JPH09152268A - Freeze dryer - Google Patents

Freeze dryer

Info

Publication number
JPH09152268A
JPH09152268A JP31209895A JP31209895A JPH09152268A JP H09152268 A JPH09152268 A JP H09152268A JP 31209895 A JP31209895 A JP 31209895A JP 31209895 A JP31209895 A JP 31209895A JP H09152268 A JPH09152268 A JP H09152268A
Authority
JP
Japan
Prior art keywords
refrigerant
circulation path
trap
cooling
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31209895A
Other languages
Japanese (ja)
Inventor
Hidenori Awata
秀則 粟田
Takaaki Asakura
隆晃 朝倉
Morio Kikuchi
守夫 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIQUID GAS KK
Original Assignee
LIQUID GAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIQUID GAS KK filed Critical LIQUID GAS KK
Priority to JP31209895A priority Critical patent/JPH09152268A/en
Publication of JPH09152268A publication Critical patent/JPH09152268A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly freeze steam on a cooling part of a low-temperature trap of a freeze dryer that is used for medicine and food production, by providing a refrigerant circulation path to supply refrigerant to the low-temperature trap and a circulating device that forcibly circulates the refrigerant along the refrigerant circulation path. SOLUTION: A cooling/heating treatment part that is made up of shelf plates 2 and forms a part of a hot refrigerant circulation path B is provided in a drying chamber 1 and a vacuum pump 6 is connected to the drying chamber 1 by a pipeline 5 to evacuate the inside of the drying chamber 1. A low- temperature trap 3 and an auxiliary trap 7 are mounted on the pipeline 5 to recover steam sublimed from an article to be treated. The hot refrigerant circulation path B is equipped with a heater 10, a hot refrigerant circulation pump 11 and a heat exchanger 12 that uses liquefied nitrogen as a refrigerant. The low-temperature trap 3 has a cooling plate 4 inside and steam is frozen on the surface of the cooling plate 4. A refrigerant circulation path A is equipped with a blower 15 to circulate refrigerant to the cooling plate 4 and a liquefied nitrogen supplier 29 to supply liquefied nitrogen as refrigerant, and connected to the low-temperature trap 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、抗生物質
等の医薬品製造や加工食品の具材等の食品製造に使用さ
れている凍結乾燥装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a freeze-drying apparatus used for manufacturing pharmaceuticals such as antibiotics and foods such as ingredients for processed foods.

【0002】[0002]

【従来の技術】従来、この種の凍結乾燥装置では、図3
において示される構成を有する凍結乾燥装置、つまり、
低温トラップ3の冷却部4に熱媒液を供給する熱媒液循
環路A’を設けると共に、前記熱媒液循環路A’内の熱
媒液を冷却するための熱交換器31を設け、前記熱媒液
に対する冷媒として低温液化ガスを前記熱交換器31に
供給する液化ガス供給手段32を設けた凍結乾燥装置が
あった(特公昭63−16672参照)。
2. Description of the Related Art Conventionally, a freeze-drying apparatus of this type has been shown in FIG.
In the freeze-drying device having the configuration shown in, that is,
A heat transfer medium circulation path A ′ for supplying a heat transfer fluid to the cooling part 4 of the low temperature trap 3 is provided, and a heat exchanger 31 for cooling the heat transfer fluid in the heat transfer fluid circulation path A ′ is provided. There was a freeze-drying device provided with a liquefied gas supply means 32 for supplying a low temperature liquefied gas to the heat exchanger 31 as a refrigerant for the heat transfer liquid (see Japanese Patent Publication No. 63-16672).

【0003】[0003]

【発明が解決しようとする課題】上記従来の構成を採る
と、機械式冷凍機を用いるのに比べ、「初期設備費がか
からず、又、可動部分が少ないため保守、メンテナンス
が著しく軽減でき、プロセスの信頼性も大幅に向上す
る。又、凍結乾燥装置の設置スペースが非常に小さくな
り、更に、騒音も格段に小さくなる。」という利点があ
る。しかし、熱交換器で伝熱隔壁を介在させた状態で低
温液化ガスにより熱媒液を冷却するために、「伝熱隔壁
での伝熱抵抗や、接触時間の制限等により低温液化ガス
の冷熱を十分与えきれず、冷熱を損失する」という欠点
がある。ここで、「冷熱の損失」を少なくするための構
成としては、「一端に低温液化ガスの給入部を備え、他
端に低温液化ガスの排出部を備えた冷媒流路を低温トラ
ップの冷却部に設ける」ことが考えられる。しかし、こ
の場合、給入部側と排出部側の温度差が大きくなり、昇
華した水蒸気が低温トラップの冷却部に均一に氷結しな
いため、水蒸気の捕捉率が悪いという欠点がある。
When the above-mentioned conventional structure is adopted, compared with the case where a mechanical refrigerator is used, "the initial equipment cost is low, and the number of moving parts is small, the maintenance can be remarkably reduced. The process reliability is also greatly improved. In addition, the installation space for the freeze-drying device is very small, and the noise is also significantly reduced. " However, in order to cool the heat transfer liquid with the low-temperature liquefied gas with the heat transfer partition interposed in the heat exchanger, “Cooling of the low-temperature liquefied gas due to heat transfer resistance in the heat transfer partition and limitation of contact time, etc. However, there is a drawback that the cold heat is lost. Here, as a configuration for reducing the "loss of cold heat", "a cooling passage of a low temperature trap is provided with a refrigerant passage having a low-temperature liquefied gas supply portion at one end and a low-temperature liquefied gas discharge portion at the other end. It is conceivable that it will be provided ". However, in this case, the temperature difference between the inlet side and the outlet side becomes large, and the sublimated water vapor does not evenly freeze in the cooling portion of the low temperature trap, so that there is a disadvantage that the water vapor capture rate is poor.

【0004】本発明の目的は、冷熱の損失を少なく、且
つ、低温トラップの冷却部に均一に水蒸気を氷結させら
れるようにする凍結乾燥装置を提供することにある。
It is an object of the present invention to provide a freeze-drying device that reduces the loss of cold heat and allows the cooling part of a low temperature trap to freeze water vapor evenly.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(構成1)本発明の凍結乾燥装置の第1の特徴構成は、
「低温トラップの冷却部に冷媒を供給する冷媒循環路を
設け、前記冷媒循環路に低温液化ガスを冷媒として給入
する供給手段を設け、供給された低温液化ガスの排出部
を前記冷媒循環路に設け、前記冷媒循環路内で冷媒を強
制循環させる循環装置を設けてある」点にある。
(Structure 1) The first characteristic structure of the freeze-drying apparatus of the present invention is
“A cooling medium circulation path for supplying a cooling medium to the cooling part of the low temperature trap is provided, a supply means for supplying a low temperature liquefied gas as a cooling medium to the cooling medium circulation path, and a discharge part of the supplied low temperature liquefied gas is provided for the cooling medium circulation path. And a circulation device for forcibly circulating the refrigerant in the refrigerant circulation path. "

【0006】(作用・効果)上記構成を採用する凍結乾
燥装置においては、冷媒循環路に低温液化ガス供給手段
から低温液化ガスが給入される。前記冷媒循環路内では
低温液化ガスが循環装置により強制的に循環させられ
る。そして、低温液化ガスが前記冷媒循環路を循環しつ
つ低温トラップの冷却部で熱を奪い、その一部が排出部
から排出される。その結果、低温液化ガスが直接供給さ
れるので、従来のように熱媒液を循環させる場合に生ず
る熱交換器での冷熱の損失が無くなる。又、低温液化ガ
スが前記冷媒循環路内を強制循環させられるため、冷媒
循環路内での温度差を少なくでき、それにより低温トラ
ップの冷却部をより均一に冷却することができる。
(Operation / Effect) In the freeze-drying apparatus adopting the above-mentioned configuration, the low temperature liquefied gas is supplied from the low temperature liquefied gas supply means to the refrigerant circulation path. The low temperature liquefied gas is forcedly circulated by the circulation device in the refrigerant circulation path. Then, the low temperature liquefied gas circulates in the refrigerant circulation path and takes heat in the cooling part of the low temperature trap, and part of the heat is discharged from the discharge part. As a result, since the low-temperature liquefied gas is directly supplied, the loss of cold heat in the heat exchanger that occurs when circulating the heat transfer medium as in the conventional case is eliminated. Further, since the low temperature liquefied gas is forcedly circulated in the refrigerant circulation path, the temperature difference in the refrigerant circulation path can be reduced, and thereby the cooling part of the low temperature trap can be cooled more uniformly.

【0007】(構成2)本発明の凍結乾燥装置の第2の
特徴構成は、「乾燥室の冷却加熱処理部に熱媒液を供給
する熱媒液循環路を設けると共に、前記熱媒液循環路内
の熱媒液を冷却するための熱交換器を設け、低温トラッ
プの冷却部に冷媒を供給する冷媒循環路を設け、前記熱
媒液に対する冷媒として低温液化ガスを前記熱交換器に
供給し、且つ、前記冷媒循環路に低温液化ガスを冷媒と
して給入する供給手段を設け、供給された低温液化ガス
の排出部を前記冷媒循環路に設け、前記冷媒循環路内で
冷媒を強制循環させる循環装置を設けてある」点にあ
る。
(Structure 2) The second characteristic structure of the freeze-drying apparatus of the present invention is that "a heat medium liquid circulation path for supplying a heat medium liquid to the cooling and heating treatment section of the drying chamber is provided and the heat medium liquid circulation is performed. A heat exchanger for cooling the heat medium liquid in the passage is provided, and a refrigerant circulation passage for supplying a refrigerant to the cooling portion of the low temperature trap is provided, and a low temperature liquefied gas is supplied to the heat exchanger as a refrigerant for the heat medium liquid. In addition, a supply means for supplying a low-temperature liquefied gas as a refrigerant to the refrigerant circulation path is provided, an outlet for the supplied low-temperature liquefied gas is provided in the refrigerant circulation path, and the refrigerant is forcedly circulated in the refrigerant circulation path. There is a circulation device to allow it. "

【0008】(作用・効果)上記構成を採用する凍結乾
燥装置においては、予備凍結工程において、熱交換器に
低温液化ガス供給手段から低温液化ガスが給入され、そ
の低温液化ガスが循環熱媒液を冷却する。熱媒液循環路
内では熱媒液が循環しつつ乾燥室の冷却加熱処理部で熱
を奪う。低温トラップ冷却・乾燥工程においては、冷媒
循環路に低温液化ガス供給手段から低温液化ガスが給入
され、前記冷媒循環路内では低温液化ガスが強制循環装
置により循環する。低温トラップの冷却部で熱を奪いつ
つ循環する低温液化ガスの一部を排出部から排出する。
その結果、上記構成を採用すれば、予備凍結工程におけ
る乾燥室内の被処理物を凍結するに際し、気液の相変化
のない熱媒液により乾燥室の熱を奪うこととなる。従っ
て、「一端に低温液化ガスの給入部を備え、他端に低温
液化ガスの排出部を備えた冷媒流路を乾燥室の冷却加熱
処理部に設ける」という構成を採り、相変化を生ずる低
温液化ガスにより乾燥室の熱を奪うのに比べ、給入部側
と排出部側の温度差を格段と小さくできる。つまり、本
構成を採れば、被処理物を均一に正確な制御のもとで冷
凍することが可能となるという有利な効果を有し、且
つ、請求項1の構成により生ずる水蒸気の捕捉率が良い
という有利な効果を有する凍結乾燥装置を提供できる。
又、低温液化ガス貯蔵タンク等の設備が被処理物の予備
凍結のためのものと低温トラップ冷却のものとを兼ねる
ことが可能となり、機械式冷凍機による冷却方式と比べ
て、初期設備費がより少なく、又、可動部分が少ないた
め保守、メンテナンスが著しく軽減でき、プロセスの信
頼性も大幅に向上する。更に、凍結乾燥装置の設置スペ
ースが非常に小さくなり、騒音も格段に小さくなる。
(Operation / Effect) In the freeze-drying apparatus adopting the above-mentioned structure, the low-temperature liquefied gas is supplied from the low-temperature liquefied gas supply means to the heat exchanger in the preliminary freezing step, and the low-temperature liquefied gas is circulated as the circulating heat medium. Cool the liquid. In the heat medium liquid circulation path, the heat medium liquid circulates and takes heat in the cooling and heating processing section of the drying chamber. In the low temperature trap cooling / drying step, the low temperature liquefied gas is supplied from the low temperature liquefied gas supply means to the refrigerant circulation path, and the low temperature liquefied gas is circulated in the refrigerant circulation path by the forced circulation device. A part of the low-temperature liquefied gas that circulates while taking heat in the cooling part of the low-temperature trap is discharged from the discharge part.
As a result, if the above-mentioned configuration is adopted, when the object to be treated in the drying chamber in the preliminary freezing step is frozen, the heat in the drying chamber is taken by the heat transfer liquid having no phase change of gas-liquid. Therefore, by adopting a configuration of "providing a refrigerant flow path having a low-temperature liquefied gas supply part at one end and a low-temperature liquefied gas discharge part at the other end in the cooling heat treatment part of the drying chamber", a low temperature which causes a phase change is adopted. Compared to the case where the heat of the drying chamber is taken by the liquefied gas, the temperature difference between the inlet side and the outlet side can be remarkably reduced. In other words, if this configuration is adopted, there is an advantageous effect that it becomes possible to freeze the object to be processed under uniform and accurate control, and the rate of trapping water vapor generated by the configuration of claim 1 is increased. It is possible to provide a freeze-drying device having the advantageous effect of being good.
In addition, equipment such as a low temperature liquefied gas storage tank can be used for both pre-freezing of the object to be processed and low temperature trap cooling, which reduces the initial equipment cost compared to the cooling method using a mechanical refrigerator. Since the number of moving parts is smaller and the number of moving parts is smaller, maintenance can be remarkably reduced, and the reliability of the process is significantly improved. Further, the installation space of the freeze-drying device becomes very small, and the noise is significantly reduced.

【0009】(構成3)本発明の凍結乾燥装置の第2の
特徴構成は、請求項1又は請求項2記載の凍結乾燥装置
において、「低温トラップと、その低温トラップに接続
した真空ポンプとの間に補助トラッップを設け、前記排
出部からの排出ガスを前記補助トラップの冷媒として供
給する排出ガス給入部を補助トラップに設けてある」点
にある。
(Structure 3) The second characteristic structure of the freeze-drying device of the present invention is the freeze-drying device according to claim 1 or 2, wherein "a low temperature trap and a vacuum pump connected to the low temperature trap are provided. An auxiliary trap is provided between them, and an exhaust gas supply part for supplying the exhaust gas from the exhaust part as a refrigerant of the auxiliary trap is provided in the auxiliary trap ".

【0010】(作用・効果)上記構成を採用する凍結乾
燥装置は、冷媒循環路内の循環冷媒を冷却するため、前
記冷媒循環路に低温液化ガス供給手段から低温液化ガス
を給入する。ここで、前記冷媒循環路の圧力を調整すべ
く、低温トラップの冷却部で熱を奪いつつ循環する低温
液化ガスの一部を排出路から排出する。この排出路から
排出された低温液化ガスを冷媒として、前記低温トラッ
プとその低温トラップに接続した真空ポンプとの間に設
けた補助トラップに給入し、補助トラップの冷却部を冷
却する。その結果、低温トラップ冷却に用いた後の低温
液化ガスの冷熱を有効に利用しつつ、低温トラップの冷
却部で捕捉されず真空ポンプの方へ漏れて流れる水蒸気
を補助トラップの冷却部に氷結させることができ、真空
ポンプの保護を強化することができる。特に、低温トラ
ップの温度制御により乾燥室内圧力を制御する場合であ
って、乾燥室内圧力を上げるべく低温トラップの冷却部
の温度を急に上げた場合に真空ポンプ側に漏洩する恐れ
のある水蒸気を有効に回収できることになる。
(Operation / Effect) In the freeze-drying apparatus having the above-mentioned structure, the low-temperature liquefied gas is supplied from the low-temperature liquefied gas supply means to the refrigerant circulation path in order to cool the circulating refrigerant in the refrigerant circulation path. Here, in order to adjust the pressure in the refrigerant circulation path, a part of the low temperature liquefied gas that circulates while taking heat in the cooling section of the low temperature trap is discharged from the discharge path. The low-temperature liquefied gas discharged from this discharge path is used as a coolant in an auxiliary trap provided between the low-temperature trap and a vacuum pump connected to the low-temperature trap to cool the cooling section of the auxiliary trap. As a result, while effectively utilizing the cold heat of the low-temperature liquefied gas after it has been used for cooling the low-temperature trap, water vapor that leaks toward the vacuum pump and is not captured by the cooling unit of the low-temperature trap freezes in the cooling unit of the auxiliary trap. The protection of the vacuum pump can be enhanced. In particular, when controlling the pressure in the drying chamber by controlling the temperature of the low temperature trap, and when the temperature of the cooling section of the low temperature trap is suddenly raised to raise the pressure in the drying chamber, steam that may leak to the vacuum pump side is generated. It can be effectively collected.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0012】本発明を薬剤の凍結乾燥に適用した場合の
例として示す。凍結乾燥は一般に、予備凍結工程と低温
トラップ冷却・乾燥工程から成り、予備凍結工程では被
処理物を凍結させ、低温トラップ冷却・乾燥工程では真
空を維持しつつ被処理物を加熱する。各低温化には低温
液化ガスを使用するが、液化天然ガス、液化窒素、液体
炭酸等のうち、本実施例では液化窒素を使用する。図1
及び図2に示すように、乾燥室1内を冷却加熱する冷却
加熱手段を設け、前記乾燥室1を真空にする真空ポンプ
6と、被処理物から昇華した水蒸気を回収する低温トラ
ップ3を設けて凍結乾燥装置を構成してある。前記冷却
加熱手段は、被処理物を冷却加熱する冷却加熱処理部を
棚板2として前記乾燥室1内部に設けて、熱媒液循環路
Bの一部を構成させ、前記熱媒液循環路Bに、前記冷却
加熱処理部に供給する熱媒液の温度を調整する温度調整
部と、熱媒液を循環させる熱媒液循環ポンプ11を設け
てある。前記温度調整部は液化窒素を冷媒とする熱交換
器12、及び、加熱器10により構成される。前記低温
トラップ3は、その内部に冷却部として冷却板4を有
し、その表面に水蒸気を氷結させる。そして、前記冷却
板4に冷媒を供給する冷却板入口管13と、冷却板4か
ら冷媒を排出する冷却板出口管14を連結して冷媒循環
路Aを構成してある。更に、この冷媒循環路Aには、冷
媒を強制循環させる循環装置15としてブロアー15を
設けるとともに、前記冷媒循環路Aに、冷媒として液化
窒素を供給する液化窒素供給部29と、循環冷媒を排出
する排出部22を設けてある。そして、この排出部22
には配管が接続されており、この配管には前記冷媒循環
路A内の圧力を調整する減圧弁23が設けられている。
尚、前記ブロアー15は、インバーター式の回転数制御
装置33を設けて、低温トラップ3の負荷の変動に応じ
て回転数を変更制御できるように構成してある。また、
前記ブロアー15の駆動源として電動モータに代えてエ
アーモータを使用してもよく、電動モーターに比して駆
動源からの発熱を抑制することができる。前記液化窒素
供給部29にエジェクター式の混合器を設けてもよく、
この場合はエジェクターの作用で循環駆動力の一部を得
ることができる。液化窒素は液化窒素貯蔵タンク16に
貯蔵されており、配管により前記熱媒液循環路Bに設け
られた熱交換器12、及び、冷媒循環路Aの液化窒素供
給部29に接続されている。前記配管の前記熱交換器1
2の上手側には、前記熱交換器12に供給する液化窒素
の量を調整する流量調整弁18が設けられており、前記
液化窒素供給部29上手側には、前記冷媒循環路Aに供
給する液化窒素の量を調整する流量調整弁19が設けら
れている。尚、図に示す弁17はストップ弁17であ
る。前記乾燥室1を真空にするための機構は、乾燥室
1、低温トラップ3、真空ポンプ6をベーパ管5、配管
により直列に接続する。前記補助トラップ7は、低温ト
ラップの冷却板で捕捉し得なかった水蒸気を凝結させ、
真空ポンプの保護を強化するものであり、内部に窒素ガ
ス流路を有する冷却板を備え、一端に減圧弁23から排
出される窒素ガスを前記窒素ガス流路に給入する給入部
28が設けてあり、他端に給入された窒素ガスを排出す
る排出路24が設けてある。乾燥室1内の被処理物の冷
却加熱を均一化するため乾燥室1を包む形で乾燥室ジャ
ケット21を設けている。この乾燥室ジャケット21
は、乾燥室1の非処理物収容空間を包むように形成され
た熱媒流路層25と、前記熱媒流路層25と非処理物収
容空間を区画する伝熱隔壁部材26により構成され、前
記熱媒流路層25を流れる熱媒の温熱又は冷熱を非処理
物収容空間に供給する。前記熱媒流路層25は前記熱交
換器12から窒素ガスを排出する排出管27に接続され
ており、又、補助トラップ7からの窒素ガスを排出する
排出管24がT字管で分岐され、一方が加熱器20を経
て接続されている。次に上記装置による凍結乾燥の各工
程を順に説明する。 ・予備凍結工程(図1参照) バイアル瓶やトレイ等に注入・充填された薬剤は、乾燥
室1内の棚板2に静置した状態で予備凍結される。薬剤
の予備凍結温度は、通常−30℃〜−50℃であり、こ
の場合、常温から−40℃まで約30分で到達できる。
予備凍結の開始とともに熱媒液循環ポンプ11を起動さ
せ、熱媒液は熱媒液循環路Bを循環する。この時すでに
液化窒素貯蔵タンク16に接続されてるストップ弁17
は開状態にしている。そして外部からの冷却開始信号に
より流量調整弁18が開き、液化窒素貯蔵タンク16に
貯蔵されている液化窒素はストップ弁17、流量調整弁
18を通して熱交換器12に供給され、前記熱媒液循環
路Bで循環している熱媒液に冷熱を与える。前記熱交換
器12で液化窒素より冷熱を受けた熱媒液が棚板入口管
8を経て乾燥室1に入り、棚板2で冷熱を放出し、棚板
出口管9、加熱器10、熱媒液循環ポンプ11を経て前
記熱交換器12に戻るというサイクルで被乾燥物を凍結
させる。尚、この時、加熱器10は非作動状態である。
前記熱交換器12で熱媒液に冷熱を奪われた液化窒素は
気化するが、その後、排出管27を経て乾燥室ジャケッ
ト21の熱媒流路層25に導入され、熱交換器12から
排出される窒素ガスが有する残りの冷熱を有効利用して
乾燥室1を外部から冷却し、凍結ムラを極力抑える。こ
のように、流量調節弁18を自動的に調整して、循環す
る熱媒液の温度を予め計画した温度パターンに従って冷
却する。これにより、棚板2の上に静置された薬剤も予
定された温度パターンで凍結することになる。 ・低温トラップ冷却・乾燥工程(図2参照) 薬剤の予備凍結が終了すると、引き続いて低温トラップ
冷却・乾燥工程へと移る。低温トラップ冷却・乾燥工程
は、最初に低温トラップ3の冷却板4を、−40℃〜−
80℃に冷却する。低温トラップの冷却開始とともに冷
媒循環ブロアー15を起動させ、窒素ガスは冷媒循環路
Aを循環する。そして外部からの冷却開始信号により流
量調整弁19が開き、液化窒素貯蔵タンク16に貯蔵さ
れている液化窒素はストップ弁17、流量調整弁19を
通して前記冷媒循環路Aに霧状で給入され、循環してい
る窒素ガスを冷却する。これにより、冷媒循環路Aにお
いて、窒素ガスが強制循環させられつつ冷媒としての液
化窒素の供給を受け、低温トラップ3の冷却板4に冷熱
を与える。前記流量調整弁19及び、減圧弁23を調整
することにより冷媒循環路A内の循環冷媒の温度を調整
して低温トラップ3の冷却板4の温度を制御し、又、冷
媒循環路A内の圧力を調整する。低温トラップ3の冷却
板4を設定温度(通常は−60℃)まで冷却すると、乾
燥工程に入る。まず、乾燥室1、ベーパー管5、低温ト
ラップ3、補助トラップ7を真空ポンプ6を用いて減圧
排気し、系内を凍結乾燥に必要な圧力にまで減圧し、乾
燥終了までその状態に保つ。次に、冷却板4の冷却を継
続させながら、凍結した被処理物に含まれる氷結晶の昇
華に必要な熱を供給するため、被処理物の加熱を開始す
る。加熱は、熱媒液循環ポンプ11によって循環する熱
媒液を加熱器10により加熱して行う。これにより、加
熱器10で熱を受けた熱媒液が棚板2で熱を放出し加熱
器10に戻るというサイクルで被処理物を加熱する。加
熱器10の出力を調整することにより予め計画した温度
パターンに従って被処理物を加熱する。尚、この時、流
量調整弁18は閉状態であり、熱交換器12は非作動状
態である。被処理物の加熱により、凍結した被処理物に
含まれる氷結晶が昇華し、水蒸気が減圧排気を行う真空
ポンプ側に流れる。この水蒸気を低温トラップ3により
捕捉する。低温トラップ3の冷却板4により水蒸気の潜
熱を奪い、水蒸気をその冷却板4の表面に氷結させる
が、凍結乾燥の終了まで水蒸気の捕捉を続けるため、冷
却板4の温度を低温に維持する必要がある。そのため、
前記流量調整弁19を調整しつつ、冷媒である低温液化
ガスを前記冷媒循環路Aに給入し続ける。この時、ブロ
アー15で冷媒を強制的に攪拌しているため、冷却板4
の温度を均一に保つことができる。尚、凍結乾燥の終了
までは通常18〜24時間位を要する。前記冷媒循環路
Aの循環冷媒の排出部22から排出された低温の窒素ガ
スは減圧弁23を経て補助トラップ7に導入され、その
補助トラップ7の冷却板を冷却し、排出路24から排出
される。補助トラップ7は低温トラップ3の冷却板4で
捕捉し損なった水蒸気をその冷却板に氷結させ、真空ポ
ンプ6の保護を強化している。補助トラップ7の排出路
24から排出された窒素ガスはT字管により分岐され、
一部は窒素ガス一部排出路30から系外の熱装置などの
廃冷熱利用装置へと導かれ、他の一部は加熱器20によ
り、加熱された棚板2と同程度の温度に加熱された後乾
燥室ジャケット21の熱媒流路層25に給入され、乾燥
室1内での乾燥ムラを極力抑えることに利用される。窒
素ガスの排出圧力を有効利用するため、ブロアーが不要
となる。
The present invention is shown as an example when applied to freeze-drying of a drug. Freeze-drying generally comprises a preliminary freezing step and a low temperature trap cooling / drying step. In the preliminary freezing step, the object to be processed is frozen, and in the low temperature trap cooling / drying step, the object to be processed is heated while maintaining a vacuum. Although low-temperature liquefied gas is used for lowering the temperature, among the liquefied natural gas, liquefied nitrogen, liquid carbonic acid, etc., liquefied nitrogen is used in this embodiment. FIG.
As shown in FIG. 2, cooling and heating means for cooling and heating the inside of the drying chamber 1 are provided, a vacuum pump 6 for vacuuming the drying chamber 1 and a low temperature trap 3 for collecting water vapor sublimated from the object to be treated are provided. And constitutes a freeze-drying device. The cooling and heating means is provided with a cooling and heating treatment section for cooling and heating an object to be processed as a shelf plate 2 inside the drying chamber 1 to form a part of the heat medium liquid circulation path B, and the heat medium liquid circulation path. B is provided with a temperature adjusting section for adjusting the temperature of the heat transfer medium supplied to the cooling and heating processing section, and a heat transfer medium circulating pump 11 for circulating the heat transfer medium. The temperature adjusting unit includes a heat exchanger 12 using liquefied nitrogen as a refrigerant, and a heater 10. The low temperature trap 3 has a cooling plate 4 as a cooling unit therein, and water vapor is frozen on the surface thereof. The cooling plate inlet pipe 13 for supplying the cooling plate 4 with the cooling medium and the cooling plate outlet pipe 14 for discharging the cooling medium from the cooling plate 4 are connected to form a cooling medium circulation path A. Further, in this refrigerant circulation path A, a blower 15 is provided as a circulation device 15 for forcibly circulating the refrigerant, and a liquefied nitrogen supply part 29 for supplying liquefied nitrogen as a refrigerant to the refrigerant circulation path A and a circulation refrigerant are discharged. A discharge unit 22 is provided. And this discharge part 22
A pipe is connected to the pipe, and the pipe is provided with a pressure reducing valve 23 for adjusting the pressure in the refrigerant circulation path A.
The blower 15 is provided with an inverter type rotation speed control device 33 so that the rotation speed can be changed and controlled in accordance with a change in the load of the low temperature trap 3. Also,
An air motor may be used as a drive source of the blower 15 instead of the electric motor, and heat generation from the drive source can be suppressed as compared with the electric motor. The liquefied nitrogen supply unit 29 may be provided with an ejector type mixer,
In this case, a part of the circulation driving force can be obtained by the action of the ejector. The liquefied nitrogen is stored in the liquefied nitrogen storage tank 16, and is connected by pipes to the heat exchanger 12 provided in the heat medium liquid circulation path B and the liquefied nitrogen supply unit 29 of the refrigerant circulation path A. The heat exchanger 1 of the pipe
2 is provided with a flow rate adjusting valve 18 for adjusting the amount of liquefied nitrogen supplied to the heat exchanger 12, and the liquefied nitrogen supply unit 29 is provided with a flow rate control valve 18 to the refrigerant circulation path A. A flow rate adjusting valve 19 for adjusting the amount of liquefied nitrogen used is provided. The valve 17 shown in the figure is a stop valve 17. As a mechanism for making the drying chamber 1 a vacuum, the drying chamber 1, the low temperature trap 3, and the vacuum pump 6 are connected in series by a vapor pipe 5 and piping. The auxiliary trap 7 condenses water vapor that could not be captured by the cold trap cooling plate,
In order to strengthen protection of the vacuum pump, a cooling plate having a nitrogen gas flow passage therein is provided, and a supply portion 28 for supplying the nitrogen gas discharged from the pressure reducing valve 23 to the nitrogen gas flow passage is provided at one end. A discharge passage 24 for discharging the nitrogen gas supplied is provided at the other end. A drying chamber jacket 21 is provided so as to wrap the drying chamber 1 in order to uniformly cool and heat the object to be processed in the drying chamber 1. This drying room jacket 21
Is composed of a heat transfer medium flow path layer 25 formed so as to surround the non-processed material storage space of the drying chamber 1, and a heat transfer partition member 26 partitioning the heat transfer medium flow path layer 25 and the non-processed product storage space, Hot or cold heat of the heat medium flowing through the heat medium flow path layer 25 is supplied to the non-processed object accommodation space. The heat medium flow path layer 25 is connected to a discharge pipe 27 for discharging nitrogen gas from the heat exchanger 12, and a discharge pipe 24 for discharging nitrogen gas from the auxiliary trap 7 is branched by a T-shaped pipe. One of them is connected via the heater 20. Next, each step of freeze-drying by the above apparatus will be described in order. -Preliminary freezing step (see Fig. 1) The medicine injected / filled in a vial, a tray, etc. is preliminarily frozen while being left standing on the shelf plate 2 in the drying chamber 1. The pre-freezing temperature of the drug is usually -30 ° C to -50 ° C, and in this case, it can be reached from room temperature to -40 ° C in about 30 minutes.
When the preliminary freezing is started, the heat transfer medium circulation pump 11 is activated, and the heat transfer medium circulates in the heat transfer medium circulation path B. At this time, the stop valve 17 already connected to the liquefied nitrogen storage tank 16
Is open. Then, the flow rate adjusting valve 18 is opened by a cooling start signal from the outside, and the liquefied nitrogen stored in the liquefied nitrogen storage tank 16 is supplied to the heat exchanger 12 through the stop valve 17 and the flow rate adjusting valve 18 to circulate the heat medium liquid. Cold heat is applied to the heat transfer medium circulating in the path B. The heat transfer medium that has received cold heat from the liquefied nitrogen in the heat exchanger 12 enters the drying chamber 1 through the shelf board inlet pipe 8 and discharges cold heat at the shelf board 2, and the shelf board outlet pipe 9, the heater 10, the heat The material to be dried is frozen in a cycle of returning to the heat exchanger 12 via the liquid medium circulation pump 11. At this time, the heater 10 is inactive.
The liquefied nitrogen, which has been deprived of cold heat by the heat medium liquid in the heat exchanger 12, is vaporized, but is then introduced into the heat medium passage layer 25 of the drying chamber jacket 21 through the discharge pipe 27 and discharged from the heat exchanger 12. The remaining cold heat of the generated nitrogen gas is effectively used to cool the drying chamber 1 from the outside, and freeze unevenness is suppressed as much as possible. In this way, the flow rate control valve 18 is automatically adjusted to cool the temperature of the circulating heat transfer fluid in accordance with the temperature pattern planned in advance. As a result, the medicine left standing on the shelf 2 is also frozen in a predetermined temperature pattern. -Low temperature trap cooling / drying process (see Fig. 2) When the preliminary freezing of the drug is completed, the low temperature trap cooling / drying process continues. In the low temperature trap cooling / drying process, first, the cooling plate 4 of the low temperature trap 3 is placed at -40 ° C to
Cool to 80 ° C. When the cooling of the low temperature trap is started, the refrigerant circulation blower 15 is activated, and the nitrogen gas circulates in the refrigerant circulation path A. Then, the flow rate adjusting valve 19 is opened by a cooling start signal from the outside, and the liquefied nitrogen stored in the liquefied nitrogen storage tank 16 is atomized into the refrigerant circulation path A through the stop valve 17 and the flow rate adjusting valve 19, Cool the circulating nitrogen gas. As a result, in the refrigerant circulation path A, liquefied nitrogen as a refrigerant is supplied while nitrogen gas is forcedly circulated, and cold heat is applied to the cooling plate 4 of the low temperature trap 3. By adjusting the flow rate adjusting valve 19 and the pressure reducing valve 23, the temperature of the circulating refrigerant in the refrigerant circulating passage A is adjusted to control the temperature of the cooling plate 4 of the low temperature trap 3, and the inside of the refrigerant circulating passage A is adjusted. Adjust pressure. When the cooling plate 4 of the low temperature trap 3 is cooled to the set temperature (usually -60 ° C), the drying process starts. First, the drying chamber 1, the vapor tube 5, the low temperature trap 3, and the auxiliary trap 7 are evacuated using the vacuum pump 6 to reduce the pressure in the system to the pressure necessary for freeze-drying, and keep that state until the drying is completed. Next, while continuing to cool the cooling plate 4, the heating of the object to be processed is started in order to supply the heat necessary for sublimation of the ice crystals contained in the frozen object to be processed. The heating is performed by heating the heat medium liquid circulating by the heat medium liquid circulation pump 11 by the heater 10. As a result, the heat medium liquid that has received the heat in the heater 10 releases the heat in the shelf 2 and returns to the heater 10 to heat the object to be processed. By adjusting the output of the heater 10, the object to be processed is heated according to a temperature pattern planned in advance. At this time, the flow rate adjusting valve 18 is closed and the heat exchanger 12 is inactive. By heating the object to be processed, the ice crystals contained in the frozen object to be processed are sublimated, and the water vapor flows toward the vacuum pump that performs vacuum exhaust. This water vapor is captured by the low temperature trap 3. The cooling plate 4 of the low temperature trap 3 removes the latent heat of the water vapor and freezes the water vapor on the surface of the cooling plate 4. However, since the water vapor is continuously captured until the end of freeze-drying, it is necessary to keep the temperature of the cooling plate 4 low. There is. for that reason,
While adjusting the flow rate adjusting valve 19, the low temperature liquefied gas that is a refrigerant is continuously supplied to the refrigerant circulation path A. At this time, since the blower 15 is forcibly stirring the refrigerant, the cooling plate 4
The temperature can be kept uniform. Incidentally, it usually takes about 18 to 24 hours until the end of freeze-drying. The low-temperature nitrogen gas discharged from the circulation refrigerant discharge portion 22 of the refrigerant circulation path A is introduced into the auxiliary trap 7 via the pressure reducing valve 23, cools the cooling plate of the auxiliary trap 7, and is discharged from the discharge path 24. It The auxiliary trap 7 strengthens the protection of the vacuum pump 6 by freezing the water vapor that is not captured by the cooling plate 4 of the low temperature trap 3 into ice on the cooling plate. The nitrogen gas discharged from the discharge path 24 of the auxiliary trap 7 is branched by the T-shaped pipe,
A part of the nitrogen gas is partially led to a waste heat utilization device such as a heat device outside the system through a partial discharge path 30, and another part is heated by the heater 20 to the same temperature as the heated shelf board 2. After that, it is supplied to the heat medium flow path layer 25 of the jacket 21 of the drying chamber and is used to suppress the unevenness of drying in the drying chamber 1 as much as possible. Since the exhaust pressure of nitrogen gas is effectively used, a blower is not required.

【0013】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】予備凍結工程における動作説明図FIG. 1 is an operation explanatory diagram in a preliminary freezing step.

【図2】低温トラップ冷却・乾燥工程における動作説明
FIG. 2 is an operation explanatory diagram in a low temperature trap cooling / drying process.

【図3】従来技術における動作説明図FIG. 3 is an operation explanatory diagram in the related art.

【符号の説明】[Explanation of symbols]

A 冷媒循環路 B 熱媒液循環路 1 乾燥室 3 低温トラップ 6 真空ポンプ 7 補助トラップ 12 熱交換器 15 冷媒循環ブロアー 22 排出部 28 排出ガス給入部 A refrigerant circulation path B heat medium liquid circulation path 1 drying chamber 3 low temperature trap 6 vacuum pump 7 auxiliary trap 12 heat exchanger 15 refrigerant circulation blower 22 discharge part 28 exhaust gas supply part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低温トラップ(3)の冷却部に冷媒を供
給する冷媒循環路 (A) を設け、前記冷媒循環路 (A)
に低温液化ガスを冷媒として給入する供給手段を設け、
供給された低温液化ガスの排出部(22)を前記冷媒循
環路 (A) に設け、前記冷媒循環路 (A) 内で冷媒を強
制循環させる循環装置(15)を設けてある凍結乾燥装
置。
1. A refrigerant circulation path (A) for supplying a refrigerant to a cooling part of a low temperature trap (3) is provided, and the refrigerant circulation path (A) is provided.
Is provided with a supply means for supplying a low temperature liquefied gas as a refrigerant,
The freeze-drying apparatus is provided with an outlet (22) for the supplied low temperature liquefied gas in the refrigerant circulation path (A) and a circulation device (15) for forcibly circulating the refrigerant in the refrigerant circulation path (A).
【請求項2】 乾燥室(1)の冷却加熱処理部に熱媒液
を供給する熱媒液循環路 (B) を設けると共に、前記熱
媒液循環路 (B) 内の熱媒液を冷却するための熱交換器
(12)を設け、低温トラップ(3)の冷却部に冷媒を
供給する冷媒循環路 (A) を設け、前記熱媒液に対する
冷媒として低温液化ガスを前記熱交換器(12)に供給
し、且つ、前記冷媒循環路 (A) に低温液化ガスを冷媒
として給入する供給手段を設け、供給された低温液化ガ
スの排出部(22)を前記冷媒循環路 (A) に設け、前
記冷媒循環路 (A) 内で冷媒を強制循環させる循環装置
(15)を設けてある凍結乾燥装置。
2. A heat transfer medium circulating circuit (B) for supplying the heat transfer medium to the cooling and heating treatment section of the drying chamber (1) and cooling the heat transfer medium in the heat transfer medium circulating path (B). Is provided with a heat exchanger (12), and a refrigerant circulation path (A) for supplying a refrigerant to the cooling part of the low temperature trap (3) is provided, and a low temperature liquefied gas is used as a refrigerant for the heat transfer liquid. 12), and a supply means for supplying low-temperature liquefied gas as a refrigerant to the refrigerant circulation path (A), and an outlet (22) for the supplied low-temperature liquefied gas is provided in the refrigerant circulation path (A). A freeze-drying device, which is provided in the refrigerant circulation path (A) and is provided with a circulation device (15) for forcibly circulating the refrigerant.
【請求項3】 低温トラップ(3)と、その低温トラッ
プ(3)に接続した真空ポンプ(6)との間に補助トラ
ッップ(7)を設け、前記排出部(22)からの排出ガ
スを前記補助トラップ(7)の冷媒として供給する排出
ガス給入部(28)を補助トラップ(7)に設けてある
請求項1又は請求項2記載の凍結乾燥装置。
3. An auxiliary trap (7) is provided between the low temperature trap (3) and a vacuum pump (6) connected to the low temperature trap (3), and the exhaust gas from the discharge part (22) is The freeze-drying device according to claim 1 or 2, wherein the auxiliary trap (7) is provided with an exhaust gas supply part (28) which is supplied as a refrigerant of the auxiliary trap (7).
JP31209895A 1995-11-30 1995-11-30 Freeze dryer Withdrawn JPH09152268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31209895A JPH09152268A (en) 1995-11-30 1995-11-30 Freeze dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31209895A JPH09152268A (en) 1995-11-30 1995-11-30 Freeze dryer

Publications (1)

Publication Number Publication Date
JPH09152268A true JPH09152268A (en) 1997-06-10

Family

ID=18025223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31209895A Withdrawn JPH09152268A (en) 1995-11-30 1995-11-30 Freeze dryer

Country Status (1)

Country Link
JP (1) JPH09152268A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088461A (en) * 1998-09-18 2000-03-31 Ulvac Japan Ltd Freeze vacuum drying apparatus
KR100315878B1 (en) * 1999-06-28 2001-12-12 황홍철 Dryer using refrigcrator
JP2005342552A (en) * 2004-05-31 2005-12-15 Chugoku Electric Power Co Inc:The Treating method for marine life such as jellyfish
CN101858688A (en) * 2010-06-11 2010-10-13 上海东富龙科技股份有限公司 Liquid-nitrogen freeze drying machine and control method thereof
KR101031604B1 (en) * 2008-07-18 2011-04-27 김봉석 Drying system and device using cooling device
US20120096732A1 (en) * 2010-10-25 2012-04-26 Battelle Memorial Institute Open-loop heat-recovery dryer
JP2013515261A (en) * 2009-12-22 2013-05-02 アイエムエー ライフ ノース アメリカ インコーポレーテッド Monitoring freeze-drying by gas measurement on vacuum pump effluent
CN104154708A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Drying method of honeysuckles
CN104154710A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method of Eucommia ulmoides leaves
CN104154711A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method for preparing high-activity kudzu root decoction pieces
CN104154715A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method of honeysuckles
CN104165499A (en) * 2014-08-25 2014-11-26 济南康众医药科技开发有限公司 Method for freeze-drying portulaca oleracea
CN104180610A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Penthorum chinense pursh drying method
CN104180613A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Freeze-drying method for roots of red-rooted salvia
CN104180615A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Radix puerariae freeze-drying method
CN104173427A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Lyophilized kudzu vine root serving as high-activity kudzu vine root decoction piece
CN104180614A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Freeze-drying method for roots of red-rooted salvia
CN104197647A (en) * 2014-08-25 2014-12-10 济南康众医药科技开发有限公司 Drying method of magnolia officinalis and application of magnolia officinalis product
JP2018011570A (en) * 2016-07-22 2018-01-25 新洋技研工業株式会社 Steam cooked grain cooling device
WO2022256199A1 (en) * 2021-06-01 2022-12-08 Amgen Inc. Lyophilization system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088461A (en) * 1998-09-18 2000-03-31 Ulvac Japan Ltd Freeze vacuum drying apparatus
KR100315878B1 (en) * 1999-06-28 2001-12-12 황홍철 Dryer using refrigcrator
JP2005342552A (en) * 2004-05-31 2005-12-15 Chugoku Electric Power Co Inc:The Treating method for marine life such as jellyfish
KR101031604B1 (en) * 2008-07-18 2011-04-27 김봉석 Drying system and device using cooling device
JP2013515261A (en) * 2009-12-22 2013-05-02 アイエムエー ライフ ノース アメリカ インコーポレーテッド Monitoring freeze-drying by gas measurement on vacuum pump effluent
CN101858688A (en) * 2010-06-11 2010-10-13 上海东富龙科技股份有限公司 Liquid-nitrogen freeze drying machine and control method thereof
US20120096732A1 (en) * 2010-10-25 2012-04-26 Battelle Memorial Institute Open-loop heat-recovery dryer
US8572862B2 (en) * 2010-10-25 2013-11-05 Battelle Memorial Institute Open-loop heat-recovery dryer
CN104154711A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method for preparing high-activity kudzu root decoction pieces
CN104154710A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method of Eucommia ulmoides leaves
CN104154708A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Drying method of honeysuckles
CN104154715A (en) * 2014-08-25 2014-11-19 济南康众医药科技开发有限公司 Freeze-drying method of honeysuckles
CN104165499A (en) * 2014-08-25 2014-11-26 济南康众医药科技开发有限公司 Method for freeze-drying portulaca oleracea
CN104180610A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Penthorum chinense pursh drying method
CN104180613A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Freeze-drying method for roots of red-rooted salvia
CN104180615A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Radix puerariae freeze-drying method
CN104173427A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Lyophilized kudzu vine root serving as high-activity kudzu vine root decoction piece
CN104180614A (en) * 2014-08-25 2014-12-03 济南康众医药科技开发有限公司 Freeze-drying method for roots of red-rooted salvia
CN104197647A (en) * 2014-08-25 2014-12-10 济南康众医药科技开发有限公司 Drying method of magnolia officinalis and application of magnolia officinalis product
JP2018011570A (en) * 2016-07-22 2018-01-25 新洋技研工業株式会社 Steam cooked grain cooling device
WO2022256199A1 (en) * 2021-06-01 2022-12-08 Amgen Inc. Lyophilization system

Similar Documents

Publication Publication Date Title
JPH09152268A (en) Freeze dryer
US10690410B2 (en) Freeze-drying system and freeze-drying method
JP2676374B2 (en) Freeze dryer
US5837193A (en) Method of decontaminating freeze dryers
KR0137914B1 (en) Heat exchange systems
JP2010502932A (en) Cryogenic refrigeration system for freeze-drying
KR101999270B1 (en) Vacuum freeze drying device and method
JP2010144966A (en) Freeze drying device
JP2010054064A (en) Freeze drying method and freeze drying apparatus
KR100669257B1 (en) Apparatus and method for freeze-drying using heat pump system
CN201706848U (en) Liquid nitrogen freeze dryer
CN101858688B (en) Liquid-nitrogen freeze drying machine control method
JP2746025B2 (en) Two-channel liquid cooling device
US3466756A (en) Method for dehydrating materials
KR102145828B1 (en) Precise control freeze drying device using compressor hot gas
JP3606883B2 (en) Rotary compressor cooling system
JPH05308943A (en) Freezing equipment
KR20230001427A (en) Vacuum freeze drying unit
JP2002267312A (en) Freezing refrigerator
JPS5917193Y2 (en) Rapid low temperature and humidity thawing chamber
JPS58313B2 (en) Vacuum thawing method and equipment
JPH0526437Y2 (en)
RU2143089C1 (en) Apparatus for combination preliminary heat treatment of vegetable products
KR101696837B1 (en) Agricultural and marine products lyophilization device
JPH0617231U (en) Vacuum dryer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204