受ける実
効的な電圧の総和が入射偏波モードによって異なってく
る。図9は、図6において、第1,第2のマイクロ波の
パワーを同じ値に設定した場合の光が受ける実効的な電
圧の距離依存性を示している。これにより、マイクロ波
の伝搬損失による高周波領域におけるPQ間の実効的な
電圧とRS間の実効的な電圧を一致させることができる
ため、DCあるいは低周波動作だけでなく高周波動作に
おいても偏波依存性をなくすことができる。
(Embodiment 3) FIG. 6 shows a third embodiment of the present invention when the propagation loss of microwaves cannot be ignored.
In the figure, the same components as those in FIGS. 1 and 5 are designated by the same reference numerals to simplify the description. The inputs from the first microwave feed line 16 and the second microwave feed line 17 are from the P point to the R point so that the microwave and light phase planes at the P point also match at the R point. The light has a delay time of Δt. FIG. 7 shows the effective voltage (power) with respect to the propagation distance of the microwave when the light velocity matches the microwave. The voltage decays exponentially with propagation distance. Particularly when the frequency is high, in the first embodiment shown in FIG. 1, the total effective voltage received by the light varies depending on the incident polarization mode, as shown in FIG. FIG. 9 shows the distance dependence of the effective voltage received by the light when the powers of the first and second microwaves are set to the same value in FIG. As a result, the effective voltage between the PQ and the effective voltage between the RS in the high frequency region due to the propagation loss of the microwave can be made to coincide with each other, so that the polarization dependence is achieved not only in the DC or low frequency operation but also in the high frequency operation. You can eliminate the sex.

【0045】(実施例4)図10は、マイクロ波の伝搬
損失が無視できない場合の光路変換型折り返し光導波路
部10を2ケ所用いて相互作用部を2回折り返しとした
本発明の第4の実施例を示す図である。本実施例では第
1の相互作用領域(PQ間)13+第3の相互作用領域
(TU間)18の長さと第2の相互作用領域(RS間)
14の長さを等しくしている。図11は、入射偏波モー
ド光が受ける実効的な電圧の距離依存性を示している。
PQ間およびTU間の電圧の総和とRS間の電圧の総和
を等しくするように各領域の長さを設定すれば、入射の
各モード光が受ける実効的な電圧をほぼ等しくすること
ができるため、DCあるいは低周波領域だけでなく、高
周波領域においても偏波依存性をなくすことができる。
なお、繰り返し回数を3回以上行ってもよい。また、速
度不整合が問題とならない場合には、上記相互作用領域
の長さは限定されない。
(Embodiment 4) FIG. 10 shows a fourth embodiment of the present invention in which the optical path conversion type folded optical waveguide portion 10 is used in two places and the interaction portion is folded back twice when the propagation loss of the microwave cannot be ignored. It is a figure which shows an Example. In this embodiment, the length of the first interaction area (between PQ) 13 + the third interaction area (between TUs) 18 and the second interaction area (between RSs).
The lengths of 14 are made equal. FIG. 11 shows the distance dependence of the effective voltage received by the incident polarization mode light.
By setting the length of each region so that the sum of the voltages between PQ and TU and the sum of the voltages between RS are equal, the effective voltage received by each incident mode light can be made substantially equal. , It is possible to eliminate the polarization dependence not only in the DC or low frequency region but also in the high frequency region.
The number of repetitions may be three or more. Further, the length of the interaction region is not limited if the velocity mismatch does not matter.

