JPH09152434A - Matrix representation method of protein stereo structure, partial structure extraction method and stereo structure analysis system of protein - Google Patents

Matrix representation method of protein stereo structure, partial structure extraction method and stereo structure analysis system of protein

Info

Publication number
JPH09152434A
JPH09152434A JP7313950A JP31395095A JPH09152434A JP H09152434 A JPH09152434 A JP H09152434A JP 7313950 A JP7313950 A JP 7313950A JP 31395095 A JP31395095 A JP 31395095A JP H09152434 A JPH09152434 A JP H09152434A
Authority
JP
Japan
Prior art keywords
protein
matrix
dimensional structure
dimensional
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7313950A
Other languages
Japanese (ja)
Other versions
JP3483374B2 (en
Inventor
Kiyouko Takiguchi
今日子 瀧口
Hirofumi Doi
洋文 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31395095A priority Critical patent/JP3483374B2/en
Publication of JPH09152434A publication Critical patent/JPH09152434A/en
Application granted granted Critical
Publication of JP3483374B2 publication Critical patent/JP3483374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To express a stereo structure of protein as a whole in an easily understandable manner by a matrix while extracting a partial structure of the protein using the matrix. SOLUTION: In view of hierarchy noted in a stereo structure of protein, a matrix having a hierarchy corresponding thereto is used to express the stereostructure of protein. As regard to a secondary structure packing as illustrated in (a), interaction between individual secondary structures is described at the upper right portion and positional relationship therebetween at the lower left portion as shown by (c) to build a matrix. As regard to a part of the matrix as illustrated in (c), interaction between residual amino groups is represented by a matrix as shown by (d). In the interaction and positional relationship between the secondary structures, the secondary structure is abstracted as vector and the representation thereof is made by an angle therebetween and the minimum of all distances between carbons. To express a main chain structure, two facial angles (ϕ, ψ, ω) and a distance between αcarbons are used. Characteristic partial structure is extracted by comparing matrixes between the proteins.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】生体内で生命維持のために重
要な役割を担っているタンパク質の機能を理解するため
には、その立体構造を知る必要がある。本発明はタンパ
ク質の立体構造の表現方法およびタンパク質の部分構造
抽出方法並びにタンパク質の立体構造解析システムに関
し、さらに詳細には、タンパク質の立体構造を階層化さ
れた行列で表現し、その行列に基づきタンパク質の部分
構造を抽出する方法並びにタンパク質の立体構造解析シ
ステムに関するものである。
BACKGROUND OF THE INVENTION In order to understand the function of a protein that plays an important role in life support in vivo, it is necessary to know its three-dimensional structure. The present invention relates to a method for expressing a three-dimensional structure of a protein, a method for extracting a partial structure of a protein, and a three-dimensional structure analysis system for a protein. More specifically, the three-dimensional structure of a protein is expressed in a hierarchical matrix, and the protein is expressed based on the matrix. The present invention relates to a method for extracting a partial structure of a protein and a protein three-dimensional structure analysis system.

【0002】[0002]

【従来の技術】タンパク質は20種類のアミノ酸が重合
した生体高分子であり、アミノ酸の並び方(アミノ酸配
列)はタンパク質ごとに異なっている。タンパク質の立
体構造形成に必要な情報は全て、このアミノ酸配列によ
り与えられると考えられている。現在では配列解析技術
の進歩とゲノムプロジェクトの進展により、配列データ
は大量に蓄積されてきている。一方、X線結晶解析やN
MRによって決定されるタンパク質立体構造データは、
近年の技術的な進歩で急速にその数が増えてきていると
はいえ、膨大に増えている配列データと比較して、はる
かに少ない。そのため、アミノ酸配列から特定のタンパ
ク質立体構造を予測する研究が行われているが、立体構
造形成のメカニズムを完全に証明する原理は解明されて
おらず、構造予測は未だ難しい問題である。すなわち、
こうした構造予測の問題を解決する意味でも、既知の立
体構造の解析が必要となっている。
2. Description of the Related Art A protein is a biopolymer obtained by polymerizing 20 kinds of amino acids, and the arrangement of amino acids (amino acid sequence) is different for each protein. It is believed that this amino acid sequence provides all the information necessary for protein conformation formation. At present, a large amount of sequence data has been accumulated due to the progress of sequence analysis technology and the progress of genome project. On the other hand, X-ray crystallography and N
The protein three-dimensional structure data determined by MR is
Although the number is rapidly increasing due to technological progress in recent years, it is far less than the enormous amount of sequence data. Therefore, studies have been conducted to predict a specific protein tertiary structure from the amino acid sequence, but the principle that completely proves the mechanism of the tertiary structure formation has not been clarified, and structural prediction is still a difficult problem. That is,
In order to solve such a problem of structure prediction, it is necessary to analyze a known three-dimensional structure.

【0003】タンパク質の立体構造は、X線結晶解析や
NMRで決定された各構成原子の三次元座標値として表
示される。タンパク質に関連した情報およびその立体構
造情報を提供するデータベースとしては、プロテインデ
ータバンク(以下、PDBという)が知られており、該
データバンクには、各タンパク質の立体構造情報とし
て、上記した各タンパク質を構成する各原子の三次元座
標値がテキストファイルとして格納されている。しか
し、上記した三次元座標値でタンパク質の立体構造を表
現する手法では、最も小さなアミノ酸であるグリシン一
つを表示するだけでも30もの座標値を指定しなければ
ならない。
The three-dimensional structure of a protein is displayed as a three-dimensional coordinate value of each constituent atom determined by X-ray crystallography or NMR. A protein data bank (hereinafter referred to as PDB) is known as a database that provides information relating to proteins and their three-dimensional structure information. In the data bank, each protein described above as three-dimensional structure information of each protein is known. The three-dimensional coordinate values of each atom forming is stored as a text file. However, in the above-mentioned method of expressing the three-dimensional structure of a protein with three-dimensional coordinate values, even if only one of the smallest amino acids, glycine, is displayed, 30 coordinate values must be specified.

