JPH09153364A - Electrode for battery and manufacture thereof - Google Patents

Electrode for battery and manufacture thereof

Info

Publication number
JPH09153364A
JPH09153364A JP8236570A JP23657096A JPH09153364A JP H09153364 A JPH09153364 A JP H09153364A JP 8236570 A JP8236570 A JP 8236570A JP 23657096 A JP23657096 A JP 23657096A JP H09153364 A JPH09153364 A JP H09153364A
Authority
JP
Japan
Prior art keywords
sheet
resin
skeleton
foamed resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8236570A
Other languages
Japanese (ja)
Inventor
Tamaki Iida
玉樹 飯田
Masaki Kasashima
匡樹 笠嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP8236570A priority Critical patent/JPH09153364A/en
Publication of JPH09153364A publication Critical patent/JPH09153364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To easily fill a pasty active material and a catalyst and increase the filling factor by boring the skeleton inside of a spongy metal sheet substrate having a three-dimensionally continued structure, and making the surface smooth. SOLUTION: For manufacturing a spongy metal sheet substrate having a three-dimensionally continued structure (three-dimensional meshy structure), a needle-like resin existing on the skeleton surface of a sheet-like foam resin or a film-like resin blocking a skeleton section is removed by the low- temperature plasma process, and the skeleton surface is conductively processed. A feed electrode is stuck to the surface of the sheet-like foam resin in a plating bath, it is traveled as a negative electrode, and metal plating is applied on one or both faces of the resin to form a conductive layer. The foam resin is sintered and removed to manufacture the metal sheet substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はスポンジ状の金属シ
ートを基板とする電池用電極及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery electrode using a sponge-like metal sheet as a substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、携帯電話等の各種電子機器の普及
が著しく、その電源として円筒型密閉電池が注目されて
いる。その結果、省エネルギーの観点から高密度、低コ
ストの二次電池の要望が高まっている。これら二次電池
の主流はアルカリ電池(例えばニッケル水素蓄電池)で
あり、電極基板としてはスポンジ状の金属シートが注目
されている(特開昭57−52429号公報、特開昭6
1−42377号公報、特開昭62−54235号公
報、特開昭63−81767号公報参照)。このスポン
ジ状金属シートは、三次元網目状構造を有する発泡樹脂
を基材として金属メッキ処理したものであり、その骨格
部に活物質ペーストを直接充填した後、成形して電極と
するものである。ここで、スポンジ状金属シートの状態
において基材である発泡樹脂の骨格部の一部が膜で覆わ
れ塞がっていたり、発泡樹脂の骨格表面に針状又は樹枝
状突起があったりすると(図3参照)、この樹脂から作
製したスポンジ状金属シートには活物質や触媒がスムー
ズに充填されず、充填率が低下する。更に、活物質ペー
ストを充填し、成形した電池用電極をセパレーターをは
さんで円筒型に捲回する時、これら針状又は樹枝状突起
がセパレーターを破損し、正極と負極が短絡するなどに
より、電池の寿命を短くしてしまう場合がある。また、
スポンジ状金属シートの製造において、金属メッキ後の
焼結中に金属メッキ層の一部が酸化される過程を経るた
め、この酸化された部分の強度低下が原因で、破損が生
じ電極として利用できる有効面積をもったスポンジ状金
属シートを容易に得ることが困難であった。
2. Description of the Related Art In recent years, various electronic devices such as mobile phones have been remarkably spread, and a cylindrical sealed battery has been attracting attention as a power source thereof. As a result, there is an increasing demand for high-density, low-cost secondary batteries from the viewpoint of energy saving. The mainstream of these secondary batteries is an alkaline battery (for example, nickel-hydrogen storage battery), and a sponge-like metal sheet is drawing attention as an electrode substrate (Japanese Patent Laid-Open Nos. 57-52429 and 6-62).
1-42377, JP-A-62-54235, JP-A-63-81767). This sponge-like metal sheet is obtained by metal-plating a foamed resin having a three-dimensional network structure as a base material, and after directly filling the skeleton of the active material paste with the active material paste, it is formed into an electrode. . Here, in the state of the sponge-like metal sheet, if a part of the skeleton of the foamed resin as the base material is covered with a film and is covered, or if the skeleton surface of the foamed resin has needle-like or dendrites (FIG. 3). However, the sponge-like metal sheet made of this resin is not smoothly filled with the active material and the catalyst, and the filling rate is reduced. Further, when the active material paste is filled and the molded battery electrode is wound into a cylindrical shape with a separator interposed therebetween, these needle-shaped or dendrites damage the separator, and the positive electrode and the negative electrode are short-circuited. It may shorten the battery life. Also,
In the production of a sponge-like metal sheet, a part of the metal plating layer is oxidized during the sintering after the metal plating, so that the strength of the oxidized part is reduced, so that the metal plate is damaged and can be used as an electrode. It has been difficult to easily obtain a sponge-like metal sheet having an effective area.

【0003】[0003]

【発明が解決しようとする課題】このような問題点を解
決するため、本発明ではスポンジ状金属シートの基材で
ある三次元網目状構造を有する発泡樹脂の、骨格表面よ
り出ている針状樹脂、樹枝状樹脂又は骨格部を覆い塞ぐ
膜状部分を取り去るとともに、樹脂の骨格表面に親水性
を付与し、かつ焼結処理時の強度低下を抑えることで、
電池用電極として有益な集電体を提供することを課題と
した。
In order to solve such a problem, according to the present invention, a needle-like resin protruding from the skeleton surface of a foamed resin having a three-dimensional network structure which is a base material of a sponge-like metal sheet. By removing the resin, the dendritic resin, or the film-like portion that covers the skeleton, and imparting hydrophilicity to the skeleton surface of the resin, and suppressing the decrease in strength during sintering,
It was an object to provide a useful current collector as a battery electrode.

【0004】[0004]

【課題を解決するための手段】前記課題は本発明により
解決される。すなわち本発明は、三次元的に連続した構
造を有するスポンジ状金属シートを基板とし、該シート
内に活物質を充填したスポンジ状金属シートからなる電
池用電極において、前記スポンジ状金属シート基板の骨
格内部が連通し、かつ表面が平滑である電池用電極を高
い収率で得ることを要旨とするものである。
The above problems are solved by the present invention. That is, the present invention provides a battery electrode comprising a sponge-like metal sheet having a three-dimensionally continuous structure as a substrate, and a sponge-like metal sheet having an active material filled in the sheet, and a skeleton of the sponge-like metal sheet substrate. The gist of the invention is to obtain a battery electrode having a smooth interior and a smooth surface, with a high yield.

【0005】詳しくは、三次元網目状構造を有するシー
ト状発泡樹脂の骨格表面を導電化処理し、次いで金属メ
ッキを施した後、発泡樹脂を焼結除去してなる電池用電
極の製造方法において、上記シート状発泡樹脂の骨格表
面の針状樹脂、樹枝状樹脂または骨格部を塞いでいる膜
状樹脂を、低温プラズマ処理により予め灰化し、取り除
き、さらに、該シート状発泡樹脂の骨格表面を導電化処
理した後、メッキ浴内で該シート状発泡樹脂の表面に給
電電極を密接させ、これを陰極として走行させ、該シー
ト状発泡樹脂の片面または両面に金属メッキを施して、
金属メッキ層を形成し、次いで該発泡樹脂を焼結除去す
る製造方法を要旨とするものである。以下に本発明を更
に具体的に説明する。
More specifically, in a method for producing a battery electrode, the skeleton surface of a sheet-like foamed resin having a three-dimensional network structure is subjected to a conductivity treatment, then metal plating is applied, and then the foamed resin is sintered and removed. The acicular resin on the skeleton surface of the sheet-like foamed resin, the dendritic resin or the film-like resin blocking the skeleton is previously ashed by low-temperature plasma treatment and removed, and the skeleton surface of the sheet-like foamed resin is further removed. After the conductive treatment, the sheet-shaped foamed resin is brought into close contact with the surface of the sheet-shaped foamed resin in the plating bath, and this is run as a cathode, and one or both surfaces of the sheet-shaped foamed resin are subjected to metal plating,
The gist is a manufacturing method in which a metal plating layer is formed and then the foamed resin is sintered and removed. Hereinafter, the present invention will be described more specifically.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態について以下
に述べる。本発明に使われる基体である三次元網目状構
造を有する発泡樹脂シートにはポリウレタン樹脂、ポリ
エステル樹脂、塩化ビニル樹脂、ポリスチレン樹脂、ポ
リプロピレン樹脂等の樹脂が用いられ、好ましくは、ポ
リウレタン樹脂、ポリプロピレン樹脂を用いるとよい。
発泡樹脂は三次元網目構造を有しているので、空隙率を
85〜99vol %、好ましくは90〜98vol %の樹脂がよい。
空隙率を85vol %未満にすると発泡樹脂の骨格部が太く
なって、スポンジ状金属シートにした後、ペースト状活
物質を充填する際、空隙率が大きくなるため好ましくな
い。また99vol %を超えると、発泡樹脂の骨格部が細い
ため、スポンジ状金属シートにした時、機械的強度が不
足するので好ましくないスポンジ状発泡樹脂が得られ
る。
Embodiments of the present invention will be described below. A resin such as polyurethane resin, polyester resin, vinyl chloride resin, polystyrene resin, polypropylene resin or the like is used for the foamed resin sheet having a three-dimensional network structure, which is the substrate used in the present invention, preferably polyurethane resin, polypropylene resin. Should be used.
Since the foamed resin has a three-dimensional network structure,
85-99 vol%, preferably 90-98 vol% resin is good.
When the porosity is less than 85 vol%, the skeleton of the foamed resin becomes thick, and when the paste-like active material is filled after forming the sponge-like metal sheet, the porosity becomes large, which is not preferable. On the other hand, if it exceeds 99 vol%, the skeleton of the foamed resin is thin, and the mechanical strength is insufficient when a sponge-like metal sheet is used, so that an unfavorable sponge-like foamed resin is obtained.

【0007】前記発泡樹脂シートの骨格表面の針状樹
脂、樹枝状樹脂又は骨格部を塞いでいる膜状樹脂を除去
するために、本発明では低温プラズマ処理を施す。低温
プラズマ処理は、具体的には周波数100kHz〜100MHzの高
周波数を印加する。用いるガスは酸素ガス、空気、塩
素、アンモニアがよく、特に樹脂表面に親水性を持たせ
るには空気、酸素ガスを用いるのが好ましい。圧力は0.
05〜0.4Torr 、好ましくは 0.1〜0.2Torr とする。圧力
が0.05Torr未満、または0.4Torr を超えると、共にプラ
ズマ未発生となる問題がある。電力は10〜200 W、好ま
しくは50〜150 Wを印加するとよい。10W未満では未処
理部分が多く発生する問題があり、200 Wを超えると基
材が焼けるという問題がある。さらに、発泡樹脂シート
の温度は10〜50℃、好ましくは20〜30℃とし、発泡樹脂
シートの形状により異なるが 0.5〜5分、好ましくは
0.5〜2分間低温プラズマ処理を行うと、発泡樹脂の骨
格表面の針状樹脂、樹枝状樹脂又は骨格部を塞いでいる
膜状樹脂が灰化され、本発明の特徴である骨格部に突起
のないスポンジ状発泡樹脂を得る。
In order to remove the needle-like resin, the dendritic resin or the film-like resin blocking the skeleton on the skeleton surface of the foamed resin sheet, low temperature plasma treatment is performed in the present invention. Specifically, the low temperature plasma treatment applies a high frequency of 100 kHz to 100 MHz. The gas used is preferably oxygen gas, air, chlorine or ammonia, and it is particularly preferable to use air or oxygen gas in order to make the resin surface hydrophilic. Pressure is 0.
05 to 0.4 Torr, preferably 0.1 to 0.2 Torr. If the pressure is less than 0.05 Torr or exceeds 0.4 Torr, there is a problem that plasma is not generated. The power may be 10 to 200 W, preferably 50 to 150 W. If it is less than 10 W, there is a problem that many untreated parts are generated, and if it exceeds 200 W, there is a problem that the substrate is burnt. Further, the temperature of the foamed resin sheet is set to 10 to 50 ° C., preferably 20 to 30 ° C., and depending on the shape of the foamed resin sheet, 0.5 to 5 minutes, preferably
When the low-temperature plasma treatment is performed for 0.5 to 2 minutes, the acicular resin, the dendritic resin or the film-like resin that covers the skeleton of the skeleton surface of the foamed resin is ashed and protrusions are formed on the skeleton, which is a feature of the present invention. No spongy foam resin is obtained.

【0008】次に、このようにして突起を取りのぞいた
骨格部を有するスポンジ状発泡樹脂シートの骨格表面を
導電化処理する。導電性物質はカーボンコロイド、カー
ボン又はニッケルを含ませたアクリル樹脂、具体的には
アクリル樹脂の溶液・エマルジョンを結着剤として用い
た各種粉末の分散液、ニッケルの無電解メッキ等を用
い、好ましくはカーボンコロイド、カーボンを含ませた
アクリル樹脂を用いるとよい。この導電性物質を水、ア
ルコール(メタノール、エタノール等)等に分散させ、
該発泡樹脂シート表面に付与するか、または無電解メッ
キ処理を行う。この際、導電性物質溶液の濃度を 0.5〜
70wt%にして該発泡樹脂シートを 0.5〜5分、好ましく
は1〜2分浸漬させ、バルクとしてのシートの表面抵抗
値を 102〜104Ωとする。
Next, the skeleton surface of the sponge-like foamed resin sheet having the skeleton portion excluding the protrusions in this manner is subjected to a conductive treatment. As the conductive substance, a carbon colloid, an acrylic resin containing carbon or nickel, specifically, a dispersion liquid of various powders using a solution / emulsion of acrylic resin as a binder, electroless plating of nickel, etc. are preferably used. It is preferable to use a carbon colloid or an acrylic resin containing carbon. Disperse this conductive material in water, alcohol (methanol, ethanol, etc.),
It is applied to the surface of the foamed resin sheet or subjected to electroless plating. At this time, the concentration of the conductive substance solution should be 0.5 to
The foamed resin sheet is made to be 70 wt% and immersed for 0.5 to 5 minutes, preferably 1 to 2 minutes, and the surface resistance value of the sheet as a bulk is made 10 2 to 10 4 Ω.

【0009】本発明は、更に該導電性樹脂シートの表面
に金属ニッケルメッキを施すことにより金属メッキ導電
層を形成する。このメッキ処理は、メッキ浴内で該樹脂
シートの表面を給電電極と密着させ、これを該樹脂シー
トよりも大きな陽極に対する陰極として走行させなが
ら、樹脂シートの片面または両表面にメッキ処理を施
す。金属ニッケルメッキとしては、スルファミン酸メッ
キ、ワット浴メッキ、エマルジョンメッキ等が挙げら
れ、その中ではスルファミン酸メッキ、ワット浴メッキ
が好ましい。走向速度はメッキ浴の組成により異なる
が、 0.01 〜1.5m/minとするのがよい。メッキの厚さ
は、電池の種類によっても多少は異なるが、導電材料と
いう点で10〜20μmにするとよく、製造過程で生じる割
れ・欠け等の欠損を少なくするという点で、該樹脂シー
トの端部幅1〜5mmのメッキ厚みを中央部よりも40〜60
%厚くするとよい。メッキ厚みが10μm未満では電流が
表面を流れるという問題があり、20μmを超えると集電
効率が悪くなる。また、端部のメッキ厚みの中央部より
も厚い比率が40%未満では製造過程で必要な機械的強度
が得られず、60%を超えると柔軟性が極端に損なわれる
という問題がある。端部のメッキ厚みの制御は、メッキ
浴内での電極間電流密度を部分的に変化させることで行
う。具体的には陰極である被メッキ対象物の幅に対して
同等以上の幅を有した陽極を用いて、被メッキ対象物
の、端部の電流密度を中央部の電流密度より高くし、端
部のメッキが優先的に施されるようにする。陽極の幅
は、被メッキ対象物の幅に対して10〜100mm 広ければよ
い。陽極と被メッキ対象物との幅の差が10mm未満では、
走行する被メッキ対象物すなわちスポンジ状樹脂シート
が蛇行した場合、陽極からはみ出し、意図したメッキが
行えなくなるばかりか、端部のメッキが行えず機械的強
度が得られなくなる。また該差が 100mmを超えるとメッ
キの厚い部分の幅とメッキの厚みの双方が増え、シート
の柔軟性が損なわれるばかりか、シート全体でのメッキ
厚みの均一性が失われてしまう。図1に、本発明の金属
メッキ工程の模式図を示す。図1では、陰極と陽極が、
樹脂シートに対して同じ面に配置されているが、違う面
に配置されてもよい。
In the present invention, the surface of the conductive resin sheet is further plated with nickel metal to form a metal-plated conductive layer. In this plating treatment, the surface of the resin sheet is brought into close contact with a power supply electrode in a plating bath, and one or both surfaces of the resin sheet are subjected to plating treatment while running as a cathode for an anode larger than the resin sheet. Examples of the metallic nickel plating include sulfamic acid plating, Watt's bath plating, emulsion plating and the like, and among them, sulfamic acid plating and Watt's bath plating are preferable. The strike speed varies depending on the composition of the plating bath, but it is preferably 0.01 to 1.5 m / min. The thickness of the plating varies slightly depending on the type of battery, but it should be 10 to 20 μm in terms of the conductive material, and the edge of the resin sheet should be reduced in terms of reducing defects such as cracks and chips that occur during the manufacturing process. Plating thickness of 1 to 5 mm is 40 to 60 mm more than the central part
% It is better to make it thicker. If the plating thickness is less than 10 μm, there is a problem that the current flows on the surface, and if it exceeds 20 μm, the current collecting efficiency becomes poor. Further, if the ratio of the thickness of the plating at the end portion that is thicker than the central portion is less than 40%, the mechanical strength required in the manufacturing process cannot be obtained, and if it exceeds 60%, the flexibility is extremely impaired. The control of the plating thickness at the ends is performed by partially changing the current density between the electrodes in the plating bath. Specifically, by using an anode having a width equal to or greater than the width of the object to be plated, which is a cathode, the current density at the end of the object to be plated is made higher than the current density at the center, Make sure that parts are plated preferentially. The width of the anode may be 10 to 100 mm wider than the width of the object to be plated. If the difference in width between the anode and the object to be plated is less than 10 mm,
When the running object to be plated, that is, the sponge-like resin sheet, meanders, it sticks out from the anode and the intended plating cannot be performed, but also the end portions cannot be plated and the mechanical strength cannot be obtained. Further, if the difference exceeds 100 mm, both the width of the thick plating portion and the plating thickness increase, and not only the flexibility of the sheet is impaired but also the uniformity of the plating thickness on the entire sheet is lost. FIG. 1 shows a schematic diagram of the metal plating step of the present invention. In FIG. 1, the cathode and the anode are
Although they are arranged on the same surface with respect to the resin sheet, they may be arranged on different surfaces.

【0010】次に、前記の方法で得られた発泡樹脂含有
金属シートを、電気炉等で炉内の温度を 600〜800 ℃に
して5〜20分間発泡樹脂を焼成除去する。 600℃未満で
あると発泡樹脂が除去されず、 800℃を超えると金属メ
ッキ部分の酸化が進行し、電気抵抗が増し、伸びの最大
値又は破断時の伸びがなくなる。さらに、雰囲気炉(水
素)内の温度 800℃〜1200℃の高温のもと、10〜30分間
該金属シート中の金属酸化物を還元し、残カーボンを更
に灰化させて取り除き、スポンジ状金属シートを得る。
800 ℃未満であるとカーボンが灰化せず、1200℃を超え
ると金属シート全体が焼結されてしまう。このように焼
結は二段階で行わないと、電気抵抗が上がり、また伸び
がなくなり、好ましくない。このようにして得られたス
ポンジ状金属シートの骨格部は、電子顕微鏡で観察した
ところ、図2に示すように、その骨格表面には針状や樹
枝状突起が認められず、スムーズな表面形状であった。
Next, the foamed resin-containing metal sheet obtained by the above-mentioned method is heated and removed in a furnace for 600 to 800 ° C. for 5 to 20 minutes to remove the foamed resin. If it is lower than 600 ° C, the foamed resin is not removed, and if it is higher than 800 ° C, oxidation of the metal-plated portion proceeds, electric resistance increases, and the maximum value of elongation or elongation at break disappears. Furthermore, the metal oxide in the metal sheet is reduced for 10 to 30 minutes at a high temperature of 800 ° C to 1200 ° C in an atmosphere furnace (hydrogen), and the residual carbon is further ashed and removed to remove spongy metal. Get the sheet.
If the temperature is lower than 800 ° C, carbon does not ash, and if the temperature exceeds 1200 ° C, the entire metal sheet is sintered. As described above, if the sintering is not performed in two stages, the electric resistance increases and the elongation disappears, which is not preferable. When the skeleton of the sponge-like metal sheet thus obtained was observed with an electron microscope, as shown in FIG. 2, no needle-like or dendrites were observed on the skeleton surface, and a smooth surface shape was obtained. Met.

【0011】更に、このスポンジ状金属シートの骨格内
部に活物質を充填させて成形(プレス成形等)し、本発
明の電池用電極が得られる。充填させる活物質はLa 、
Ce 、Pr 、Nd からなるレアアース元素(以下Aとす
る)と、Ni を主成分とするNi 、Mn 、Co 、Al 、
Fe 、Cu からなる金属(以下Bとする)を合わせた合
金を用いる。具体的にはAB5 (原子数比A:B=1:
5)、AB2 (A:B=1:2)等の組成の水素吸蔵合
金、好ましくはAB5 の組成の水素吸蔵合金を活物質と
して、該シートの骨格内部に充填させて負極とするとよ
い。さらにこの活物質に電池の初期特性、導電性を向上
させるために触媒として、ニッケル、コバルト、または
マンガン、好ましくはニッケルを添加して用いるとよ
い。また活物質を充填する際、活物質をメチルセルロー
ス、ゼラチン、デンプン等に分散させてペースト状にし
て用いるとよい。金属シートの骨格部には、該活物質を
60〜80 vol%充填させ、電池用電極を作製する。この充
填率は、80 vol%を超えると電極割れの問題があり、60
vol%未満では活物質間の表面抵抗が上昇するという問
題があるため、60〜80 vol%が好ましく、65〜78 vol%
で更に好ましい。なお充填率は下記の式(1)より求め
る。 充填率(%)=金属シートの気孔部分の全てに活物質を充填した場合を 100としたときの活物質の充填比率(%)‥‥‥(1)
Further, the inside of the skeleton of the sponge-like metal sheet is filled with an active material and molded (press molding or the like) to obtain the battery electrode of the present invention. The active material to be filled is La,
A rare earth element (hereinafter A) composed of Ce, Pr, and Nd, and Ni, Mn, Co, and Al whose main components are Ni.
An alloy in which metals composed of Fe and Cu (hereinafter referred to as B) are combined is used. Specifically, AB 5 (atomic ratio A: B = 1:
5), a hydrogen storage alloy having a composition such as AB 2 (A: B = 1: 2), preferably a hydrogen storage alloy having a composition of AB 5 is used as an active material and is filled in the skeleton of the sheet to form a negative electrode. . Further, nickel, cobalt, or manganese, preferably nickel, may be added to the active material as a catalyst to improve the initial characteristics and conductivity of the battery. In addition, when the active material is filled, it is preferable to disperse the active material in methyl cellulose, gelatin, starch or the like to form a paste. The active material is attached to the skeleton of the metal sheet.
Fill 60 to 80 vol% to make a battery electrode. If this filling rate exceeds 80 vol%, there is a problem of electrode cracking.
If it is less than vol%, there is a problem that the surface resistance between active materials increases, so 60 to 80 vol% is preferable, and 65 to 78 vol%
Is more preferable. The filling rate is calculated by the following equation (1). Filling ratio (%) = Filling ratio of active material when the active material is filled into all the pores of the metal sheet is 100 (%) (1)

【0012】本発明によるスポンジ状の金属シートは基
材である発泡樹脂の骨格表面に低温プラズマ処理するこ
とにより、該樹脂の骨格部等より出る針状又は樹枝状突
起や膜状のものを取り除き、発泡樹脂の骨格内部が平滑
で連通した状態となり、該骨格内部にペースト状活物質
を充填するのが容易となる。さらに骨格部が連通してい
るため充填率も向上する。
In the sponge-like metal sheet according to the present invention, the skeleton surface of the foamed resin as the base material is subjected to low-temperature plasma treatment to remove needle-like or dendrite-like or film-like ones coming out from the skeleton of the resin or the like. The inside of the skeleton of the foamed resin is in a smooth and continuous state, and it becomes easy to fill the inside of the skeleton with the paste-like active material. Further, since the skeleton is in communication, the filling rate is also improved.

【0013】[0013]

【実施例】以下、本発明を実施例、比較例を挙げて説明
する。 実施例1 三次元網目構造の(幅)100 ×(長さ)300 ×(厚み)
1.5mm のシート状発泡ポリウレタン樹脂(ブリヂストン
化成品社製、商品名 HR-50)を用いて以下の1.〜5.の処
理を行った。なお実施回数はn=50とした。 1. 低温プラズマ装置の反応器内に上記シート状樹脂を
入れ、0.02Torrになるまで装置内を減圧した後、 0.2To
rrとなるまで酸素ガスを導入した。次いで周波数13.56M
Hz、負荷 130Wの高周波により発生したプラズマを用い
て、このシート状樹脂を2分間プラズマ処理した。 2. 処理1.で処理したシート状樹脂を反応器から取り出
し、50%カーボンコロイド水溶液に1分間浸し、導電化
処理した。処理したシート状樹脂の電気抵抗は6×102
Ω/□であった。 3. さらに、スルファミン酸メッキ浴内で、該樹脂の一
端を陰極の給電電極と接触させ、もう一端に該樹脂のシ
ート幅よりも10mm幅の広い陽極をシート表面上方に保持
させつつ(図1(a)、(b)参照)、該シートを走行
させ、シートの片面を5分間ずつ、両面(表裏面)で合
計10分間で、メッキ処理を行い、端部のメッキ厚み23μ
m、その他の部分のメッキ厚み15μmのニッケルメッキ
皮膜を形成させた。このときのメッキ浴の条件は次の通
りである。 メッキ組成 スルファミン酸ニッケル 300g/リットル 塩化ニッケル 30g/リットル ほう酸 30g/リットル pH 3.5 〜4.0 温度 50℃ 電流密度 2〜100 A/dm2 4. 処理3.で得た発泡樹脂含有金属シートを、大気雰囲
気中で 700℃×10分間、さらに水素雰囲気中で 950℃×
20分間、加熱処理してスポンジ状金属シートを作製し
た。以上の処理によって得られたスポンジ状金属シート
は、処理中の衝撃などによる形状の損傷もなく、試行し
た50枚すべてが初期の形状をほぼ保持した形で得られ
た。
EXAMPLES The present invention will be described below with reference to examples and comparative examples. Example 1 (width) 100 x (length) 300 x (thickness) of a three-dimensional mesh structure
The following treatments 1 to 5 were performed using 1.5 mm sheet-shaped polyurethane foam resin (manufactured by Bridgestone Chemicals Co., Ltd., trade name HR-50). The number of times of execution was n = 50. 1. Put the above sheet-like resin into the reactor of the low temperature plasma equipment, depressurize the inside of the equipment to 0.02 Torr, and then 0.2To
Oxygen gas was introduced until rr was reached. Next frequency 13.56M
The sheet-shaped resin was plasma-treated for 2 minutes using plasma generated by a high frequency of Hz and a load of 130 W. 2. The sheet-shaped resin treated in treatment 1 was taken out of the reactor and immersed in a 50% carbon colloid aqueous solution for 1 minute to conduct the conductivity. The electrical resistance of the treated sheet resin is 6 × 10 2
Ω / □. 3. Further, in the sulfamic acid plating bath, one end of the resin is brought into contact with the cathode power feeding electrode, and the other end is held above the sheet surface by an anode having a width 10 mm wider than the sheet width of the resin (Fig. 1). (See (a) and (b)), the sheet is run, plating is performed for 5 minutes on each side of the sheet for 10 minutes on both sides (front and back sides) for a total of 23 μm.
A nickel plating film having a plating thickness of 15 μm was formed on the other parts. The conditions of the plating bath at this time are as follows. Plating composition Nickel sulfamate 300 g / liter Nickel chloride 30 g / liter Boric acid 30 g / liter pH 3.5 to 4.0 Temperature 50 ° C Current density 2 to 100 A / dm 2 4. The foamed resin-containing metal sheet obtained in the treatment 3 is exposed to the atmosphere. 700 ℃ for 10 minutes, 950 ℃ in hydrogen atmosphere
Heat treatment was performed for 20 minutes to produce a sponge-like metal sheet. The sponge-like metal sheets obtained by the above treatment were not damaged by the impact during the treatment, and all the 50 trial sheets were obtained in a form in which the initial shape was almost retained.

【0014】5. 処理4.で得たスポンジ状金属シートを
所定の大きさ(幅)32×(長さ)220mm に切断し、AB5
型水素吸蔵合金粉末15gに2%メチルセルロース水溶液
3gを加えてペースト状にしたものを充填した後、2t
/cm2 の圧力で加圧成形して(幅)32×(長さ)220 ×
(厚み)0.4mm の電極を作製した。このとき用いたAB5
型水素吸蔵合金の組成は、A側がLa45 Ce10 Pr10
d35 (wt%)、B側がNi3.3Co0.8Mn0.6Al0.3(原子
比)で、粒度は#200 未満のものを用いた。この製造方
法により得られた電極の充填率は74%であった。この電
極 100個を用いて円筒形密閉電池を作製し、充放電試験
を行った結果、電池寿命までにスポンジ状金属シートの
針状または樹枝状突起が原因でセパレーターが破れ短絡
して不良となったものは 100個中1個もなかった。
5. The sponge-like metal sheet obtained in the treatment 4 is cut into a predetermined size (width) 32 × (length) 220 mm, and AB 5
2t of 2% methyl cellulose aqueous solution was added to 15g of hydrogen storage alloy powder
(Width) 32 x (length) 220 x by pressure molding at a pressure of / cm 2
An electrode having a thickness of 0.4 mm was prepared. AB 5 used at this time
The composition of the H-type hydrogen storage alloy is La 45 Ce 10 Pr 10 N on the A side.
d 35 (wt%), B side was Ni 3.3 Co 0.8 Mn 0.6 Al 0.3 (atomic ratio), and the particle size was less than # 200. The filling factor of the electrode obtained by this manufacturing method was 74%. A cylindrical sealed battery was manufactured using 100 of these electrodes, and a charge / discharge test was performed.As a result, the separator broke due to the needle-shaped or dendrites on the sponge-shaped metal sheet, causing a short circuit and failure. There was no one in 100.

【0015】実施例2 実施例1と同じ処理1.〜5.のうち、処理3.において、該
樹脂のシート幅よりも20mm幅の狭い陽極を用いて、メッ
キ処理を行い、メッキ厚み15μmのニッケルメッキ皮膜
を形成した。なおメッキ条件は実施例1と同じとした。
ここで得た発泡樹脂含有金属シートを50枚用いて、実施
例1と同様に処理4.を行ったところ、処理中の衝撃など
によりシートの端部(縁・角)に欠けや割れ等の損傷が
50枚中40枚に発生した。次いで処理4.により得られたス
ポンジ状金属シートを所定の大きさに切断し、ペースト
状活物質を充填した後、加圧成形して電極を得た。この
方法により得られた電極の充填率は74%であった。この
電極 100個を用いて円筒形密閉電池を作製し、充放電試
験を行った結果、電池寿命までにスポンジ状金属シート
の針状または樹枝状突起が原因でセパレーターが破れ短
絡して不良となったものは 100個中1個もなかった。
Example 2 Of the same processes 1 to 5 as in Example 1, in process 3, a plating treatment was carried out using an anode having a width 20 mm narrower than the sheet width of the resin, and the plating thickness was 15 μm. A nickel plating film was formed. The plating conditions were the same as in Example 1.
When 50 pieces of the foamed resin-containing metal sheets obtained here were used and treated in the same manner as in Example 1, the edges (edges / corners) of the sheet were not damaged or cracked due to impact or the like during the treatment. Damage
It occurred in 40 out of 50. Next, the sponge-like metal sheet obtained by the treatment 4 was cut into a predetermined size, filled with a paste-like active material, and then pressure-molded to obtain an electrode. The filling factor of the electrode obtained by this method was 74%. A cylindrical sealed battery was manufactured using 100 of these electrodes, and a charge / discharge test was performed.As a result, the separator broke due to the needle-shaped or dendrites on the sponge-shaped metal sheet, causing a short circuit and failure. There was no one in 100.

【0016】比較例 実施例1、2で使用したシート状発泡ポリウレタン樹脂
に、低温プラズマ処理を施さず、また陽極幅が該シート
の幅よりも20mm幅の狭い陽極を用いてメッキ処理し、そ
の他の処理は実施例1と同様に行ってスポンジ状金属シ
ートを50枚作製した。処理4.において、金属シートには
50枚すべてに割れ・欠け等の損傷が発生していた。処理
5.において、ペースト状活物質の充填は円滑にできず、
また充填率も62%と低い値となった。円筒形密閉電池を
作製しての充放電試験では、電池寿命までにスポンジ状
金属シートの針状または樹枝状突起が原因でセパレータ
ーが破れ短絡した不良は 100個中4個発生した。以上の
ように本発明によれば、活物質を充填するのが容易で、
かつ高密度で保有し、その保持性に優れる電極を高収率
で得ることができる。
Comparative Example The sheet-form polyurethane foam resin used in Examples 1 and 2 was plated with an anode which was not subjected to low-temperature plasma treatment and whose anode width was 20 mm narrower than the width of the sheet. The same procedure as in Example 1 was performed to prepare 50 sponge-like metal sheets. In process 4, the metal sheet
All 50 sheets had damage such as cracks and chips. processing
In 5, it is not possible to fill the paste-like active material smoothly,
Also, the filling rate was as low as 62%. In a charge / discharge test using a cylindrical sealed battery, four out of 100 defects were caused by the separator breaking and short-circuiting due to the needle-like or dendrite projections of the sponge-like metal sheet by the battery life. As described above, according to the present invention, it is easy to fill the active material,
In addition, it is possible to obtain an electrode which has a high density and is excellent in its holding property in a high yield.

【0017】[0017]

【発明の効果】本発明によるスポンジ金属シートは、基
材である発泡樹脂の骨格内部が平滑でかつ連通した状態
となり、該骨格内部にペースト状活物質あるいは触媒を
充填するのが容易で充填率も向上させることが出来る。
また、本発明による製造方法により、電極用極板を容易
に得ることが出来る。
In the sponge metal sheet according to the present invention, the inside of the skeleton of the foamed resin as the base material is in a smooth and continuous state, and it is easy to fill the inside of the skeleton with the paste-like active material or catalyst, and the filling rate is high. Can also be improved.
Moreover, the electrode plate for an electrode can be easily obtained by the manufacturing method according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法における金属メッキ形成工程
の模式図であり、(a)は実施例における上面図、
(b)は(a)の側面図である。
FIG. 1 is a schematic diagram of a metal plating forming step in a manufacturing method of the present invention, in which (a) is a top view of an embodiment,
(B) is a side view of (a).

【図2】本発明の実施例によるスポンジ状金属シート骨
格部の模式図である。
FIG. 2 is a schematic view of a sponge-like metal sheet skeleton portion according to an example of the present invention.

【図3】本発明の比較例によるスポンジ状金属シート骨
格部の模式図である。
FIG. 3 is a schematic view of a sponge-like metal sheet skeleton according to a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1‥‥‥針状部 2‥‥‥膜状部 3‥‥‥遊離針状部 4‥‥‥金属シート骨格 5‥‥‥連通孔 6‥‥‥樹脂シート(陰極) 7‥‥‥陰極 8‥‥‥陽極 A‥‥‥メッキされた部分 B‥‥‥メッキ途中部分 C‥‥‥メッキされていない部分 1 ... Needle-like part 2 ... ... Membrane-like part 3 ... ... Free needle-like part 4 ... ... Metal sheet skeleton 5 ... Communication hole 6 ... Resin sheet (cathode) 7 ... Cathode 8 ‥‥ Anode A ‥‥‥ Plated area B ‥‥ Pattern halfway C ‥‥ Unplated area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 三次元的に連続した構造を有するスポン
ジ状金属シートを基板とし、該シート内に活物質を充填
したスポンジ状金属シートからなる電池用電極におい
て、前記スポンジ状金属シート基板の骨格内部が連通
し、かつ表面が平滑であることを特徴とする電池用電
極。
1. A skeleton of the sponge-like metal sheet substrate in a battery electrode comprising a sponge-like metal sheet having a three-dimensionally continuous structure as a substrate, and the sheet being filled with an active material. An electrode for a battery, characterized in that the inside is in communication and the surface is smooth.
【請求項2】 三次元網目状構造を有するシート状発泡
樹脂の骨格表面を導電化処理し、次いで金属メッキを施
した後、発泡樹脂を焼結除去してなる電池用電極の製造
方法において、上記発泡樹脂の骨格表面の針状樹脂、樹
枝状樹脂または骨格部を塞いでいる膜状樹脂を、低温プ
ラズマ処理により予め灰化し、取り除くことを特徴とす
る請求項1に記載の電池用電極の製造方法。
2. A method for producing an electrode for a battery, which comprises subjecting a skeleton surface of a sheet-shaped foamed resin having a three-dimensional network structure to a conductive treatment, then metal plating, and then removing the foamed resin by sintering. The needle-like resin, the dendritic resin, or the film-like resin blocking the skeleton on the skeleton surface of the foamed resin is previously ashed and removed by low-temperature plasma treatment, and the battery electrode according to claim 1. Production method.
【請求項3】 骨格表面を低温プラズマ処理により平滑
にした三次元網目状構造を有するシート状発泡樹脂の骨
格表面を導電化処理した後、メッキ浴内で該シート状発
泡樹脂の表面に給電電極を密接させ、これを陰極として
走行させ、該シート状発泡樹脂の片面または両面に金属
メッキを施して、金属メッキ導電層を形成し、次いで該
発泡樹脂を焼結除去することを特徴とする請求項2に記
載の電池用電極の製造方法。
3. A skeleton surface of a sheet-like foamed resin having a three-dimensional network structure in which the skeleton surface is smoothed by a low-temperature plasma treatment, and then the skeleton surface is subjected to a conductive treatment, and then the surface of the sheet-like foamed resin is applied to the surface of the sheet-like foamed resin in a plating bath. The sheet-shaped foamed resin is plated with metal on one or both sides to form a metal-plated conductive layer, and then the foamed resin is sintered and removed. Item 3. A method for manufacturing a battery electrode according to Item 2.
【請求項4】 シート状発泡樹脂に金属メッキを形成さ
せる際に、シート状発泡樹脂の端部に、より厚い金属メ
ッキ層を形成させることを特徴とする請求項3に記載の
電池用電極の製造方法。
4. The electrode for battery according to claim 3, wherein a thicker metal plating layer is formed on an end portion of the sheet-like foamed resin when the metal plating is formed on the sheet-like foamed resin. Production method.
JP8236570A 1995-09-28 1996-09-06 Electrode for battery and manufacture thereof Pending JPH09153364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8236570A JPH09153364A (en) 1995-09-28 1996-09-06 Electrode for battery and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25026695 1995-09-28
JP7-250266 1995-09-28
JP8236570A JPH09153364A (en) 1995-09-28 1996-09-06 Electrode for battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09153364A true JPH09153364A (en) 1997-06-10

Family

ID=26532747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8236570A Pending JPH09153364A (en) 1995-09-28 1996-09-06 Electrode for battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09153364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140647A (en) * 2008-12-09 2010-06-24 Toyama Sumitomo Denko Kk Metal porous body and electrode base board for battery using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140647A (en) * 2008-12-09 2010-06-24 Toyama Sumitomo Denko Kk Metal porous body and electrode base board for battery using it

Similar Documents

Publication Publication Date Title
KR100218212B1 (en) Method of preparing metallic porous body, electrode substrate for battery and process for preparing the same
US20040229126A1 (en) Secondary battery using non-sintered thin electrode and process for same
CN105143519B (en) Iron electrode of coating and preparation method thereof
US5840444A (en) Electrode for storage battery and process for producing the same
US5882822A (en) Battery electrode and method for the preparation thereof
EP0723307B1 (en) Paste type electrode for alkaline storage battery and process for producing the same
JPH09153364A (en) Electrode for battery and manufacture thereof
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
JPH07320742A (en) Electrode for alkaline storage battery and manufacture thereof
JPH06314566A (en) Electrode for storage battery
JP3456092B2 (en) Hydrogen storage alloy and method for producing the same
JPH09204919A (en) Electrode base for alkaline battery and its manufacture
JP3941341B2 (en) Alkaline battery and nickel plate
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP3408047B2 (en) Alkaline storage battery
JP2000077064A (en) Hydrogen storage electrode and its manufacture
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JP4085434B2 (en) Alkaline battery electrode
JPH10112326A (en) Electrode for alkaline secondary battery
JP2000208150A (en) Battery electrode substrate and its production
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH11176429A (en) Manufacture of electrode for battery
JPH01302668A (en) Electrode for alkaline storage battery
JPH08287918A (en) Electrode base board for alkaline storage battery and its manufacture
JPH09330722A (en) Manufacture of alkaline battery electrode base body