【0046】(変形例)図12、図13、図14は、前
記第1,第2,第3および第4の実施例における光路変
換型折り返し光導波路部の端部近傍の他の構成を示す図
である。図12、図13は角度θの光導波路402と光
導波路端部403で構成され、光導波路端部に取り付け
られた波長板4の周囲にはこの波長板4を取り付けるた
めの溝19が形成されている。また図14は光導波路2
が端部近傍で3dBカプラを形成し、カプラ部20を光
が波長板4を通して往復することにより光路が変換され
る構造である。
(Modification) FIGS. 12, 13 and 14 show another structure near the end of the optical path conversion type folded optical waveguide portion in the first, second, third and fourth embodiments. It is a figure. 12 and 13 are composed of an optical waveguide 402 having an angle θ and an optical waveguide end 403, and a groove 19 for attaching the wavelength plate 4 is formed around the wavelength plate 4 attached to the optical waveguide end. ing. FIG. 14 shows the optical waveguide 2
Forms a 3 dB coupler in the vicinity of the end portion, and the optical path is converted by the light traveling back and forth through the coupler portion 20 through the wave plate 4.

【0047】これら実施例では、Ti熱拡散法による光
導波路について説明したが、例えばイオン交換法等によ
り形成してもよい。また、リッジ型光導波路としてもよ
い。さらに、光導波路として直線導波路を用いることに
よって位相変調器を構成することができる。また、バッ
ファ層材料についてもSiO2 の場合について説明した
が、アルミナやテフロン等の誘電体や半絶縁体を用いて
もよい。進行波型電極としてCPW電極について説明し
たが、ACPS電極等の電極構造を用いてもよい。
Although the optical waveguides by the Ti thermal diffusion method are described in these embodiments, they may be formed by, for example, the ion exchange method. Further, it may be a ridge type optical waveguide. Furthermore, a phase modulator can be constructed by using a linear waveguide as the optical waveguide. Although the case of using SiO 2 as the buffer layer material has been described, a dielectric material such as alumina or Teflon or a semi-insulating material may be used. Although the CPW electrode has been described as the traveling-wave electrode, an electrode structure such as an ACPS electrode may be used.

【0048】以上では、z板LiNbO3 基板中の電気
光学効果を用いた光制御素子について実施例を示してき
たが、個の他にx板やy板のLiNbO3 基板や、他の
強誘電体をはじめ、半導体や有機物などの異方性を有す
る基板の電気光学効果を用いた光制御素子にも本発明の
構成は非常に有効であることは言うまでもない。
In the above, the examples of the light control element using the electro-optic effect in the z-plate LiNbO 3 substrate have been shown. However, in addition to the above, an x-plate or y-plate LiNbO 3 substrate or another ferroelectric substance is used. It goes without saying that the configuration of the present invention is very effective not only for the body but also for the light control element using the electro-optical effect of the substrate having anisotropy such as semiconductors and organic substances.

【0049】[0049]

【発明の効果】以上説明したように、電気光学効果を有
する光学基板と、該光学基板の表面付近に形成された光
導波路と、かつ該光導波路が形成された前記光学基板面
上に配置された進行波型電極とを備え、前記電極にマイ
クロ波を印加して誘起される電圧により前記光導波路と
前記電極との相互作用領域が形成される偏波無依存光制
御素子であって、波長板および反射層を有するとともに
光偏波面を実質的に90°前後回転して折り返す折り返
し部を前記光導波路の少なくとも一ケ所に具備し、また
相互作用部におけるマイクロ波と光との実効的な走行時
間あるいは電圧がほぼ一致するように、該光導波路や該
折り返し光導波路の長さや繰り返し数、および前記進行
波型電極の長さや分割数を設定することにより、入力光
の偏波状態によらず、相互作用長を長くすることができ
るため、駆動電圧を非常に低減することができる。ま
た、マイクロ波と光の位相速度差を補償することがで
き、従来より高速動作を行うことが可能となる。また、
同じ駆動電圧に対して全素子長を短くすることができる
ため、小型化も図ることができる。また、マイクロ波の
伝搬損失によって生じる各偏波モードの実効的な電圧の
不均衡を解消することができるため、高速動作において
も偏波依存性の無い特性が得られる。
As described above, the optical substrate having the electro-optical effect, the optical waveguide formed near the surface of the optical substrate, and the optical substrate provided with the optical waveguide are arranged. A polarization-independent light control element having a traveling wave type electrode, wherein an interaction region between the optical waveguide and the electrode is formed by a voltage induced by applying a microwave to the electrode, At least one portion of the optical waveguide is provided with a folded portion having a plate and a reflective layer and substantially rotating the plane of polarization of light by about 90 ° back and forth, and the microwave and light effectively travel in the interaction portion. By setting the length and the number of repetitions of the optical waveguide and the folded optical waveguide, and the length and the number of divisions of the traveling wave type electrode so that the time or the voltage is substantially the same, the polarization state of the input light is changed. , It is possible to increase the interaction length can be greatly reduced driving voltage. Further, it is possible to compensate for the phase velocity difference between the microwave and the light, and it is possible to perform a higher speed operation than in the past. Also,
Since the total element length can be shortened for the same drive voltage, miniaturization can be achieved. Further, since it is possible to eliminate the effective voltage imbalance in each polarization mode caused by the propagation loss of microwaves, it is possible to obtain the characteristic without polarization dependence even in high-speed operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光制御素子としてマッハツェンダ強度光変調器
とした本発明の第1の実施例の平面図である。
FIG. 1 is a plan view of a first embodiment of the present invention in which a Mach-Zehnder intensity optical modulator is used as a light control element.