【0004】そこで、従来から、立体構造解析をする上
で、より容易にタンパク質立体構造を表現するための種
々の方法が考えられてきた。中でも、二次元行列を用い
た方法は古くから試みられているが、用いられる行列は
α炭素間距離の行列であるdistance matrix 〔文献:Li
ebman,M.N.,Venanzi,C.A. and Weinstein,H.(1985) Bip
olymers,24,1722-1758、Richards,F.M. andKundrot,C.
E.(1988) Proteins,3,71-84 〕や van der Waalsエネル
ギーなどから定義されるアミノ酸間の相互作用を行列化
したcontact map 〔文献:Godzik,A.and Sander,C.(198
9) Protein Engng,2,589-596 、Godzik,A.,Skolnick,J.
andKolinski,A.(1993) Protein Engng,6,801-810 〕で
あった。
[0004] Therefore, various methods have been conventionally considered for more easily expressing the protein three-dimensional structure in the three-dimensional structure analysis. Among them, a method using a two-dimensional matrix has been tried for a long time, but the matrix used is a matrix of α-carbon distances [reference: Li
ebman, MN, Venanzi, CA and Weinstein, H. (1985) Bip
olymers, 24,1722-1758, Richards, FM and Kundrot, C.
E. (1988) Proteins, 3,71-84] and van der Waals energies. A contact map that matrixes the interactions between amino acids [Reference: Godzik, A. and Sander, C. (198
9) Protein Engng, 2,589-596, Godzik, A., Skolnick, J.
and Kolinski, A. (1993) Protein Engng, 6,801-810].

【0005】これらの方法では、タンパク質分子中のア
ミノ酸や原子間の局所的な位置関係や相互作用を知るこ
とは出来るが、分子全体の構造を直感的に理解すること
は難しい。全体構造をより理解しやすい形で表現するに
は、二次構造が用いられることが多い。タンパク質分子
では、アミノ酸は全て炭素原子(α炭素)に水素原子、
−NH2基、−COOH基、および側鎖と呼ばれるアミ
ノ酸の種類を決定する基が結合した構造であり、脱水縮
合して結合(ペプチド結合)している。側鎖を除くペプ
チド結合した鎖を主鎖といい、主鎖には規則的な構造が
見いだされる。この規則的構造は二次構造と呼ばれ、後
述するα−ヘリックスとβ−シートとに大別される。
With these methods, it is possible to know the local positional relationship and interaction between amino acids and atoms in a protein molecule, but it is difficult to intuitively understand the structure of the entire molecule. Secondary structures are often used to represent the overall structure in a more understandable form. In protein molecules, all amino acids are carbon atoms (α carbon), hydrogen atoms,
It has a structure in which a —NH 2 group, a —COOH group, and a group called a side chain that determines the type of amino acid are bound, and they are bound by dehydration condensation (peptide bond). A peptide-bonded chain excluding side chains is called a main chain, and a regular structure is found in the main chain. This regular structure is called a secondary structure and is roughly classified into an α-helix and a β-sheet described later.

【0006】したがって、タンパク質立体構造には、原
子→アミノ酸→二次構造→三次構造(二次構造等の各要
素相互の配置)という階層性が存在し、立体構造は二次
構造の配置(パッキング)として表すことができる。二
次構造パッキングについては、二次構造の中心に位置す
るアミノ酸間の距離や二次構造の軸がなす角度などによ
って統計的に局所構造のパラメータを解析する研究がな
されたが、立体構造全体の表現を目的にしていなかった
〔文献:Cohen,F.E.,Sternberg,M.J.E. and Taylor,W.
R.(1982) J.Mol.Biol.,156,821-862 〕。また、二次構
造を一つの単位として扱い、二次元的トポロジーを表し
た方法もあるが〔文献:Karle,I.L,Flippen-Anderson,
J.L.,Sukumar,M. and Balaram,P(1992) Proteins,12,32
4-330〕、この方法では二次構造間の空間的関係につい
ての情報が抽象化され、二次構造の空間的配置自体を数
値化したものでないため、三次元のパッキングを正確に
数値化して表現できない欠点があった。
Therefore, the protein three-dimensional structure has a hierarchy of atoms → amino acids → secondary structure → tertiary structure (arrangement of each element such as secondary structure), and the three-dimensional structure has a secondary structure arrangement (packing). ). Regarding the secondary structure packing, studies have been conducted to statistically analyze the parameters of the local structure by the distance between amino acids located at the center of the secondary structure and the angle formed by the axes of the secondary structure. Not intended for expression [literature: Cohen, FE, Sternberg, MJE and Taylor, W.
R. (1982) J. Mol. Biol., 156, 821-862]. There is also a method of treating a secondary structure as one unit and expressing a two-dimensional topology [Reference: Karle, IL, Flippen-Anderson,
JL, Sukumar, M. and Balaram, P (1992) Proteins, 12, 32
4-330], this method abstracts the information about the spatial relationship between the secondary structures and does not quantify the spatial arrangement of the secondary structure itself.Therefore, it is necessary to accurately quantify the three-dimensional packing. There was a flaw that I could not express.

【0007】[0007]

【発明が解決しようとする課題】以上のように、従来技
術では、直感的に理解し易い形でタンパク質の立体構造
全体を表現することができず、また、実際の構造解析に
おいて、二次構造パッキングの比較を有効に行う手段は
提供されていなかった。本発明は上記した従来技術の問
題点を考慮してなされたものであり、本発明の第1の目
的は、タンパク質の立体構造全体を理解し易い形で表現
することができるタンパク質立体構造の行列表現方法を
提供することである。本発明の第2の目的は、上記タン
パク質の立体構造表現した行列を用いてタンパク質の部
分構造を抽出するタンパク質の部分構造抽出方法を提供
することである。本発明の第3の目的は、上記タンパク
質の立体構造表現した行列を用いてタンパク質の部分構
造を抽出し、タンパク質の立体構造を解析するタンパク
質の立体構造解析システムを提供することである。
As described above, according to the prior art, it is not possible to express the entire three-dimensional structure of a protein in a form that is intuitively easy to understand, and in the actual structural analysis, the secondary structure cannot be expressed. No efficient means of packing comparison was provided. The present invention has been made in consideration of the above-mentioned problems of the prior art, and a first object of the present invention is to provide a matrix of protein three-dimensional structures capable of expressing the whole three-dimensional structure of a protein in an easily understandable form. It is to provide a method of expression. A second object of the present invention is to provide a method for extracting a partial structure of a protein, which extracts a partial structure of the protein using the matrix representing the three-dimensional structure of the protein. A third object of the present invention is to provide a protein three-dimensional structure analysis system that analyzes a three-dimensional structure of a protein by extracting a partial structure of the protein using a matrix representing the three-dimensional structure of the protein.

【0008】[0008]

【課題を解決するための手段】図1〜図3は本発明の原
理を説明する図であり、図1はタンパク質立体構造の階
層性と階層性を持つ行列表現を示し、図2は二次構造の
ベクトル化と二次構造間の関係を表すパラメータを示
し、図3はタンパク質主鎖の二面角を示している。図1
(a)はタンパク質の二次構造パッキングを概念的に示
した図であり、h1〜h3はα−ヘリックス、e1〜e
4はβ−シート、l1〜l5はループ(それぞれが二次
構造である)を示し、同図(b)は(a)の局所的な二
次構造パッキング〔(a)におけるβ−シートe1,e
2とループl3の部分〕を構成するアミノ酸残基F,
P,E,S,…,各々の関係を示している。
1 to 3 are views for explaining the principle of the present invention. FIG. 1 shows a hierarchical structure of a protein three-dimensional structure and a matrix expression having a hierarchical structure, and FIG. The parameters showing the relationship between the vectorization of the structure and the secondary structure are shown, and FIG. 3 shows the dihedral angle of the protein main chain. FIG.
(A) is a figure which showed notionally the secondary structure packing of protein, h1-h3 are (alpha)-helices, e1-e.
4 is a β-sheet, 11 to 15 are loops (each of which has a secondary structure), and FIG. 4B shows the local secondary structure packing of FIG. e
2 and part of the loop 13]],
P, E, S, ..., Respective relationships are shown.

【0009】本発明においては、タンパク質の立体構造
に見られる原子→アミノ酸→二次構造→三次構造という
階層性に着目し、タンパク質の立体構造を対応した図1
(c)(d)に示すような階層性を持った行列で表現す
る。例えば、同図(a)に示す二次構造パッキングにつ
いて、同図(c)に示すように、各二次構造間の相互作
用を対角線の右上部分に記述し、各二次構造の位置関係
を対角線の左下部分に記述して行列を構成する。同図
(c)において、hはα−ヘリックス、eはβ−シー
ト、lはループを示しており、右上部分に各二次構造間
の距離(濃い部分ほど距離が近いことを示している)を
記述し、左下部分に二次構造の相互の位置関係(Aは逆
並行、Pは並行等)を記述している。また、同図(d)
に示すように、同図(c)に示す行列のe1−l3−e
2の部分について、アミノ酸残基の相互作用を同図
(d)に示すように行列で表現する。すなわち、同図
(d)に示すように、同図(b)に示す局所的な二次構
造パッキングを構成するアミノ酸残基F,P,E,S,
…,とその相互作用(アミノ酸残基間の距離)を対角線
の右上部分に記述する。
In the present invention, focusing on the hierarchical structure of atoms → amino acids → secondary structure → tertiary structure found in the three-dimensional structure of proteins, the three-dimensional structure of the protein corresponding to FIG.
It is expressed by a matrix having a hierarchical structure as shown in (c) and (d). For example, regarding the secondary structure packing shown in FIG. 7A, the interaction between the secondary structures is described in the upper right part of the diagonal line as shown in FIG. Describe in the lower left part of the diagonal to form a matrix. In FIG. 7C, h is an α-helix, e is a β-sheet, l is a loop, and the distance between the secondary structures is in the upper right part (the darker the part, the closer the distance is). And the mutual positional relationship of the secondary structures (A is antiparallel, P is parallel, etc.) is described in the lower left part. Also, FIG.
, The matrix e1-l3-e of the matrix shown in FIG.
Regarding the part 2, the interaction of amino acid residues is expressed by a matrix as shown in FIG. That is, as shown in (d) of the same figure, amino acid residues F, P, E, S, which constitute the local secondary structure packing shown in (b) of the same figure.
…, And its interaction (distance between amino acid residues) are described in the upper right part of the diagonal line.

【0010】二次構造間の相互作用と相互の位置関係
は、図2に示すように二次構造をベクトルとして抽象化
して表現する。すなわち、同図に示すように、それぞれ
のベクトル間の角度により各二次構造同士の向きの関係
(平行、逆平行等)を表現し、また、各二次構造間の全
α炭素間距離のうちの最小距離をベクトル間距離とす
る。 さらに、アミノ酸残基の二面角(φ,ψ,ω)と
α炭素間距離をループ領域や二次構造における詳細な主
鎖構造表現に用いる。
The interaction between the secondary structures and the mutual positional relationship are expressed by abstracting the secondary structure as a vector as shown in FIG. That is, as shown in the figure, the relationship between the orientations of the secondary structures (parallel, antiparallel, etc.) is expressed by the angle between the vectors, and the total α-carbon distance between the secondary structures is expressed. The minimum distance among them is the inter-vector distance. Furthermore, the dihedral angle (φ, ψ, ω) of the amino acid residue and the α-carbon distance are used for detailed main-chain structure representation in the loop region and secondary structure.

【0011】図3は上記アミノ酸残基の二面角を説明す
る図であり、二面角は同図(a)に示す角度θで定義さ
れる。すなわち、同図(a)(i) に示すように結合され
た原子A,B,C,Dについて、同図(a)(ii)に示す
ように((ii)は上記(i) をX方向から見た図)、原子A
を手前に置き、中心の結合B−Cを紙面に対して垂直に
たて、結合A−Bを基準として、結合D−Cが作る角θ
を二面角と定義する。そして、同図(b)に示すような
結合の場合、二面角(φ,ψ,ω)を同図に示すように
定め、主鎖構造をこの二面角とα炭素間距離を用いて表
現する。また、本発明においては、上記階層化されて表
現されたタンパク質間の行列を比較することにより、タ
ンパク質の特徴的な部分構造の抽出を行う。
FIG. 3 is a diagram for explaining the dihedral angle of the above amino acid residue, and the dihedral angle is defined by the angle θ shown in FIG. That is, regarding atoms A, B, C, and D that are bonded as shown in (a) (i) of the same figure, as shown in (a) (ii) ((ii) (Viewed from the direction), atom A
, The central bond B-C is laid perpendicular to the paper surface, and the angle θ formed by the bond D-C with reference to the bond A-B
Is defined as the dihedral angle. Then, in the case of the bond as shown in FIG. 7B, the dihedral angle (φ, ψ, ω) is determined as shown in the same figure, and the main chain structure is determined by using this dihedral angle and the α-carbon distance. Express. Further, in the present invention, the characteristic partial structure of a protein is extracted by comparing the matrixes of the proteins expressed in the above-mentioned hierarchical form.

【0012】本発明の請求項1〜3の発明においては、
上記のように、タンパク質の立体構造の階層性に対応さ
せて、タンパク質を構成する各要素の相互作用/位置関
係を階層性をもった行列で表現しているので、タンパク
質の立体構造を直感的に理解することができる。また、
本発明の請求項4,5の発明においては、上記のようタ
ンパク質の立体構造を行列で表現し、その行列を比較し
て、タンパク質の部分構造を抽出するようにしているの
で、タンパク質間で共通する構造や異なる構造を容易に
抽出することが可能となり、タンパク質の立体構造の解
析に寄与することができる。
[0012] In the invention of claims 1 to 3 of the present invention,
As described above, the interaction / positional relationship of each element constituting the protein is expressed by a matrix having a hierarchical structure corresponding to the hierarchical structure of the protein, so that the three-dimensional structure of the protein is intuitive. Can be understood. Also,
According to the fourth and fifth aspects of the present invention, the three-dimensional structure of the protein is expressed by a matrix as described above, and the matrices are compared to extract the partial structure of the protein. It is possible to easily extract a structure that has a difference or a different structure, which can contribute to the analysis of the three-dimensional structure of the protein.

【0013】[0013]

【発明の実施の形態】図4は本発明の実施例のシステム
の概略構成を示す図である。同図において、1は本発明
に係わるタンパク質の立体構造を行列で表現するととも
に、その行列を比較して部分構造を抽出するシステムで
あり、タンパク質の行列表現処理プログラム1aと行列
を比較し部分構造を抽出する行列比較/部分構造抽出処
理プログラム1bから構成されている。2は前記したプ
ロテインデータバンク(PDB)であり、PDB2に
は、同図に示すように各タンパク質に関連する情報とと
もに、各タンパク質を構成する原子のX,Y,Z座標値
が格納されている。なお、以下の説明においては、タン
パク質名を特定する際、上記PDBで使用されているプ
ロテイン・コードネームを使用する。
FIG. 4 is a diagram showing a schematic configuration of a system according to an embodiment of the present invention. In the figure, reference numeral 1 is a system for expressing a three-dimensional structure of a protein according to the present invention by a matrix, and comparing the matrices to extract a partial structure. The matrix comparison / partial structure extraction processing program 1b for extracting Reference numeral 2 denotes the above-mentioned protein data bank (PDB), and PDB2 stores information relating to each protein as well as X, Y, Z coordinate values of atoms constituting each protein as shown in FIG. . In the following description, when specifying a protein name, the protein code name used in the PDB is used.

【0014】3は上記したシステム1の行列表現処理プ
ログラム1aにより生成される階層化されたタンパク質
の立体構造を表現する行列、4は上記システム1の行列
比較/部分構造抽出処理プログラム1bにより抽出され
たタンパク質の部分構造を表す行列である。5はマンマ
シン・インタフェースであり、オペレータはマンマシン
・インタフェース5を介して、システムへの各種パラメ
ータの設定、および、処理結果の出力等を行う。
Numeral 3 is a matrix representing the three-dimensional structure of the hierarchical protein generated by the matrix expression processing program 1a of the system 1 described above, and 4 is extracted by the matrix comparison / partial structure extraction processing program 1b of the system 1 described above. Is a matrix representing the partial structure of the protein. Reference numeral 5 denotes a man-machine interface, and the operator sets various parameters to the system and outputs processing results via the man-machine interface 5.

【0015】図5は図4に示した行列表現処理プログラ
ム1aによるタンパク質立体構造の行列表現処理を説明
する図であり、同図により本実施例におけるタンパク質
の立体構造の行列表現について説明する。本実施例にお
いて、タンパク質の立体構造表現は次のように行なわれ
る。 (1) PDBに格納されたタンパク質の三次元原子座標を
用いて、各α炭素間距離を求める。また、前記図3で説
明したアミノ酸残基の二面角(φ,ψ,ω)を求め、さ
らに、前記図2で説明したようにタンパク質を構成する
二次構造をベクトル化する。 (2) ベクトル化された二次構造について、前記図2で説
明したようにベクトルのなす角度を求め、上記(1) で求
めたα炭素間距離の内の最小のα炭素間距離を求める。
FIG. 5 is a diagram for explaining the matrix representation processing of the protein three-dimensional structure by the matrix representation processing program 1a shown in FIG. 4, and the matrix representation of the protein three-dimensional structure in the present embodiment will be described with reference to FIG. In this example, the three-dimensional structure of a protein is expressed as follows. (1) Using the three-dimensional atomic coordinates of the protein stored in PDB, the distance between each α-carbon is calculated. Further, the dihedral angle (φ, ψ, ω) of the amino acid residue described in FIG. 3 is determined, and the secondary structure constituting the protein is vectorized as described in FIG. (2) Regarding the vectorized secondary structure, the angle formed by the vector is obtained as described in FIG. 2, and the minimum α-carbon distance among the α-carbon distances obtained in (1) above is obtained.

【0016】(3) 上記ベクトル角、最小α炭素間距離に
より二次構造パッキングの行列表現を得る。図6〜図9
は上記のようにして得られた行列の一例を示す図であ
り、同図は、二種の抗体Fab(antigen binding flagm
ent)領域(1CBV,1CGS)H鎖における二次構造
パッキングを表す行列を示している。なお、1CBV,
1CGSは前記したPDBにおけるプロテイン・コード
ネームである。図6、図7は1CBVの行列を示し、図
8、図9は1CGSの行列を示しており、各二次構造に
対応するベクトルはN末端側から番号を付けて表示して
おり、Hはα−ヘリックス、Eはβ−シートを表してい
る。また、行列の対角線の右上に各ベクトルの距離、対
角線の左下にベクトルの角度(cos θの値)、対角線上
に構成アミノ酸残基数を配することにより、二次構造の
位置関係を表している。なお、同図中の斜線で示される
部分は、図8、図9に示した1CGSの行列との共通部
分である(後述する)。
(3) A matrix representation of the secondary structure packing is obtained from the vector angle and the minimum α-carbon distance. 6 to 9
Is a diagram showing an example of a matrix obtained as described above, which shows two types of antibodies Fab (antigen binding flagm).
ent) region (1CBV, 1CGS) shows a matrix representing secondary structure packing in the H chain. In addition, 1CBV,
1CGS is the protein code name in PDB described above. FIGS. 6 and 7 show a 1CBV matrix, FIGS. 8 and 9 show a 1CGS matrix, and vectors corresponding to each secondary structure are indicated by numbers from the N-terminal side, and H is α-helix, E represents β-sheet. Also, the positional relationship of the secondary structure is expressed by arranging the distance of each vector on the upper right of the diagonal line of the matrix, the angle of the vector (value of cos θ) on the lower left of the diagonal line, and the number of constituent amino acid residues on the diagonal line. There is. The shaded portions in the figure are common to the 1CGS matrix shown in FIGS. 8 and 9 (described later).

【0017】(4) 前記(1) で求めたα炭素間距離とアミ
ノ酸残基の二面角(φ,ψ,ω)からループ領域主鎖の
行列表現、アミノ酸残基間の関係の行列表現を得る。図
10は上記のようにして得られた行列の一例を示す図で
あり、同図は、1FDL(PDBにおけるプロテイン・
コードネーム)のCDRL1(後述する抗原を認識する
ための領域)を表す行列である。行列中、対角線上の第
1段に二面角φ、第2段に二面角ψ、第3段に二面角ω
を示し、対角線の右上にα炭素間距離を示している。
(4) Matrix expression of the main chain of the loop region and matrix expression of the relationship between amino acid residues from the α-carbon distance and the dihedral angles (φ, ψ, ω) of amino acid residues determined in (1) above To get FIG. 10 is a diagram showing an example of the matrix obtained as described above. In the figure, 1FDL (protein in PDB.
It is a matrix representing CDRL1 (a region for recognizing an antigen described later) of the code name). In the matrix, the dihedral angle φ is on the first stage on the diagonal line, the dihedral angle ψ is on the second stage, and the dihedral angle ω is on the third stage.
And the α-carbon distance is shown on the upper right of the diagonal line.

【0018】図11は図1に示した行列比較/部分構造
抽出処理プログラム1bによる部分構造抽出処理を説明
する図であり、同図により複数タンパク質の行列を用い
た行列比較/部分構造抽出処理について説明する。本実
施例において、タンパク質の立体構造を表現した行列を
用いて次のように部分構造が抽出される。 (1) タンパク質Aとタンパク質Bについて、図5に示し
た方法により、二次構造パッキングを表す行列A1,B
1を得る。これにより、タンパク質AとBについて、例
えば前記図6、7および図8、9に示したような行列が
得られる。 (2) 同様にして、タンパク質Aとタンパク質Bについて
主鎖の詳細な構造を表す行列A2,B2を得る。これに
より、タンパク質AとBについて、例えば前記図10に
示したような行列が得られる。 (3) 行列A1,B1について、行列値を比較し、共通パ
ッキングもしくは非共通パッキングを抽出する。同様に
行列A2,B2について、行列値を比較し、共通部分構
造、非共通部分構造を抽出する。
FIG. 11 is a diagram for explaining the partial structure extraction process by the matrix comparison / partial structure extraction process program 1b shown in FIG. 1. Regarding the matrix comparison / partial structure extraction process using a matrix of a plurality of proteins shown in FIG. explain. In this example, a partial structure is extracted as follows using a matrix expressing the three-dimensional structure of a protein. (1) For proteins A and B, matrices A1 and B representing secondary structure packing by the method shown in FIG.
Get 1. As a result, for proteins A and B, for example, the matrices shown in FIGS. 6 and 7 and FIGS. (2) Similarly, matrices A2 and B2 representing the detailed structures of the main chains of protein A and protein B are obtained. As a result, for proteins A and B, for example, the matrix shown in FIG. 10 is obtained. (3) The matrix values of the matrices A1 and B1 are compared, and common packing or non-common packing is extracted. Similarly, the matrix values of the matrices A2 and B2 are compared, and the common partial structure and the non-common partial structure are extracted.

【0019】上記のようにして前記した図6、図7に示
す1CBVの行列と図8、図9に示す1CGSの行列
を、距離の差<3.0、cos θの差<0.1の条件で比
較したところ、図6、図7の斜線部分に示すように両者
の共通パッキングを得ることができた。また、本実施例
のシステムを用い、タンパク質立体構造データバンクP
DBに登録されているマウス由来の抗体Fab領域の全
データについて、前記図6〜図9に示した二次構造パッ
キングを表現する行列を作成し、それらを比較した結
果、全てのFabに共通なβ−シートパッキングがある
ことが明らかとなり、共通パッキングを表現する行列が
得られた。
As described above, the 1CBV matrix shown in FIGS. 6 and 7 and the 1CGS matrix shown in FIGS. 8 and 9 are used for the distance difference <3.0 and cos θ difference <0.1. As a result of comparison under the conditions, it was possible to obtain the common packing of both as shown by the hatched portions in FIGS. In addition, using the system of this example, the protein structure data bank P
For all data of the mouse-derived antibody Fab region registered in DB, a matrix expressing the secondary structure packing shown in FIGS. 6 to 9 was created, and the results were compared. As a result, common to all Fabs. It became clear that there was β-sheet packing, and a matrix expressing common packing was obtained.

【0020】ところで、抗体では、CDR(complement
arity determining region )という、抗原を認識する重
要な領域はループ領域に存在している。CDRはH鎖・
L鎖にそれぞれ3つずつ計6つあり(この6つのCDR
をCDRH1,CDRH2,CDRH3,CDRL1,
CDRL2,CDRL3という)、あらゆる抗原を認識
する個々のタンパク質で極めて多様性に富んだ構造をし
ているが、CDRH3を除く5つのCDRについては、
canonical structure (典型的な構造)が定義されてい
る〔文献:Chothia,C.et al.(1989) Nature,342,877-88
3 〕。そこで、本実施例のシステムにより、前記した二
面角・α炭素間距離による上記canonical structure の
行列表現を行い、それらを比較した。なお、前記図10
はそれらの内の1FDLのCDRL1を表す行列であ
る。その結果、図12に示すようにChothia et al.の定
義によるcanonical structure がさらに細分化されるこ
とがわかった。
By the way, in the case of antibodies, CDR (complement
The important region for recognizing antigens, called the arity determining region, exists in the loop region. CDR is H chain
There are a total of 6 in each of the L chains (3 of these 6 CDRs
CDRH1, CDRH2, CDRH3, CDRL1,
CDRL2 and CDRL3), which are extremely diverse structures of individual proteins that recognize all antigens, except for CDR5,
A canonical structure has been defined [Reference: Chothia, C. et al. (1989) Nature, 342, 877-88.
3]. Therefore, the system of the present example performed matrix representation of the above canonical structure by the distance between the dihedral angle and the α-carbon, and compared them. In addition, in FIG.
Is a matrix representing 1 FDL CDRL1 among them. As a result, it was found that the canonical structure defined by Chothia et al. Was further subdivided as shown in FIG.

【0021】図12において、{L1−1,2,3,
4},{L2−1},{L3−1,2,3},{H1−
1,2},{H2−1,2,3,4}は上記文献に記載
されるChothia et al の分類であり、L1−2における
{a,b}、L2−1における{a〜e}、L3−1に
おける{a〜d}、H1−1,H1−2における{a〜
c},{a,b}、H2−1,2,4における{a,
b},{a,b},{a,b}は本発明の行列表現によ
り得られた細分化分類である。なお、図12に記載され
るJ539,HyHEL−5,…,はタンパク質名であ
り、前記図10に示される1FDL(PDBにおけるプ
ロテイン・コードネーム)は同図中のL1−2−aのD
1.3に対応する。
In FIG. 12, {L1-1, 2, 3,
4}, {L2-1}, {L3-1, 2, 3}, {H1-
1,2} and {H2-1,2,3,4} are the classifications of Chothia et al described in the above literature, and are {a, b} in L1-2 and {a to e} in L2-1. , L3-1 {a-d}, H1-1, H1-2 {a-
c}, {a, b}, {a, in H2-1, 2, 4
b}, {a, b} and {a, b} are subdivision classifications obtained by the matrix expression of the present invention. Note that J539, HyHEL-5, ... Described in FIG. 12 are protein names, and 1FDL (protein code name in PDB) shown in FIG. 10 is D of L1-2-a in FIG.
Corresponds to 1.3.

【0022】さらに、上記のようにして細分化された各
CDRの行列を用い、CDRがわかっていなかった抗体
1CBVのループ領域の行列とCDRがわかっている抗
体のループ領域の行列との比較を行った。その結果、C
DRがわかっていない抗体1CBVのCDRを求めるこ
とができた。上記実施例では、抗体を行列で表現し、各
行列を比較する例を説明したが、三次元座標値が与えら
れていれば、他のタンパク質に適用することもできる。
また、上記実施例では、二面角、α炭素による行列表現
をループ領域だけに適用した場合について示したが、詳
細に調べたい領域ならどこにでも用いることができ、二
次構造に用いても、あるいは、タンパク質分子全体に用
いてもよい。さらに、上記実施例では、二面角、α炭素
による行列を他のタンパク質におけるループ領域の特定
に用いたが(上記実施例ではCDR)、二次構造パッキ
ングを表す行列を同様のパッキングの特定に用いてもよ
い。
Further, using the matrix of each CDR subdivided as described above, the matrix of the loop region of antibody 1CBV whose CDR was unknown and the matrix of the loop region of the antibody whose CDR was known were compared. went. As a result, C
It was possible to determine the CDR of antibody 1CBV with unknown DR. In the above-mentioned Examples, an example was described in which antibodies are represented by matrices and the matrices are compared, but the invention can be applied to other proteins as long as three-dimensional coordinate values are given.
Further, in the above embodiment, the dihedral angle, the matrix expression by α carbon is applied only to the loop region, but it can be used anywhere as long as it is desired to be investigated in detail, and even if it is used for the secondary structure, Alternatively, it may be used for the entire protein molecule. Further, in the above-mentioned example, the matrix with dihedral angle and α carbon was used to identify the loop region in another protein (CDR in the above-mentioned example), but the matrix representing the secondary structure packing was used to identify the similar packing. You may use.

【0023】[0023]

【発明の効果】以上説明したように、本発明において
は、タンパク質の立体構造の階層性に対応させて、タン
パク質を階層性をもった行列で表現しているので、実際
のタンパク質分子の階層性と行列との対応が可能であ
り、直感的に立体構造を理解することができる。また、
上記実施例における抗体の二次構造パッキングにおける
共通パッキングの例に示したように、進化上、類縁関係
にあるタンパク質の大局的な折りたたみに関する情報の
獲得と、上記実施例における抗体のCDRの例で示した
ように、機能発現に重要な部分構造に関する情報の獲得
とを別個に考慮することができ、目的に合わせた解析が
可能となる。さらに、目的に合わせて不要な情報を省く
ことが可能であると同時に、興味ある領域の情報は行列
中に蓄えられているため、得られた行列を基にした解析
もできる。以上のように本発明は構造と機能の関係の解
明、および立体構造予測法の開発に寄与するところが大
きい。
As described above, in the present invention, since the protein is represented by a matrix having a hierarchical structure corresponding to the hierarchical structure of the three-dimensional structure of the protein, the hierarchical structure of the actual protein molecule. Can correspond to the matrix, and the three-dimensional structure can be intuitively understood. Also,
As shown in the example of the common packing in the secondary structure packing of the antibody in the above-mentioned example, in the acquisition of the information on the global folding of the proteins related in evolution, and the example of the CDR of the antibody in the above-mentioned example, As shown, it is possible to separately consider acquisition of information on a partial structure important for function expression, and it is possible to perform analysis tailored to the purpose. Furthermore, unnecessary information can be omitted according to the purpose, and at the same time, since the information of the region of interest is stored in the matrix, analysis based on the obtained matrix can be performed. As described above, the present invention largely contributes to the elucidation of the relationship between structure and function and the development of a three-dimensional structure prediction method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】タンパク質立体構造と本発明によるその行列表
現を示す図である。
1 is a diagram showing a protein three-dimensional structure and its matrix representation according to the present invention.

【図2】二次構造のベクトル化と二次構造間の関係を表
すパラメータを示す図である。
FIG. 2 is a diagram showing parameters representing a relationship between vectorization of secondary structures and secondary structures.

【図3】タンパク質主鎖の二面角を説明する図である。FIG. 3 is a diagram illustrating a dihedral angle of a protein main chain.

【図4】本発明の実施例のシステムの概略構成を示す図
である。
FIG. 4 is a diagram showing a schematic configuration of a system according to an embodiment of the present invention.

【図5】タンパク質立体構造の行列表現処理を説明する
図である。
FIG. 5 is a diagram illustrating a matrix expression process of a protein three-dimensional structure.

【図6】1CBVの二次構造パッキングの行列表現を示
す図である。
FIG. 6 is a diagram showing a matrix representation of 1CBV secondary structure packing.

【図7】1CBVの二次構造パッキングの行列表現を示
す図(続き)である。
FIG. 7 is a diagram (continuation) showing a matrix representation of secondary structure packing of 1CBV.

【図8】1CGSの二次構造パッキングの行列表現を示
す図である。
FIG. 8 is a diagram showing a matrix representation of 1CGS secondary structure packing.

【図9】1CGSの二次構造パッキングの行列表現を示
す図(続き)である。
FIG. 9 is a diagram (continuation) showing a matrix representation of secondary structure packing of 1CGS.

【図10】1FDLのCDRL1の行列表現を示す図で
ある。
FIG. 10 is a diagram showing a matrix representation of CDRL1 of 1FDL.

【図11】部分構造抽出処理を説明する図である。FIG. 11 is a diagram illustrating a partial structure extraction process.

【図12】細分化されたcanonical structure の分類を
示す図である。
FIG. 12 is a diagram showing classification of subdivided canonical structures.

【符号の説明】[Explanation of symbols]

1 行列表現、行列比較/部分構造抽出システム 2 プロテインデータバンク(PDB) 3 タンパク質の立体構造を表現する行列 4 タンパク質の部分構造 5 マンマシン・インタフェース h α−ヘリックス e β−シート l ループ 1 matrix expression, matrix comparison / partial structure extraction system 2 protein data bank (PDB) 3 matrix expressing protein three-dimensional structure 4 protein partial structure 5 man-machine interface h α-helix e β-sheet l loop

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 タンパク質の立体構造の階層性に対応さ
せて、タンパク質を構成する各要素の相互作用/位置関
係を階層性をもった行列で表現することを特徴とするタ
ンパク質立体構造の行列表現方法。
1. A matrix representation of a protein three-dimensional structure characterized in that the interaction / positional relationship of each element constituting the protein is expressed by a matrix having a hierarchical structure corresponding to the three-dimensional structure of the protein. Method.
【請求項2】 タンパク質の二次構造をベクトルで表現
し、該ベクトル間の角度とベクトル間距離を用いて二次
構造の配置を表現することを特徴とする請求項1のタン
パク質立体構造の行列表現方法。
2. The matrix of a protein three-dimensional structure according to claim 1, wherein the secondary structure of the protein is represented by a vector, and the arrangement of the secondary structure is represented by using an angle between the vectors and an inter-vector distance. expression methed.
【請求項3】 アミノ酸残基の2面角とα炭素間距離を
用いてタンパク質の主鎖構造を表現することを特徴とす
る請求項1のタンパク質立体構造の行列表現方法。
3. The matrix representation method for a protein three-dimensional structure according to claim 1, wherein the main chain structure of the protein is represented by using the dihedral angle of the amino acid residue and the α-carbon distance.
【請求項4】 タンパク質の立体構造の階層性に対応さ
せて、階層性をもった行列でタンパク質を構成する各要
素相互の配置を表現し、 上記行列を比較して、タンパク質の部分構造を抽出する
ことを特徴とするタンパク質の部分構造抽出方法。
4. An arrangement of elements constituting a protein is expressed by a matrix having a hierarchical structure corresponding to the hierarchical structure of the three-dimensional structure of the protein, and the partial structures of the protein are extracted by comparing the above matrices. A method for extracting a partial structure of a protein, comprising:
【請求項5】 タンパク質の三次元原子座標に基づき、
タンパク質の立体構造の階層性に対応させて、タンパク
質を構成する各要素の相互作用/位置関係を階層性をも
った行列で表現するタンパク質立体構造の行列表現手段
と、 上記行列表現手段により表現されたタンパク質立体構造
の行列値を比較する行列値比較手段とを備え、 上記行列値比較手段の比較結果に基づきタンパク質の共
通部分構造もしくは非共通部分構造を抽出することを特
徴とするタンパク質の立体構造解析システム。
5. Based on the three-dimensional atomic coordinates of the protein,
Corresponding to the hierarchical structure of the three-dimensional structure of the protein, the matrix expression means of the three-dimensional structure of the protein that expresses the interaction / positional relationship of each element that constitutes the protein by a matrix having a hierarchical structure, and the matrix expression means described above. And a matrix value comparing means for comparing the matrix values of the three-dimensional structure of the protein, and extracting the common partial structure or non-common partial structure of the protein based on the comparison result of the matrix value comparing means. Analysis system.
JP31395095A 1995-12-01 1995-12-01 Matrix expression method and partial structure extraction method of protein three-dimensional structure, and three-dimensional protein structure analysis system Expired - Fee Related JP3483374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31395095A JP3483374B2 (en) 1995-12-01 1995-12-01 Matrix expression method and partial structure extraction method of protein three-dimensional structure, and three-dimensional protein structure analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31395095A JP3483374B2 (en) 1995-12-01 1995-12-01 Matrix expression method and partial structure extraction method of protein three-dimensional structure, and three-dimensional protein structure analysis system

Publications (2)

Publication Number Publication Date
JPH09152434A true JPH09152434A (en) 1997-06-10
JP3483374B2 JP3483374B2 (en) 2004-01-06

Family

ID=18047453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31395095A Expired - Fee Related JP3483374B2 (en) 1995-12-01 1995-12-01 Matrix expression method and partial structure extraction method of protein three-dimensional structure, and three-dimensional protein structure analysis system

Country Status (1)

Country Link
JP (1) JP3483374B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797400B1 (en) * 2006-12-04 2008-01-28 한국전자통신연구원 Apparatus and method for protein structure comparison using principal components analysis and autocorrelation
JP2010517195A (en) * 2007-01-31 2010-05-20 桑迪▲亜▼医▲薬▼技▲術▼(上海)有限▲責▼任公司 Methods, systems, algorithms and means for the description of possible structures of actual and theoretical proteins, and for the evaluation of actual and theoretical proteins with respect to folding, overall shape and structure motifs
JP2014233228A (en) * 2013-05-31 2014-12-15 独立行政法人産業技術総合研究所 Protein structure evaluating device, protein structure evaluating method, protein structure evaluating program, and computer-readable recording medium in which structure evaluating program is recorded
JP2019102097A (en) * 2017-12-06 2019-06-24 学校法人近畿大学 Biopolymer three-dimensional structure display device, program and display method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797400B1 (en) * 2006-12-04 2008-01-28 한국전자통신연구원 Apparatus and method for protein structure comparison using principal components analysis and autocorrelation
JP2010517195A (en) * 2007-01-31 2010-05-20 桑迪▲亜▼医▲薬▼技▲術▼(上海)有限▲責▼任公司 Methods, systems, algorithms and means for the description of possible structures of actual and theoretical proteins, and for the evaluation of actual and theoretical proteins with respect to folding, overall shape and structure motifs
JP2014233228A (en) * 2013-05-31 2014-12-15 独立行政法人産業技術総合研究所 Protein structure evaluating device, protein structure evaluating method, protein structure evaluating program, and computer-readable recording medium in which structure evaluating program is recorded
JP2019102097A (en) * 2017-12-06 2019-06-24 学校法人近畿大学 Biopolymer three-dimensional structure display device, program and display method

Also Published As

Publication number Publication date
JP3483374B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
Jameson et al. The antigenic index: a novel algorithm for predicting antigenic determinants
CN108140060A (en) For handling the technology of mass spectrometric data
Efrat et al. Geometric algorithms for the analysis of 2D-electrophoresis gels
Kruis et al. Geometry and the hidden order of Luttinger liquids: The universality of squeezed space
Zanjani et al. Mask-MCNet: Instance segmentation in 3D point cloud of intra-oral scans
Curran et al. Computer aided manual validation of mass spectrometry-based proteomic data
Bridgeman et al. Computing data for Levin-Wen with defects
Ellison et al. Disentangling interacting symmetry-protected phases of fermions in two dimensions
JP3483374B2 (en) Matrix expression method and partial structure extraction method of protein three-dimensional structure, and three-dimensional protein structure analysis system
Chen et al. Automation and assessment of de novo modeling with Pathwalking in near atomic resolution cryoEM density maps
Chen et al. Reflected entropy in AdS3/WCFT
Qin et al. RGB-D grasp detection via depth guided learning with cross-modal attention
US20040128648A1 (en) Face correlation between computer aided design models
Fasulo et al. An algorithmic approach to multiple complete digest mapping
De Luca et al. Geometry vs Semantics: open issues on 3D reconstruction of architectural elements
CN107274284A (en) Bidirectinoally coupled method, device and transaction system
CN103247076A (en) Global optimization-based three-dimensional model synthesis method
Kaneta et al. A method of comparing protein molecular surface based on normal vectors with attributes and its application to function identification
JP3867863B2 (en) 3D structure processing equipment
JP3630725B2 (en) Three-dimensional shape input device and input method thereof
Kinjo et al. GIRAF: a method for fast search and flexible alignment of ligand binding interfaces in proteins at atomic resolution
Guerra et al. Analysis of secondary structure elements of proteins using indexing techniques
JP2002526863A (en) System for classification and generation of compounds
Baxter et al. Protein structure determination: combining inexact graph matching and deformable templates
Pfaendner et al. ART-SM: Boosting Fragment-based Backmapping by Machine Learning

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees