JPH0915271A - Overcurrent detector circuit - Google Patents

Overcurrent detector circuit

Info

Publication number
JPH0915271A
JPH0915271A JP7179465A JP17946595A JPH0915271A JP H0915271 A JPH0915271 A JP H0915271A JP 7179465 A JP7179465 A JP 7179465A JP 17946595 A JP17946595 A JP 17946595A JP H0915271 A JPH0915271 A JP H0915271A
Authority
JP
Japan
Prior art keywords
load
input
circuit
grounding
sense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7179465A
Other languages
Japanese (ja)
Inventor
Hisaki Sasaki
久己 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP7179465A priority Critical patent/JPH0915271A/en
Publication of JPH0915271A publication Critical patent/JPH0915271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an overcurrent detector circuit being usable for a circuit being operated by electric potential from the grounding stabilizing the grounding potential of a load by connecting this load to between the source of a sense FET and the grounding. CONSTITUTION: A power source 14 is connected to a drain DR of a sense FET 10, and load 11 is connected to an interval between a source SR and a grounding. A gate drive 12 is connected to a gate GT, and a sense resistor 15 is connected to between Miller ML and Kelvin KL. At a comparator 13, the Kelvin KL of the sense FET 10 is inputted to one side input Vc+ , and the interval between the Miller and the grounding is voltage-divided by two resistors R1 and R2 , inputting it into the other side input Vc- , therefore, output is connected to the gate drive 12. In this overcurrent detector, the load 11 is stabilized by the source SR of the sense FET 19 and the grounding potential, so that the grounding potential of this load 11 can be stabilized as well. Accordingly, it is usable for such a circuit as being operated by the potential from the grounding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負荷である回路が、そ
の電位を利用した回路である場合の、負荷へ流れる電流
の過電流検出回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overcurrent detection circuit for a current flowing to a load when the load circuit is a circuit utilizing its potential.

【0002】[0002]

【従来の技術】半導体素子を使用した過電流検出回路と
してセンスFETを応用した回路がある。図5に示すよ
うに、センスFETは、1チップで構成された、すぐれ
た整合性を示す2個のパワーMOSFETで形成され
る。負荷電流IL は、2個のパワーMOSFETに分流
される。過電流検出用のミラー側のセルと、負荷用のソ
ース側のセルの比を1:n、例えば1:1000とし、
ミラー端子へは、IL /1000の負荷電流が分流し、
小電力の抵抗で過電流が検出できる。
2. Description of the Related Art There is a circuit to which a sense FET is applied as an overcurrent detection circuit using a semiconductor element. As shown in FIG. 5, the sense FET is formed of two power MOSFETs which are constructed in one chip and exhibit excellent matching. The load current I L is divided into two power MOSFETs. The ratio of the mirror-side cell for overcurrent detection to the source-side cell for load is set to 1: n, for example 1: 1000,
To the mirror terminal, flow of load current I L / 1000 is divided,
Overcurrent can be detected with a small power resistor.

【0003】図6にセンスFETの応用として示されて
いる過電流検出回路ブロックを示す。この場合、負荷1
1が電源14とセンスFET10のドレイン(DR)の
間に入りソース(SR)がGNDに接続されている。
FIG. 6 shows an overcurrent detection circuit block shown as an application of the sense FET. In this case, load 1
1 enters between the power supply 14 and the drain (DR) of the sense FET 10, and the source (SR) is connected to GND.

【0004】[0004]

【発明が解決しようとする課題】図6に示す従来の回路
において、負荷が、負荷に流れる電流にのみ依存する場
合、例えばモータのコイルであれば、センスFET10
による電圧降下による、GNDからの電位の変化は問題
とならないため、有効な回路である。しかし、例えばT
TL回路のように、GNDからの電位で動作する回路で
は、センスFETのドレイン−ソース間ON抵抗が30
mΩ〜40mΩであるため、10Aの電流が流れた場合
0.3V〜0.4V負荷のGND電位が上昇し、使用で
きない。本発明は、負荷をセンスFETのソースとGN
D間に接続し、負荷のGND電位を安定させ、GNDか
らの電位で動作する回路に使用できる過電流検出回路を
実現することを目的とする。
In the conventional circuit shown in FIG. 6, when the load depends only on the current flowing through the load, for example, in the case of a motor coil, the sense FET 10 is used.
This is an effective circuit because the change in the potential from GND due to the voltage drop due to is not a problem. But for example T
In a circuit that operates with a potential from GND like a TL circuit, the ON resistance between the drain and source of the sense FET is 30.
Since it is mΩ to 40 mΩ, when a current of 10 A flows, the GND potential of the load of 0.3 V to 0.4 V increases and it cannot be used. In the present invention, the load is the source of the sense FET and the GN.
An object of the present invention is to realize an overcurrent detection circuit which is connected between D, stabilizes the GND potential of the load, and can be used in a circuit that operates at the potential from GND.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の過電流検出回路においては次のように構成
している。つまり、ドレイン(DR)に電源14を接続
し、ソース(SR)とGNDの間に負荷11を接続し、
ゲート(GT)にゲートドライブ12を接続し、ミラー
(ML)とケルビン(KL)の間にセンス抵抗(Rs)
15を接続したセンスFET10を設け、ケルビン(K
L)を一方の入力(Vc+)に入力し、ミラー(ML)
とGND間をR1及びR2で分圧してもう一方の入力
(Vc−)に入力し、出力をゲートドライブ12に接続
したコンパレータ13を設けている。また別の方法とし
て、コンパレータ13の入出力は、ケルビン(KL)を
一方の入力(Vc+)に入力し、ミラー(ML)とGN
D間にダイオードとダイオードを流れる電流値を決める
抵抗R3を接続し、上記ダイオードの両端をR4及びR
5で分圧してもう一方の入力(Vc−)に入力し、出力
をゲートドライブ12に接続した構成としている。
In order to achieve the above object, the overcurrent detection circuit of the present invention is configured as follows. That is, the power source 14 is connected to the drain (DR), the load 11 is connected between the source (SR) and GND,
The gate drive 12 is connected to the gate (GT), and the sense resistor (Rs) is provided between the mirror (ML) and the Kelvin (KL).
A sense FET 10 to which 15 is connected is provided, and Kelvin (K
L) to one input (Vc +) and the mirror (ML)
There is provided a comparator 13 in which the voltage between R1 and R2 is divided by R1 and R2 to be input to the other input (Vc-), and the output is connected to the gate drive 12. As another method, for the input / output of the comparator 13, Kelvin (KL) is input to one input (Vc +), and the mirror (ML) and GN are connected.
A diode and a resistor R3 that determines the value of the current flowing through the diode are connected between D, and both ends of the diode are connected to R4 and R
The voltage is divided by 5 and input to the other input (Vc-), and the output is connected to the gate drive 12.

【0006】[0006]

【作用】上記のように構成された過電流検出回路におい
ては、負荷をセンスFET10のソースとGND間に接
続しているため、負荷のGND電位を安定にすることが
できる。このため、GNDからの電位で動作する回路に
使用できる。また、本発明の回路は、過電流の原因が取
り除かれれば、部品の交換をすることなく、電源の再起
動で正常に復帰できる作用がある。
In the overcurrent detection circuit configured as described above, the load is connected between the source of the sense FET 10 and GND, so that the GND potential of the load can be stabilized. Therefore, it can be used in a circuit that operates with the potential from GND. Further, the circuit of the present invention has an effect that if the cause of the overcurrent is removed, it can be restored to normal by restarting the power supply without replacing parts.

【0007】[0007]

【実施例】【Example】

(実施例1)図1に本発明の一実施例を示す。この回路
は、ドレイン(DR)に電源14を接続し、ソース(S
R)とGNDの間に負荷11を接続し、ゲート(GT)
にゲートドライブ12を接続し、ミラー(ML)とケル
ビン(KL)の間にセンス抵抗(Rs)15を接続した
センスFET10と、ケルビン(KL)を一方の入力
(Vc+)に入力し、ミラー(ML)とGND間をR1
及びR2で分圧してもう一方の入力(Vc−)に入力
し、出力をゲートドライブ12に接続したコンパレータ
13とで構成している。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention. In this circuit, the power source 14 is connected to the drain (DR) and the source (S
Load 11 is connected between R) and GND, and gate (GT)
The gate drive 12 is connected to the sense FET 10 in which the sense resistor (Rs) 15 is connected between the mirror (ML) and the Kelvin (KL), and the Kelvin (KL) is input to one input (Vc +), and the mirror ( R1 between ML) and GND
And R2, the voltage is divided and input to the other input (Vc-), and the output is connected to the gate drive 12 and the comparator 13.

【0008】図2に、ドレイン電流(Id)に対する、
コンパレータ入力Vc+及びVc−の変化の概略を示
す。この図における、Vc+とVc−の交点で、コンパ
レータ13が過電流を検出し、センスFET10をゲー
トドライブ12を介してOFFし過電流を遮断する。こ
の時、過電流の状態は、あらためて電源(PS)14を
再投入するまで、ゲートドライブ12でラッチされる。
FIG. 2 shows the relation between the drain current (Id) and
An outline of changes in the comparator inputs Vc + and Vc- is shown. At the intersection of Vc + and Vc- in this figure, the comparator 13 detects an overcurrent and turns off the sense FET 10 via the gate drive 12 to shut off the overcurrent. At this time, the overcurrent state is latched by the gate drive 12 until the power supply (PS) 14 is turned on again.

【0009】次に、図3に示す等価回路により、例え
ば、負荷に流れる電流が6A以上流れた時に過電流を検
出する場合の、センス抵抗(Rs)15及び分圧抵抗R
1、R2の値を求め、その妥当性を検証する。
Next, with the equivalent circuit shown in FIG. 3, a sense resistor (Rs) 15 and a voltage dividing resistor R are used, for example, when an overcurrent is detected when a current flowing through a load is 6 A or more.
1. Obtain the values of R2 and verify the validity.

【0010】まず、ID×ra(on)=Im×(rm
(on)+Rs)であるから、セル比nとして n=ID/Im=(rm(on)+Rs)/ra(on)・・・式(1) が得られる。
First, ID × ra (on) = Im × (rm
Since (on) + Rs), n = ID / Im = (rm (on) + Rs) / ra (on) (1) is obtained as the cell ratio n.

【0011】また、コンパレータ13の入力オフセット
電圧をVofとしたとき、過電流検出条件は、Vs=V
1±Vofとなる。この式を変換すると数1のようにな
り、数1の式(2)のように(R1+R2)/R1=K
とすることで、過電流検出時のドレイン電流IDを式
(3)のように得ることができる。
When the input offset voltage of the comparator 13 is Vof, the overcurrent detection condition is Vs = V
It becomes 1 ± Vof. When this formula is converted, it becomes like Formula 1, and as shown in Formula (2) of Formula 1, (R1 + R2) / R1 = K
By doing so, the drain current ID at the time of overcurrent detection can be obtained as in Expression (3).

【0012】[0012]

【数1】(Equation 1)

【0013】ここで、使用するセンスFET10のデー
タシートより、センスFET10のドレイン−ソース間
ON抵抗をRDS(on)として、 ra(on)=17mΩ rm(on)=16Ω RDS(on)=rb+ra(on)+rw=30mΩ
〜40mΩ が得られ、rb=rwと仮定すると、 rb=(RDS(on)−ra(on))/2 =((30mΩ〜40mΩ)−17mΩ)/2 =(13mΩ〜23mΩ)/2 =6.5mΩ〜11.5mΩ×1.25 rb=6.5mΩ〜14.4mΩ・・・・・・・・・・・式(4) となる。ここで、11.5mΩ×1.25の1.25
は、デバイス内部抵抗は計算値より大きい場合が多いと
いう経験によるものである。
Here, from the data sheet of the sense FET 10 to be used, assuming that the drain-source ON resistance of the sense FET 10 is RDS (on), ra (on) = 17 mΩ rm (on) = 16Ω RDS (on) = rb + ra ( on) + rw = 30 mΩ
Assuming that rb = rw, rb = (RDS (on) -ra (on)) / 2 = ((30 mΩ-40 mΩ) -17 mΩ) / 2 = (13 mΩ-23 mΩ) / 2 = 6 .5 mΩ to 11.5 mΩ × 1.25 rb = 6.5 mΩ to 14.4 mΩ ... Equation (4). Here, 11.5 mΩ × 1.25 of 1.25
Is due to the experience that the device internal resistance is often larger than the calculated value.

【0014】ドレイン電流Idが6A程度で過電流検出
することより、センス電流(Im)は数mA程度と予測
されること、コンパレータ13の入力オフセット電圧が
最大±4mV程度であること、センスFET10の温度
特性が6Ω以上で大幅に悪化することから、 Rs=5.1Ω±1%=5.05Ω〜5.15Ω とし、Vccが5.1Vのとき、ミラー(ML)及びケ
ルビン(KL)の電圧が約5Vになることから、R1を
流れる電流が0.1mA程度になるよう、 R2=51KΩ±1%=50.5KΩ〜51.5KΩ とし、センス電圧Vsが数十mV程度で過電流検出する
ことから、 R1=330Ω±1%=327Ω〜333Ω として、過電流検出電流値を計算で求めた。
By detecting the overcurrent when the drain current Id is about 6 A, the sense current (Im) is expected to be about several mA, the input offset voltage of the comparator 13 is about ± 4 mV at the maximum, and the sense FET 10 has Since the temperature characteristic is significantly deteriorated at 6Ω or more, Rs = 5.1Ω ± 1% = 5.05Ω to 5.15Ω, and when Vcc is 5.1V, the voltage of the mirror (ML) and the Kelvin (KL) is increased. Is about 5V, so that the current flowing through R1 is about 0.1mA, R2 = 51KΩ ± 1% = 50.5KΩ to 51.5KΩ, and the overcurrent is detected when the sense voltage Vs is about several tens of mV. Therefore, the overcurrent detection current value was calculated by setting R1 = 330Ω ± 1% = 327Ω to 333Ω.

【0015】式(1)より、 n=(rm(on)+Rs)/ra(on) =(16Ω+(5.05Ω〜5.15Ω))/17mΩ n=1238〜1244・・・・・・・・・・・・・・・式(5) 式(2)より、 K=1+R2/R1 =1+(50.5〜51.5)×103 /(327〜333) K=153〜158・・・・・・・・・・・・・・・・・式(6) 設定電圧範囲を、 Vcc=5.10V±30mV Vcc=5.07V〜5.13V・・・・・・・・・・・式(7) とした。From the equation (1), n = (rm (on) + Rs) / ra (on) = (16Ω + (5.05Ω to 5.15Ω)) / 17 mΩ n = 1238 to 1244 ... (5) From equation (2), K = 1 + R2 / R1 = 1 + (50.5 to 51.5) × 10 3 / (327 to 333) K = 153 to 158 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Formula (6) Set voltage range: Vcc = 5.10V ± 30mV Vcc = 5.07V to 5.13V -Formula (7) is used.

【0016】更に、 Rs/n=(5.05〜5.15)/(1238〜1244) =4.06×10-3Ω〜4.16×10-3Ω K×Rs/n=(153〜158)×(4.06〜4.16)×10-3 =0.621Ω〜0.657Ω・・・・・・・・式(8) また、 rm(on)/n=16/(1238〜1244) =12.9×10-3Ω・・・・・・・・式(9) また、 K×Vof=(153〜158)×0.004 =0.612V〜0.632V・・・・・・・式(10) を得、式(3)に代入することで、過電流検出電流値を
計算で求めた。
Furthermore, Rs / n = (5.05~5.15) / (1238~1244) = 4.06 × 10 -3 Ω~4.16 × 10 -3 Ω K × Rs / n = (153 ˜158) × (4.06 to 4.16) × 10 −3 = 0.621Ω to 0.657Ω ... Equation (8) Further, rm (on) / n = 16 / (1238) ˜1244) = 12.9 × 10 −3 Ω ... Equation (9) Also, K × Vof = (153 to 158) × 0.004 = 0.612V to 0.632V. ... By obtaining Expression (10) and substituting it into Expression (3), the overcurrent detection current value was calculated.

【0017】過電流検出電流値は、 ID=((5.07〜5.13)±(0.61〜0.6
3))/(((621〜657)+(6.5〜14.
4)+12.9)×10-3) となり、その最大値は、 IDmax=(5.13+0.63)/((621+6.5+12.9)×10-3) =9.0A となり、その最小値は、 IDmin=(5.07-0.63)/((657+14.4+12.9)×10-3) =6.5A となる。
The overcurrent detection current value is ID = ((5.07 to 5.13) ± (0.61 to 0.6)
3)) / (((621-657) + (6.5-14.
4) +12.9) × 10 −3 ), and its maximum value is IDmax = (5.13 + 0.63) / ((621 + 6.5 + 12.9) × 10 −3 ) = 9.0A, and its minimum value is IDmin = (5.07-0.63) / ((657 + 14.4 + 12.9) × 10 −3 ) = 6.5A.

【0018】(実施例2)図4に本発明の別の実施例の
等価回路を示す。この実施例は、ドレイン(DR)に電
源14を接続し、ソース(SR)とGNDの間に負荷1
1を接続し、ゲート(GT)にゲートドライブ12を接
続し、ミラー(ML)とケルビン(KL)の間にセンス
抵抗(Rs)15を接続したセンスFET10と、ケル
ビン(KL)を一方の入力(Vc+)に入力し、ミラー
(ML)とGND間にダイオードとダイオードを流れる
電流値を決める抵抗R3を接続し、上記ダイオードの両
端をR4及びR5で分圧してもう一方の入力(Vc−)
に入力し、出力をゲートドライブ12に接続したコンパ
レータ13とで構成している。
(Embodiment 2) FIG. 4 shows an equivalent circuit of another embodiment of the present invention. In this embodiment, the power source 14 is connected to the drain (DR), and the load 1 is connected between the source (SR) and GND.
1 is connected to the gate (GT), the gate drive 12 is connected, and the sense resistor (Rs) 15 is connected between the mirror (ML) and the Kelvin (KL), and the Kelvin (KL) is one input. Input to (Vc +), connect a diode between the mirror (ML) and GND, and a resistor R3 that determines the current value flowing through the diode, divide both ends of the diode by R4 and R5, and input the other input (Vc-).
And a comparator 13 whose output is connected to the gate drive 12.

【0019】ここで、例えば負荷11に流れる電流が6
A以上流れた時に過電流を検出する場合の、センス抵抗
(Rs)15及び抵抗R3、R4及びR5の値を求め、
その妥当性を検証する。
Here, for example, the current flowing through the load 11 is 6
The value of the sense resistor (Rs) 15 and the resistors R3, R4, and R5 in the case of detecting an overcurrent when flowing more than A,
Verify its validity.

【0020】まず、ID×ra(on)=Im×(rm
(on)+Rs)であるから、 ID=Im×(rm(on)+Rs)/ra(on)・・・・・式(11) が得られる。
First, ID × ra (on) = Im × (rm
Since (on) + Rs, ID = Im × (rm (on) + Rs) / ra (on) (11) is obtained.

【0021】また、コンパレータ13の入力オフセット
電圧をVofとしたとき、過電流検出条件は、Vs=V
2±Vofとなる。この式を変換すると Im×Rs=(R4/(R4+R5))×Vref±V
of となり、 Im=(1/Rs)×((R4/(R4+R5))×V
ref±Vof) であるから、過電流検出時のドレイン電流IDを次の式
のように得ることができる。 ID=(1/Rs)×((R4/(R4+R5))×Vref±Vof) ×(rm(on)+Rs)/ra(on)・・・・・・・式(12)
When the input offset voltage of the comparator 13 is Vof, the overcurrent detection condition is Vs = V
It becomes 2 ± Vof. When this formula is converted, Im × Rs = (R4 / (R4 + R5)) × Vref ± V
and Im = (1 / Rs) × ((R4 / (R4 + R5)) × V
Since it is ref ± Vof), the drain current ID at the time of overcurrent detection can be obtained by the following equation. ID = (1 / Rs) × ((R4 / (R4 + R5)) × Vref ± Vof) × (rm (on) + Rs) / ra (on) ... Equation (12)

【0022】ここで、使用するセンスFET10のデー
タシートより、 ra(on)=17mΩ rm(on)=16Ωである。また、ドレイン電流Id
が6A程度で過電流検出すること、Im:Idは約1:
1000であることより、センス電流(Im)は数mA
程度と予測されること、コンパレータ13の入力オフセ
ット電圧が最大±4mV程度であること、センスFET
10の温度特性が6Ω以上で大幅に悪化することから、 Vof=4mV Rs=5.1Ω±1%=5.05Ω〜5.15Ωとす
る。また、過電流検出時のVsは、Imが数mA程度、
Rsが5Ω程度であることから、30mV程度であり、
V2も同じ電圧であるので、 Vref=500mV を抵抗R4及びR5で分圧して、 R5=51KΩ±1%=50.5KΩ〜51.5KΩ R4=3.3KΩ±1%=3.27KΩ〜3.33KΩ
とする。
Here, from the data sheet of the sense FET 10 used, ra (on) = 17 mΩ rm (on) = 16Ω. Also, the drain current Id
Detects overcurrent at about 6 A, Im: Id is about 1:
Since it is 1000, the sense current (Im) is several mA
That the input offset voltage of the comparator 13 is about ± 4 mV at the maximum, the sense FET
Since the temperature characteristic of 10 is significantly deteriorated at 6Ω or more, Vof = 4mV Rs = 5.1Ω ± 1% = 5.05Ω to 5.15Ω. Further, Vs at the time of overcurrent detection has Im of about several mA,
Since Rs is about 5Ω, it is about 30 mV,
Since V2 is also the same voltage, Vref = 500 mV is divided by resistors R4 and R5, and R5 = 51 KΩ ± 1% = 50.5 KΩ to 51.5 KΩ R4 = 3.3 KΩ ± 1% = 3.27 KΩ to 3. 33 KΩ
And

【0023】以上の値を式(12)に代入することで、
過電流検出電流値を計算すると、 ID=(1/(5.05〜5.15))×(((3.27〜3.33)/(53.77〜54.
83))×0.5±0.004)×(21.05〜21.15)/0.017 となり、その最大値は、 IDmax=(1/5.05)×((3.33/53.77)×0.5+0.004)×21.15/0.017 =8.6A となり、その最小値は、 IDmin=(1/5.15)×((3.27/54.83)×0.5-0.004)×21.05/0.017 =6.2A となる。
By substituting the above values into the equation (12),
When calculating the overcurrent detection current value, ID = (1 / (5.05 ~ 5.15)) x (((3.27 ~ 3.33) / (53.77 ~ 54.
83)) x 0.5 ± 0.004) x (21.05 to 21.15) /0.017, and the maximum value is IDmax = (1 / 5.05) x ((3.33 / 53.77) x 0.5 + 0.004) x 21.15 / 0.017 = 8.6A. And the minimum value is IDmin = (1 / 5.15) × ((3.27 / 54.83) × 0.5-0.004) × 21.05 / 0.017 = 6.2A.

【0024】過電流検出には直接関係しないが、R3
は、Imに対してR3を流れる電流が無視できる程度、
数100μAとなるよう、51KΩとする。
Although not directly related to overcurrent detection, R3
Is such that the current flowing through R3 with respect to Im is negligible,
It is set to 51 KΩ so as to be several 100 μA.

【0025】なお、上記実施例1においては、センスF
ETのデータシートに記載されていない抵抗rbを仮定
及び実験から求める必要があること、Vccの設定値の
ばらつきにより過電流検出電流値の値が変化するため、
検出精度を上げるのに調整が必要である。しかし、本実
施例2においては、rb及びVccに依存しない回路方
式であるため、より、有効な回路である。
In the first embodiment, the sense F
Since it is necessary to obtain the resistance rb not described in the ET data sheet from assumptions and experiments, and the value of the overcurrent detection current value changes due to variations in the set value of Vcc,
Adjustment is necessary to improve the detection accuracy. However, in the second embodiment, since the circuit system does not depend on rb and Vcc, the circuit is more effective.

【0026】[0026]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。つ
まり、負荷をセンスFET10のソースとGND間に接
続しているため、負荷のGND電位を安定にすることが
できる。このため、GNDからの電位で動作する回路に
使用できる。また、本発明の回路は、過電流の原因が取
り除かれれば、部品の交換をすることなく、電源の再起
動で正常に復帰できる効果がある。
Since the present invention is configured as described above, it has the following effects. That is, since the load is connected between the source of the sense FET 10 and GND, the GND potential of the load can be stabilized. Therefore, it can be used in a circuit that operates with the potential from GND. Further, the circuit of the present invention has an effect that if the cause of the overcurrent is removed, it can be restored to normal by restarting the power supply without replacing parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回路ブロック図である。FIG. 1 is a circuit block diagram of the present invention.

【図2】本発明の過電流検出の説明図である。FIG. 2 is an explanatory diagram of overcurrent detection of the present invention.

【図3】本発明の等価回路図である。FIG. 3 is an equivalent circuit diagram of the present invention.

【図4】本発明の別の実施例を示す回路ブロック図であ
る。
FIG. 4 is a circuit block diagram showing another embodiment of the present invention.

【図5】センスFETの等価回路図である。FIG. 5 is an equivalent circuit diagram of a sense FET.

【図6】従来の回路ブロック図である。FIG. 6 is a conventional circuit block diagram.

【符号の説明】 10 センスFET 11 負荷 12 ゲートドライブ 13 コンパレータ 14 電源 15 センス抵抗 16 基準電圧[Explanation of Codes] 10 sense FET 11 load 12 gate drive 13 comparator 14 power supply 15 sense resistor 16 reference voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ドレイン(DR)に電源(14)を接続
し、ソース(SR)とGNDの間に負荷(11)を接続
し、ゲート(GT)にゲートドライブ(12)を接続
し、ミラー(ML)とケルビン(KL)の間にセンス抵
抗(Rs)(15)を接続したセンスFET(10)を
設け、 ケルビン(KL)を一方の入力(Vc+)に入力し、ミ
ラー(ML)とGND間をR1及びR2で分圧してもう
一方の入力(Vc−)に入力し、出力をゲートドライブ
(12)に接続したコンパレータ(13)を設けた、 ことを特徴とする過電流検出回路。
1. A power supply (14) is connected to the drain (DR), a load (11) is connected between the source (SR) and GND, a gate drive (12) is connected to the gate (GT), and a mirror is provided. A sense FET (10) having a sense resistor (Rs) (15) connected between (ML) and Kelvin (KL) is provided, and Kelvin (KL) is input to one input (Vc +) and is connected to a mirror (ML). An overcurrent detection circuit characterized by comprising a comparator (13) in which a voltage between GNDs is divided by R1 and R2 and input to the other input (Vc-), and an output is connected to a gate drive (12).
【請求項2】 コンパレータ(13)の入出力は、ケル
ビン(KL)を一方の入力(Vc+)に入力し、ミラー
(ML)とGND間にダイオードとダイオードを流れる
電流値を決める抵抗R3を接続し、上記ダイオードの両
端をR4及びR5で分圧してもう一方の入力(Vc−)
に入力し、出力をゲートドライブ(12)に接続したこ
とを特徴とする請求項1記載の過電流検出回路。
2. The input / output of the comparator (13) inputs Kelvin (KL) into one input (Vc +), and connects a diode between the mirror (ML) and GND and a resistor R3 that determines a current value flowing through the diode. Then, both ends of the diode are divided by R4 and R5 and the other input (Vc-)
2. The overcurrent detection circuit according to claim 1, wherein the output is connected to the gate drive and the output is connected to the gate drive.
JP7179465A 1995-04-24 1995-06-22 Overcurrent detector circuit Pending JPH0915271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179465A JPH0915271A (en) 1995-04-24 1995-06-22 Overcurrent detector circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-123169 1995-04-24
JP12316995 1995-04-24
JP7179465A JPH0915271A (en) 1995-04-24 1995-06-22 Overcurrent detector circuit

Publications (1)

Publication Number Publication Date
JPH0915271A true JPH0915271A (en) 1997-01-17

Family

ID=26460166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179465A Pending JPH0915271A (en) 1995-04-24 1995-06-22 Overcurrent detector circuit

Country Status (1)

Country Link
JP (1) JPH0915271A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222533U (en) * 1975-08-06 1977-02-17
JPS57155486U (en) * 1981-03-25 1982-09-30
JPS58158560A (en) * 1982-03-16 1983-09-20 Nec Corp Over-current detection circuit
JPS59116559A (en) * 1982-09-30 1984-07-05 ザ・ビ−・エフ・グツドリツチ・カンパニ− Circuit for monitoring current
JPH02134575A (en) * 1988-11-15 1990-05-23 Anarogu Debaisezu Kk Power supply current measuring circuit
JPH02181663A (en) * 1989-01-04 1990-07-16 Nissan Motor Co Ltd Current sensing circuit
JPH02181664A (en) * 1989-01-04 1990-07-16 Nissan Motor Co Ltd Current sensing circuit
JPH03111916A (en) * 1989-05-09 1991-05-13 United Technol Automot Inc Current control circuit
JPH03229314A (en) * 1990-02-05 1991-10-11 Nippondenso Co Ltd Power semiconductor device
JPH03262209A (en) * 1990-03-12 1991-11-21 Nec Kansai Ltd Current detection circuit
JPH0484773A (en) * 1990-07-27 1992-03-18 Nippon Inter Electronics Corp Shunt resistor for current detection
JPH06213939A (en) * 1993-01-19 1994-08-05 Tokai Rika Co Ltd Current detection circuit
JPH11304877A (en) * 1998-04-20 1999-11-05 Advantest Corp Voltage applying current measuring circuit

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222533U (en) * 1975-08-06 1977-02-17
JPS57155486U (en) * 1981-03-25 1982-09-30
JPS58158560A (en) * 1982-03-16 1983-09-20 Nec Corp Over-current detection circuit
JPS59116559A (en) * 1982-09-30 1984-07-05 ザ・ビ−・エフ・グツドリツチ・カンパニ− Circuit for monitoring current
JPH02134575A (en) * 1988-11-15 1990-05-23 Anarogu Debaisezu Kk Power supply current measuring circuit
JPH02181663A (en) * 1989-01-04 1990-07-16 Nissan Motor Co Ltd Current sensing circuit
JPH02181664A (en) * 1989-01-04 1990-07-16 Nissan Motor Co Ltd Current sensing circuit
JPH03111916A (en) * 1989-05-09 1991-05-13 United Technol Automot Inc Current control circuit
JPH03229314A (en) * 1990-02-05 1991-10-11 Nippondenso Co Ltd Power semiconductor device
JPH03262209A (en) * 1990-03-12 1991-11-21 Nec Kansai Ltd Current detection circuit
JPH0484773A (en) * 1990-07-27 1992-03-18 Nippon Inter Electronics Corp Shunt resistor for current detection
JPH06213939A (en) * 1993-01-19 1994-08-05 Tokai Rika Co Ltd Current detection circuit
JPH11304877A (en) * 1998-04-20 1999-11-05 Advantest Corp Voltage applying current measuring circuit

Similar Documents

Publication Publication Date Title
JP4630764B2 (en) Method and apparatus for sensing positive and negative peak inductor current without loss in a high side switch
KR960005604B1 (en) Linear load current measurement circuit
KR0128731B1 (en) Differential amplififr and current sensing circuit and
US7109761B2 (en) Comparator circuit
US5004970A (en) Device and a process for detecting current flow in a MOS transistor
US6995555B2 (en) Apparatus and method for determining a current through a power semiconductor component
EP0743529B1 (en) Method and corresponding circuit for detecting an open load
JP3627385B2 (en) Load current supply circuit with current detection function
JP3383688B2 (en) Circuit device for controlling load and identifying disconnection state
US20040227539A1 (en) Current sensing for power MOSFET operable in linear and saturated regions
JPH075225A (en) Circuit structure for monitoring of drain current of metal-oxide semiconductor field-effect transistor
JP2001216033A (en) Power source supply controller and power source supply control method
JPH10332751A (en) Abnormal current detection circuit and load driving circuit using it
JP2001345686A (en) Current detection circuit
JPH09257840A (en) Overcurrent detecting circuit
KR19990055505A (en) Back bias voltage level detector
JPH0915271A (en) Overcurrent detector circuit
US6998827B2 (en) Switching voltage regulator with negative temperature compensation
US6724598B2 (en) Solid state switch with temperature compensated current limit
JP3092062B2 (en) Semiconductor device
JPS636908A (en) Constant current source circuit
JPH05259833A (en) Comparator starting circuit
JPH0327407A (en) Regulating circuit of inductive load current
JPH08223013A (en) Overcurrent protection device for power transistor
US5978249A (en) High impedance signal conversion circuit and method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031118