【図2】図1のA−A′線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.

【図3】第1の実施例における折り返し光導波路端部近
傍の平面図である。
FIG. 3 is a plan view of the vicinity of an end portion of a folded optical waveguide in the first embodiment.

【図4】図1に示すマッハツェンダ強度光変調器の電極
に電圧を印加した場合の光出力特性図である。
4 is a light output characteristic diagram when a voltage is applied to the electrodes of the Mach-Zehnder intensity optical modulator shown in FIG.

【図5】2×2光スイッチとした本発明の第2の実施例
の平面図である。
FIG. 5 is a plan view of a second embodiment of the present invention which is a 2 × 2 optical switch.

【図6】マイクロ波の伝搬損失が無視できない場合の本
発明の第3の実施例の平面図である。
FIG. 6 is a plan view of a third embodiment of the present invention when the propagation loss of microwaves cannot be ignored.

【図7】マイクロ波の伝搬損失がある場合のマイクロ波
電圧(パワー)の伝搬距離依存性を示す図である。
FIG. 7 is a diagram showing the propagation distance dependence of microwave voltage (power) when there is microwave propagation loss.

【図8】図1に示す第1の実施例における入射偏波モー
ド光が受ける実効的な電圧の距離依存性を示す図であ
る。
8 is a diagram showing the distance dependence of the effective voltage received by the incident polarization mode light in the first example shown in FIG.

【図9】図6に示す実施例における入射偏波モード光が
受ける実効的な電圧の距離依存性を示す図である。
9 is a diagram showing the distance dependence of the effective voltage received by the incident polarization mode light in the embodiment shown in FIG.

【図10】マイクロ波の伝搬損失が無視できない場合の
光路変換型折り返し光導波路を2回用いた本発明の第4
の実施例の平面図である。
FIG. 10 is a fourth example of the present invention in which an optical path conversion type folded optical waveguide is used twice when the propagation loss of microwaves cannot be ignored.
It is a top view of an Example of.

【図11】入射偏波モード光が受ける実効的な電圧の距
離依存性を示す図である。
FIG. 11 is a diagram showing distance dependence of an effective voltage received by incident polarization mode light.

【図12】第1,第2,第3および第4の実施例におけ
る折り返し光導波路端部近傍の変形例を示す平面図であ
る。
FIG. 12 is a plan view showing a modified example near the folded optical waveguide end portion in the first, second, third and fourth embodiments.

【図13】図12のA−A′線に沿う断面図である。13 is a cross-sectional view taken along the line AA ′ of FIG.

【図14】第1,第2,第3および第4の実施例におけ
る折り返し光導波路端部近傍の他の変形例を示す平面図
である。
FIG. 14 is a plan view showing another modified example near the end of the folded optical waveguide in the first, second, third and fourth examples.

【図15】従来のマッハツェンダ型強度光変調器の一例
を示す平面図である。
FIG. 15 is a plan view showing an example of a conventional Mach-Zehnder type intensity optical modulator.

【図16】図15のA−A′線に沿う断面図である。16 is a sectional view taken along the line AA ′ in FIG.

【図17】図15に示す従来のマッハツェンダ強度光変
調器の電極に電圧を印加した場合の光出力特性図であ
る。
17 is an optical output characteristic diagram when a voltage is applied to the electrodes of the conventional Mach-Zehnder intensity optical modulator shown in FIG.

【符号の説明】[Explanation of symbols]

1 LiNbO3 基板 2 光導波路 3 進行波型電極 4 薄膜型1/4波長板 5 高反射膜 6 入射光 7 出射光 8 SiO2 バッファ層 9a、9b マッハツェンダ干渉計を構成する光導波路
のY分岐部 10 折り返し型光導波路部 11 マイクロ波給電線 12 終端抵抗 13 第1の相互作用領域 14 第2の相互作用領域 15 2×2カプラ部 16 マイクロ波給電線 17 マイクロ波給電線 18 第3の相互作用領域 19 溝 20 3dBカプラ部 402 光導波路 403 光導波路端部
1 LiNbO 3 Substrate 2 Optical Waveguide 3 Traveling Wave Type Electrode 4 Thin Film Type 1/4 Wave Plate 5 High Reflection Film 6 Incident Light 7 Emitted Light 8 SiO 2 Buffer Layers 9a, 9b Y Branch of Optical Waveguide Constituting Mach-Zehnder Interferometer 10 Folded-type Optical Waveguide Section 11 Microwave Feed Line 12 Terminating Resistor 13 First Interaction Area 14 Second Interaction Area 15 2 × 2 Coupler Section 16 Microwave Feed Line 17 Microwave Feed Line 18 Third Interaction Area 19 Groove 20 3 dB Coupler 402 Optical Waveguide 403 Optical Waveguide End

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 靖之 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 安藤 慎治 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Inoue 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Shinji Ando 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する光学基板と、該光
学基板の表面付近に形成された光導波路と、該光導波路
が形成された前記光学基板面上に配置された進行波型電
極とを備え、前記電極にマイクロ波を印加して誘起され
る電圧により前記光導波路と前記電極との相互作用領域
が形成される偏波無依存光制御素子であって、 波長板および反射層を有するとともに光偏波面を実質的
に90°前後回転して折り返す折り返し部を前記光導波
路の少なくとも一ケ所に具備し、かつ前記光導波路、前
記折り返し光導波路および前記進行波型電極の長さを、
前記相互作用部におけるマイクロ波と光との実効的な走
行時間がほぼ一致する長さに、設定したことを特徴とす
る偏波無依存光制御素子。
1. An optical substrate having an electro-optical effect, an optical waveguide formed near the surface of the optical substrate, and a traveling wave type electrode arranged on the optical substrate surface on which the optical waveguide is formed. A polarization-independent light control element comprising an interaction region between the optical waveguide and the electrode formed by a voltage induced by applying a microwave to the electrode, which has a wave plate and a reflection layer. The optical waveguide is provided with a folded-back portion which is rotated substantially 90 ° about back and forth at at least one portion of the optical waveguide, and the lengths of the optical waveguide, the folded optical waveguide and the traveling wave type electrode are
A polarization-independent light control element, characterized in that the effective traveling time of the microwave and light in the interaction section is set to substantially match.
【請求項2】 電気光学効果を有する光学基板と、該光
学基板の表面付近に形成された光導波路と、該光導波路
が形成された前記光学基板面上に配置された進行波型電
極とを備え、前記電極にマイクロ波を印加して誘起され
る電圧により前記光導波路と前記電極との相互作用領域
が形成される偏波無依存光制御素子であって、 波長板および反射層を有するとともに光偏波面を実質的
に90°前後回転して折り返す折り返し部を前記光導波
路の少なくとも一ケ所に具備し、かつ前記光導波路、前
記折り返し光導波路および前記進行波型電極の長さを、
直交する伝搬光モードの前記相互作用部におけるマイク
ロ波の実効的な電圧の総和がほぼ一致する長さに、設定
したことを特徴とする偏波無依存光制御素子。
2. An optical substrate having an electro-optical effect, an optical waveguide formed near the surface of the optical substrate, and a traveling wave type electrode arranged on the optical substrate surface on which the optical waveguide is formed. A polarization-independent light control element comprising an interaction region between the optical waveguide and the electrode formed by a voltage induced by applying a microwave to the electrode, which has a wave plate and a reflection layer. The optical waveguide is provided with a folded-back portion which is rotated substantially 90 ° about back and forth at at least one portion of the optical waveguide, and the lengths of the optical waveguide, the folded optical waveguide and the traveling wave type electrode are
A polarization-independent light control element, characterized in that the lengths are set so that the total sum of the effective voltages of the microwaves in the interaction portion of the orthogonal propagation light modes is substantially the same.
【請求項3】 前記進行波型電極を二つ以上に分割した
ことを特徴とする請求項2に記載の偏波無依存光制御素
子。
3. The polarization independent light control element according to claim 2, wherein the traveling wave electrode is divided into two or more.
【請求項4】 前記光導波路の折り返し部を二つ以上具
備したことを特徴とする請求項2または3に記載の偏波
無依存光制御素子。
4. The polarization independent optical control element according to claim 2, further comprising two or more folded portions of the optical waveguide.
【請求項5】 前記光導波路、前記折り返し光導波路お
よび前記進行波型電極の長さを、前記相互作用部におけ
るマイクロ波と光との実効的な走行時間がほぼ一致する
長さに、設定したことを特徴とする請求項2ないし4の
いずれかに記載の偏波無依存光制御素子。
5. The lengths of the optical waveguide, the folded optical waveguide, and the traveling-wave electrode are set so that the effective traveling times of the microwave and the light in the interaction section are substantially the same. The polarization-independent light control element according to any one of claims 2 to 4, wherein
JP15949995A 1995-06-26 1995-06-26 Polarization independent light control element Expired - Fee Related JP3250712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15949995A JP3250712B2 (en) 1995-06-26 1995-06-26 Polarization independent light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15949995A JP3250712B2 (en) 1995-06-26 1995-06-26 Polarization independent light control element

Publications (2)

Publication Number Publication Date
JPH0915545A true JPH0915545A (en) 1997-01-17
JP3250712B2 JP3250712B2 (en) 2002-01-28

Family

ID=15695109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15949995A Expired - Fee Related JP3250712B2 (en) 1995-06-26 1995-06-26 Polarization independent light control element

Country Status (1)

Country Link
JP (1) JP3250712B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105894A (en) * 1995-07-07 1997-04-22 Koninkl Ptt Nederland Nv Polarization-independent optical device
US5886807A (en) * 1997-01-24 1999-03-23 California Institute Of Technology Traveling-wave reflective electro-optic modulator
JP2005099554A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Reflection type optical modulator
WO2006067578A1 (en) * 2004-12-20 2006-06-29 Schlumberger Technology B.V. Methods and apparatus for single fiber optical telemetry
JP2006259543A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Optical device
WO2007013128A1 (en) * 2005-07-25 2007-02-01 Fujitsu Limited Semiconductor chip module
JP2007094440A (en) * 2007-01-11 2007-04-12 Fujitsu Ltd Optical waveguide, optical device, and method for manufacturing the optical waveguide
GB2452505A (en) * 2007-09-05 2009-03-11 Univ Kent Canterbury Optical external modulator and method of modulating a light beam
US7995872B2 (en) 2007-02-14 2011-08-09 Ngk Insulators, Ltd. Optical modulator component and optical modulator
CN108490649A (en) * 2018-03-14 2018-09-04 中国电子科技集团公司第四十四研究所 It is realized using a quarter slide and polarizes unrelated lithium niobate electro-optic phase modulator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105894A (en) * 1995-07-07 1997-04-22 Koninkl Ptt Nederland Nv Polarization-independent optical device
US5886807A (en) * 1997-01-24 1999-03-23 California Institute Of Technology Traveling-wave reflective electro-optic modulator
JP2005099554A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Reflection type optical modulator
JP4519436B2 (en) * 2003-09-26 2010-08-04 住友大阪セメント株式会社 Reflective light modulator
GB2437430A (en) * 2004-12-20 2007-10-24 Schlumberger Holdings Methods and apparatus for single fiber optical telemetry
WO2006067578A1 (en) * 2004-12-20 2006-06-29 Schlumberger Technology B.V. Methods and apparatus for single fiber optical telemetry
US7515774B2 (en) 2004-12-20 2009-04-07 Schlumberger Technology Corporation Methods and apparatus for single fiber optical telemetry
JP2006259543A (en) * 2005-03-18 2006-09-28 Fujitsu Ltd Optical device
JP4555715B2 (en) * 2005-03-18 2010-10-06 富士通株式会社 Optical device
JPWO2007013128A1 (en) * 2005-07-25 2009-02-05 富士通株式会社 Semiconductor chip module
US7536066B2 (en) 2005-07-25 2009-05-19 Fujitsu Limited Semiconductor chip module
WO2007013128A1 (en) * 2005-07-25 2007-02-01 Fujitsu Limited Semiconductor chip module
JP4603581B2 (en) * 2005-07-25 2010-12-22 富士通株式会社 Semiconductor chip module
JP2007094440A (en) * 2007-01-11 2007-04-12 Fujitsu Ltd Optical waveguide, optical device, and method for manufacturing the optical waveguide
US7995872B2 (en) 2007-02-14 2011-08-09 Ngk Insulators, Ltd. Optical modulator component and optical modulator
JP5421595B2 (en) * 2007-02-14 2014-02-19 日本碍子株式会社 Traveling wave type optical modulator
GB2452505A (en) * 2007-09-05 2009-03-11 Univ Kent Canterbury Optical external modulator and method of modulating a light beam
CN108490649A (en) * 2018-03-14 2018-09-04 中国电子科技集团公司第四十四研究所 It is realized using a quarter slide and polarizes unrelated lithium niobate electro-optic phase modulator

Also Published As

Publication number Publication date
JP3250712B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US4157860A (en) Dual polarization electromagnetic switch and modulator
US4291939A (en) Polarization-independent optical switches/modulators
US7088875B2 (en) Optical modulator
US7058241B2 (en) Optical modulator
KR100472056B1 (en) Polarization-independent optical polymeric intensity modulator
JP3250712B2 (en) Polarization independent light control element
Burns et al. Broad-band reflection traveling-wave LiNbO 3 modulator
WO2007058366A1 (en) Optical waveguide device
WO1985001123A1 (en) High switching frequency optical waveguide switch, modulator, and filter devices
JP2000028979A (en) Optical control element independent of polarization
JPH07325276A (en) Polarization-independent optical control element
JP4703158B2 (en) Light control element
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPH04355714A (en) Optical control element
US6980706B2 (en) Waveguide optical modulator
US5530777A (en) Optical modulation device
JP3020340B2 (en) Optical waveguide type optical device
JPH05241115A (en) Waveguide type optical device
JP3031394B2 (en) Transmission wavelength control method
JPH09185025A (en) Optical control element
WO2023176055A1 (en) Optical modulator
JP2848455B2 (en) Waveguide type optical device
JP2898066B2 (en) Optical device
KR19980073463A (en) Integrated Optical Reflective Optical Modulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees