JPH09150709A - Judging method for collision of vehicle and collision judging device - Google Patents

Judging method for collision of vehicle and collision judging device

Info

Publication number
JPH09150709A
JPH09150709A JP7311465A JP31146595A JPH09150709A JP H09150709 A JPH09150709 A JP H09150709A JP 7311465 A JP7311465 A JP 7311465A JP 31146595 A JP31146595 A JP 31146595A JP H09150709 A JPH09150709 A JP H09150709A
Authority
JP
Japan
Prior art keywords
output
collision
circuit
low
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311465A
Other languages
Japanese (ja)
Other versions
JP3289583B2 (en
Inventor
Tomomi Saito
知巳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP31146595A priority Critical patent/JP3289583B2/en
Publication of JPH09150709A publication Critical patent/JPH09150709A/en
Application granted granted Critical
Publication of JP3289583B2 publication Critical patent/JP3289583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform high-speed and high-precision judgment for a collision by judging the collision when the long section integral output of an acceleration signal exceeds the specified threshold value, and synthetically judging the collision through a process of adding impact force to long period and short period speed change amounts in a plastic collision in which an occupant is injured when a vehicle collides. SOLUTION: Acceleration signals to be obtained from an acceleration sensor 22 are filtered by a bypass filter 23, input into a long section integrator 25, respectively and sequentially added and integrated in the integral section of 90ms, and collision judgment is performed by a judging circuit 30 when the signals exceed the specified reference value in a comparator 29. Moreover, the acceleration signals are short section integrated by a first short section integrator 24, low frequency components of the acceleration signals are short section integrated by a second short section integrator 37 through a low band filtering circuit 36, impact force calculated by an absolute value circuit 26 is added to the speed change amounts of the short section integral output and the long section integral output, and a collision of a vehicle is synthetically judged by the judging circuit 30. Accordingly, the collision can be judged at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、短期と長期の速度
変化量に衝撃力を併せ、車両の衝突を高速かつ高精度に
判定するようにした車両の衝突判定方法及び衝突判定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle collision determination method and a vehicle collision determination device which combine a short-term and a long-term amount of speed change with an impact force to determine a vehicle collision at high speed and with high accuracy.

【0002】[0002]

【従来の技術】図4に示す車両の衝突判定装置1は、車
両衝突時にエアバッグを展開させるべき衝突であるか否
かを判定するための装置であり、加速度センサ2により
得られる加速度信号Gを折り返し歪み排除用の低域濾波
回路3にて濾波し、離散値データとしてディジタル信号
処理部1a内に取り込み、衝撃力判定と短区間積分判定
と長区間積分判定とにかけて衝突判定を行うものであ
る。
2. Description of the Related Art A vehicle collision determination apparatus 1 shown in FIG. 4 is an apparatus for determining whether or not a vehicle airbag is to be inflated during a vehicle collision, and an acceleration signal G obtained by an acceleration sensor 2 is used. Is filtered by the low-pass filtering circuit 3 for eliminating aliasing distortion, is taken into the digital signal processing unit 1a as discrete value data, and collision determination is performed by impact force determination, short-term integration determination, and long-term integration determination. is there.

【0003】衝突判定装置1は、車両が衝突したときに
乗員に危害が及ぶ塑性衝突について、車両の前部を無数
のばね体が複合された塑性ばねと見なすことを前提とし
ており、衝突により車両が停止に至る過程で加速度信号
の基本1/4正弦波に重畳する各種の振動波形のなかか
ら、衝突時に顕著な特定の帯域成分を抽出することによ
り、速度変化量を追跡しただけでは分からない衝撃力を
検出し、悪路走行や縁石乗り上げ等に伴う衝撃等と区別
して、安全装置の作動を必要とする衝突を判定するよう
工夫してある。様々な実験の結果、加速度データに含ま
れる20Hzから200Hzの帯域成分が衝撃の大きさ
に応じて大きな変化を示すことが判っており、このため
衝撃力演算では、まず帯域濾波回路4において上記の特
定帯域成分を抽出し、抽出した帯域成分を二乗演算器5
において二乗演算し、ここで得られる衝撃力を表す数値
ΔE(k)を続く比較器6においてしきい値判別する。
なお、二乗演算の根拠は、近似的に余弦曲線に従って減
衰する速度の場合、余弦曲線上の位相0度と90度の間
できわめて隣接する2点間の衝撃力が、これら2点間で
の速度変化分の二乗に比例すると見なせる点にある。
The collision determination device 1 is premised on a plastic collision in which an occupant is injured when the vehicle collides, by regarding the front portion of the vehicle as a plastic spring in which numerous spring bodies are combined. It is not possible to trace the speed change amount by extracting a remarkable specific band component at the time of a collision from among various vibration waveforms superimposed on the basic 1/4 sine wave of the acceleration signal in the process of stopping The impact force is detected, and it is devised to judge the collision requiring the operation of the safety device by distinguishing it from the impact caused by running on a bad road or riding on a curb. As a result of various experiments, it has been found that the band component from 20 Hz to 200 Hz included in the acceleration data shows a large change depending on the magnitude of the shock. Therefore, in the impact force calculation, first, in the band-pass filter circuit 4, The specific band component is extracted, and the extracted band component is squared by the square calculator 5
In step S2, the square value is calculated, and the numerical value ΔE (k) representing the impact force obtained here is subjected to threshold determination in the subsequent comparator 6.
The basis of the square calculation is that, in the case of a velocity that approximately decays according to a cosine curve, the impact force between two points that are extremely adjacent between the phases 0 degrees and 90 degrees on the cosine curve is the impact force between these two points. It is considered to be proportional to the square of the speed change.

【0004】比較器6においてしきい値判別された衝撃
力を表す数値ΔE(k)は、続く波形整形器7において
波形整形される。この波形整形器7は、しきい値を越え
る衝撃力が比較器6の出力として得られたときに、比較
器6の出力を一定期間だけ時間軸方向に伸長し、少なく
とも一定時間は持続する波形に整形するものである。波
形整形器7は、具体的には、比較器6の出力の立ち上が
りでトリガされて例えば20ms程度持続するワンショ
ットパルスを生成するワンショット回路7aと、このワ
ンショット回路7aの出力ワンショットパルスと比較器
6の原出力との論理和をとるオアゲート回路7bとから
構成される。このため、二乗演算器5の出力が危険値を
越える急激な衝撃力の変化を示すときは、波形整形器7
の出力が衝突認定の可能性が大であることをワンショッ
トパルスの持続期間に亙って明示し続ける。
The numerical value ΔE (k) representing the impact force whose threshold value has been discriminated by the comparator 6 is waveform-shaped by the subsequent waveform shaper 7. The waveform shaper 7 extends the output of the comparator 6 in the time axis direction for a certain period when an impact force exceeding the threshold is obtained as the output of the comparator 6, and maintains the waveform for at least a certain period. Is to be shaped into. The waveform shaper 7 is, specifically, a one-shot circuit 7a that is triggered by the rising edge of the output of the comparator 6 to generate a one-shot pulse that lasts for about 20 ms, and an output one-shot pulse from the one-shot circuit 7a. It is composed of an OR gate circuit 7b which takes the logical sum of the original output of the comparator 6. Therefore, when the output of the square calculator 5 shows a sudden change in impact force exceeding the dangerous value, the waveform shaper 7
Continues to demonstrate that the output of is highly likely to be a collision qualifier over the duration of the one-shot pulse.

【0005】速度変化量に関する区間積分は、短区間と
長区間の各区間積分器8,9により行われ、離散値化さ
れた加速度データG(k)を、実施例では短区間積分器
8は18msの積分区間Tで、また長区間積分器9は9
0msの積分区間nTでそれぞれ逐次加算して積分演算
する。各区間積分器8,9の出力は続く比較器10,1
1においてしきい値判別され、それぞれ一定の基準値V
rs,Vrlを越える区間積分値が得られた場合に、判
定回路12に対してハイレベルの信号を出力する。判定
回路12には、衝撃力のしきい値判別出力と長区間積分
値及び短区間積分値のしきい値判別出力とが供給され、
ここで衝突認定に至るか否かの衝突判定が行われる。す
なわち、判定回路12は、衝撃力判別出力と短区間積分
値のしきい値判別出力との論理積をとるアンドゲート回
路12aと、このアンドゲート回路12aの出力と長区
間積分値のしきい値判別出力との論理和をとるオアゲー
ト回路12bとから構成されており、オアゲート回路1
2bのハイレベル出力がエアバッグ展開トリガ信号とな
る。
The interval integration relating to the amount of change in speed is performed by the interval integrators 8 and 9 for the short interval and the long interval, respectively, and the acceleration data G (k) which has been made into a discrete value is obtained by the short interval integrator 8 in the embodiment. In the integration interval T of 18 ms, the long interval integrator 9 is 9
In the integration interval nT of 0 ms, the values are sequentially added and integrated. The outputs of the interval integrators 8 and 9 are the following comparators 10 and 1, respectively.
The threshold value is discriminated in 1 and the respective constant reference values V
When a section integration value exceeding rs and Vrl is obtained, a high level signal is output to the determination circuit 12. The judgment circuit 12 is supplied with the threshold value judgment output of the impact force and the threshold value judgment outputs of the long-term integrated value and the short-term integrated value,
Here, a collision determination is made as to whether or not the collision is recognized. That is, the determination circuit 12 includes an AND gate circuit 12a that obtains the logical product of the impact force determination output and the threshold determination output of the short interval integral value, and the output of the AND gate circuit 12a and the threshold value of the long interval integral value. And an OR gate circuit 12b which takes a logical sum with the discrimination output.
The high level output of 2b becomes the airbag deployment trigger signal.

【0006】図5に示す衝撃力ΔE(k)と速度変化量
ΔV(k)を2軸とする平面上で見た場合、判定回路1
2による判定は、衝突域と非衝突域を区画する3本の直
線からなる判定曲線を境界に行われる。すなわち、この
判定曲線が区画する衝突域とは、 (i)ΔE(k)>Erで、かつΔV(k)>Vrs か、又は (ii)ΔV(k)>Vrl の2条件を少なくとも満たす領域である。なお、同図に
は、中速での正面衝突と高速での正面衝突の外に、緩衝
機能をもった缶状体からなるクッションドラムとの衝突
や、電柱や支柱といったポールへの衝突といった事例ご
とに、衝撃力ΔE(k)と速度変化量ΔV(k)の相関
が最も深い領域を、それぞれ点線で囲って示してある。
また、判定曲線の内側の領域には、通常走行や車体のシ
ャーシ部分だけの危険を伴わない衝突を示す縁石乗り上
げ或は悪路走行のごとく、判定回路12が非衝突である
と判定する事例についても、衝撃力ΔE(k)と速度変
化量ΔV(k)の相関が最も深い領域をそれぞれ点線で
囲って示してある。これらの分類パターンは、実際に車
両を使って衝突実験をしたさいに得られたデータにもと
づいて作成され、衝撃力ΔE(k)と速度変化量ΔV
(k)が判れば、3本の直線が区画する衝突域の内外に
衝突と非衝突が区別できることが判る。
When the impact force ΔE (k) and the speed change amount ΔV (k) shown in FIG.
The determination by 2 is performed with a determination curve composed of three straight lines that divide the collision area and the non-collision area as boundaries. That is, the collision area defined by this determination curve is an area satisfying at least two conditions of (i) ΔE (k)> Er and ΔV (k)> Vrs, or (ii) ΔV (k)> Vrl. Is. In the figure, in addition to the frontal collision at medium speed and the frontal collision at high speed, examples of collision with a cushion drum made of a can-shaped body having a cushioning function and collision with poles such as electric poles and columns are shown. For each of these, the region where the correlation between the impact force ΔE (k) and the speed change amount ΔV (k) is deepest is shown surrounded by a dotted line.
Further, in the area inside the judgment curve, there is a case where the judgment circuit 12 judges that the collision is non-collision, such as curb riding on a curb or running on a bad road, which indicates a collision without danger of only normal traveling or the chassis portion of the vehicle body. Also, the regions where the correlation between the impact force ΔE (k) and the speed change amount ΔV (k) is deepest are shown by enclosing them with dotted lines. These classification patterns are created on the basis of the data obtained during the actual collision test using the vehicle, and the impact force ΔE (k) and the speed change amount ΔV are obtained.
If (k) is known, it can be understood that collision and non-collision can be distinguished inside and outside the collision area defined by the three straight lines.

【0007】[0007]

【発明が解決しようとする課題】従来の車両の衝突判定
装置1は、ディジタル信号処理部1a内の帯域濾波回路
4の濾波特性として、例えば20〜200Hzを濾波帯
域とする濾波特性を想定しており、ディジタルフィルタ
にてこの濾波特性を実現するには、非常に複雑な回路構
成が必要になり、実際に差分方程式で表される差分演算
に要するソフトウェアが複雑化するため、ディジタル信
号処理部1aの構成主体であるCPU(図示せず)は多
大の負担を覚悟しなければならない。また、二乗演算器
5における面倒な二乗演算を含めた要求処理能力からし
ても、ディジタル信号処理部1aには16ビットCPU
が不可欠であり、CPUを8ビットCPUに変えてコス
ト低減を図るといった道は閉ざされていた。
In the conventional vehicle collision determination apparatus 1, it is assumed that the filtering characteristic of the band-pass filtering circuit 4 in the digital signal processing section 1a is, for example, 20-200 Hz. However, in order to realize this filtering characteristic with a digital filter, a very complicated circuit configuration is required, and the software required for the difference calculation actually represented by the difference equation becomes complicated, so the digital signal processing unit 1a The CPU (not shown), which is the main constituent of the above, must be prepared for a great burden. Further, in view of the required processing capability including the troublesome square calculation in the square calculator 5, the digital signal processing unit 1a has a 16-bit CPU.
Is essential, and the road to change the CPU to an 8-bit CPU to reduce costs has been closed.

【0008】また、短区間積分器8から得られる速度変
化量ΔV(k)は、衝突の前後で著しい変化を示す高速
の正面衝突のようなケースでは衝突判定に役立つが、衝
突域と非衝突域を分ける判定曲線に近い中速の正面衝突
のような場合、すなわち加速度データがじわっと変化す
るようなときに、エアバッグを展開すべき展開トリガ信
号が遅れる等の課題があった。
Further, the speed change amount ΔV (k) obtained from the short interval integrator 8 is useful for collision judgment in a case such as a high-speed frontal collision which shows a remarkable change before and after the collision, but is not in collision with the collision area. In the case of a medium-speed frontal collision close to the determination curve that divides the zone, that is, when the acceleration data changes slowly, there is a problem that the deployment trigger signal for deploying the airbag is delayed.

【0009】さらにまた、加速度信号の時間変化率をし
きい値判別して衝突を検出する構成を採用しようとする
と、例えば時速8マイル(約12.2Km/h)の衝突
ではエアバッグを展開させず、時速12マイル(約1
9.2Km/h)の衝突ではエアバッグを展開させると
いうように、車両の走行速度に基づいて展開条件を規定
したような場合に、特に車体剛性の乏しい車種では、時
速8マイル以下の衝突においても車体に共振が生じ、こ
の共振に伴う共振周波数成分の時間変化率がしきい値を
越えてしまい、不要にエアバッグを展開させてしまうこ
とがある等の課題があった。
Furthermore, if it is attempted to adopt a structure for detecting a collision by discriminating the time change rate of the acceleration signal as a threshold value, for example, in the case of a collision of 8 miles per hour (about 12.2 km / h), the airbag is deployed. No, 12 mph (about 1
When the deployment conditions are defined based on the traveling speed of the vehicle, such as deploying the airbag in a collision of 9.2 km / h), especially in a vehicle model with poor vehicle rigidity, a collision of 8 mph or less However, there is a problem that resonance occurs in the vehicle body, the time rate of change of the resonance frequency component due to this resonance exceeds a threshold value, and the airbag is undesirably inflated.

【0010】本発明は、上記従来の課題に鑑みてなされ
たものであり、衝撃力と加速度信号の短区間積分出力が
ともに所定のしきい値を越えるか、又は加速度信号低周
波成分の短区間積分出力及び振幅制限時間微分出力とが
ともに所定のしきい値を越えるか、又は加速度信号の長
区間積分出力が所定のしきい値を越えるときに衝突判定
を下し、車両が衝突したときに乗員に危害が及ぶ塑性衝
突について、短期と長期の速度変化量に衝撃力を合わせ
て総合的に衝突判定し、高速かつ高精度の衝突判定を行
うことを目的とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and the short-range integrated outputs of the impact force and the acceleration signal both exceed a predetermined threshold value, or the short-range of the acceleration signal low-frequency component. When both the integral output and the amplitude limit time derivative output exceed a predetermined threshold value, or when the long-range integrated output of the acceleration signal exceeds a predetermined threshold value, a collision judgment is made and a vehicle collision occurs. The purpose of the present invention is to make a high-speed and highly-accurate collision determination for a plastic collision that is harmful to the occupants by comprehensively determining the impact by matching the impact force with the short-term and long-term velocity changes.

【0011】[0011]

【課題を解決するための手段】上記目的を達成し、かつ
前記課題を解決するため、本発明の車両の衝突判定方法
は、車両に加わる加速度を検出し、該加速度を現在値ま
で短区間積分する一方、現在値まで長区間積分し、かつ
前記加速度の低周波成分を現在値まで短区間積分する一
方、振幅制限して時間微分し、かつ前記加速度から抽出
される車両の衝突時に顕著に現れる特定の帯域成分の絶
対値をとって衝撃力を演算し、該衝撃力と前記短区間積
分出力がともに所定のしきい値を越えるか、又は前記加
速度の低周波成分の前記短区間積分出力及び前記振幅制
限時間微分出力とがともに所定のしきい値を越えるか、
又は前記長区間積分出力が所定のしきい値を越えるかを
判別して衝突を判定することを特徴とするものである。
In order to achieve the above-mentioned object and to solve the above-mentioned problems, a vehicle collision determination method of the present invention detects an acceleration applied to a vehicle and integrates the acceleration to a present value in a short interval. On the other hand, the long-range integration up to the current value and the low-frequency component of the acceleration up to the current value are integrated over the short-range, while the amplitude is limited and time-differentiated, and it appears remarkably at the time of a vehicle collision extracted from the acceleration. The impact force is calculated by taking the absolute value of a specific band component, and both the impact force and the short-term integrated output exceed a predetermined threshold value, or the short-term integrated output of the low-frequency component of the acceleration and Whether the amplitude limit time differential output exceeds a predetermined threshold value,
Alternatively, it is characterized in that the collision is judged by judging whether or not the long section integrated output exceeds a predetermined threshold value.

【0012】また、本発明の車両の衝突判定装置は、車
両に加わる加速度を検出する加速度センサと、該加速度
センサの出力を現在値まで比較的短い区間だけ積分する
第1の短区間積分器と、前記加速度の低周波成分を抽出
する低域濾波回路と、該低域濾波回路の出力を現在値ま
で比較的短い区間だけ積分する第2の短区間積分器と、
前記低域濾波回路の出力を一定の上限以下に振幅制限す
るリミッタ回路と、該リミッタ回路の出力を時間微分す
る微分器と、前記加速度センサの出力を現在値まで比較
的長い区間に亙って積分する長区間積分器と、前記加速
度センサの出力から抽出される車両の衝突時に顕著に現
れる特定の帯域成分の絶対値をとって衝撃力を演算する
衝撃力演算手段と、該衝撃力演算手段の出力と前記第1
の短区間積分器の出力がともに所定のしきい値を越える
か、又は前記第2の短区間積分器の出力と前記微分器の
出力がともに所定のしきい値を越えるか、又は前記長区
間積分器の出力が所定のしきい値を越えるかを判別して
衝突を判定する判定回路とを具備することを特徴とする
ものである。
Further, the vehicle collision determination apparatus of the present invention includes an acceleration sensor for detecting an acceleration applied to the vehicle, and a first short interval integrator for integrating the output of the acceleration sensor up to a current value for a relatively short interval. A low-pass filtering circuit for extracting a low-frequency component of the acceleration, and a second short-range integrator for integrating the output of the low-pass filtering circuit to a current value for a relatively short period,
A limiter circuit for limiting the amplitude of the output of the low-pass filtering circuit below a certain upper limit, a differentiator for differentiating the output of the limiter circuit over time, and an output of the acceleration sensor over a relatively long section up to the current value. A long-range integrator that performs integration, an impact force calculation unit that calculates the impact force by taking the absolute value of a specific band component that appears remarkably at the time of a vehicle collision extracted from the output of the acceleration sensor, and the impact force calculation unit. Output and the first
Output of both short section integrators exceeds a predetermined threshold value, or both outputs of the second short section integrator and the differentiator exceed a predetermined threshold value, or the long section And a determination circuit for determining a collision by determining whether the output of the integrator exceeds a predetermined threshold value.

【0013】さらに、本発明の車両の衝突判定装置は、
前記衝撃力演算手段が、前記加速度センサの出力から車
両の衝突時に顕著に現れる特定の帯域成分を抽出するア
ナログ回路構成の帯域濾波器と、該帯域濾波器の出力の
絶対値をとる絶対値回路と、該絶対値回路の出力を所定
値を基準にしきい値判別する比較器と、該比較器の出力
を少なくとも一定時間は持続する波形に整形する波形整
形器とを含むこと、或いは前記低域濾波回路が、離散値
データとして与えられる加速度信号を差分演算により濾
波するディジタルフィルタで構成された一次低域濾波回
路であること、或いは前記リミッタ回路が、前記低域濾
波回路の出力を所定のしきい値を基準に大小判別する判
別ステップと、該判別ステップの判別結果に応じて、前
記低域濾波回路の出力が前記しきい値を越える場合は、
該低域濾波回路の出力を前記しきい値に固定する上限抑
制ステップとに従ってソフトウェア上で振幅制限するこ
と、或いは前記微分器が、前記リミッタ回路から供給さ
れる離散値データをシンプソンの微分公式に則った演算
アルゴリズムに従って時間微分すること等を、他の特徴
とするものである。
Further, the vehicle collision determination device of the present invention is
The impact force calculation means extracts from the output of the acceleration sensor a specific band component that remarkably appears at the time of a vehicle collision, and a bandpass filter having an analog circuit configuration, and an absolute value circuit that takes an absolute value of the output of the bandpass filter. A comparator for discriminating the output of the absolute value circuit by a threshold value based on a predetermined value, and a waveform shaper for shaping the output of the comparator into a waveform that lasts for at least a fixed time, or The filtering circuit is a first-order low-pass filtering circuit configured by a digital filter that filters an acceleration signal given as discrete value data by a difference calculation, or the limiter circuit outputs the output of the low-pass filtering circuit to a predetermined value. If the output of the low-pass filtering circuit exceeds the threshold value according to the determination step of determining the magnitude based on the threshold value and the determination result of the determination step,
Amplitude limiting on software according to an upper limit suppressing step of fixing the output of the low-pass filtering circuit to the threshold value, or the differentiator converts the discrete value data supplied from the limiter circuit into a Simpson's differential formula. Another feature is that it is time-differentiated according to a compliant arithmetic algorithm.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1ないし図3を参照して説明する。図1は、本発
明の車両の衝突判定装置の一実施形態を示す回路構成
図、図2は、図1に示したディジタルフィルタからなる
低域濾波回路の回路構成図、図3は、図2に示した低域
濾波回路の濾波特性を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a circuit configuration diagram showing an embodiment of a vehicle collision determination device of the present invention, FIG. 2 is a circuit configuration diagram of a low-pass filtering circuit including the digital filter shown in FIG. 1, and FIG. It is a figure which shows the filtering characteristic of the low-pass filtering circuit shown in FIG.

【0015】図1に示す車両の衝突判定装置21は、加
速度センサ22により得られる加速度信号Gを、アナロ
グ回路構成の低域濾波回路23aと高域濾波回路23b
を縦列接続した帯域濾波器23により帯域濾波し、ディ
ジタル信号処理部21a内で加速度信号Gの絶対値判定
と短区間積分判定と長区間積分判定及び加速度信号低周
波成分の短区間積分判定と振幅制限微分判定の計5種類
の判定を総合して衝突判定を行う構成としたものであ
り、ディジタル信号処理部21aの構成主体であるCP
U(図示せず)を16ビットCPUではなく遥かに安価
な8ビットCPUとしながらも、従来の衝突判定装置1
と同等もしくはそれ以上の正確かつ確実な衝突判定を可
能にした点に特徴がある。
In the vehicle collision determination device 21 shown in FIG. 1, the acceleration signal G obtained by the acceleration sensor 22 is converted into a low-pass filtering circuit 23a and a high-pass filtering circuit 23b having an analog circuit configuration.
Is band-pass filtered by a band-pass filter 23 connected in cascade, and absolute value determination, short-term integration determination, long-term integration determination, and short-term integration determination and amplitude of the acceleration signal low-frequency component are performed in the digital signal processing unit 21a. This is a configuration in which a collision determination is made by integrating a total of five types of limited differential determinations, and is the CP that is the main constituent of the digital signal processing unit 21a.
Although the U (not shown) is a much cheaper 8-bit CPU instead of a 16-bit CPU, the conventional collision determination device 1
It is characterized in that it enables an accurate and reliable collision judgment that is equivalent to or higher than the above.

【0016】加速度センサ22としては、ピエゾ抵抗変
化を利用する応力歪みゲージを車両の進行方向に受圧面
を向けて半導体基板上に組み込んだものが用いられる
が、ピエゾ抵抗変化を検出する半導体加速度センサに限
らず、圧電素子を用いたもの或いは純粋機械式に弾性ば
ねを用いるものなども使用できる。加速度センサ22が
出力する加速度信号Gは、離散値データに変換する前に
低域濾波回路23aにおいて折り返し歪みの影響を排除
すべく80ないし260Hzを越える高周波成分例えば
80Hzを越える高周波成分を除去され、続く高域濾波
回路23bに送り出される一方で、ディジタル信号処理
部21a内の第1の短区間積分器24と長区間積分器2
5と低域濾波回路26に対し、それぞれAD変換入力ポ
ート経由で送り込まれる。
As the acceleration sensor 22, a stress-strain gauge utilizing a piezoresistance change is incorporated on a semiconductor substrate with its pressure receiving surface facing the traveling direction of the vehicle. A semiconductor acceleration sensor for detecting a piezoresistance change is used. Not limited to this, it is also possible to use a piezoelectric element or a pure mechanical elastic spring. The acceleration signal G output from the acceleration sensor 22 is subjected to removal of high frequency components exceeding 80 to 260 Hz, for example, high frequency components exceeding 80 Hz in order to eliminate the influence of aliasing distortion in the low pass filter circuit 23a before being converted into discrete value data. While being sent to the subsequent high-pass filtering circuit 23b, the first short-interval integrator 24 and the long-interval integrator 2 in the digital signal processing unit 21a.
5 and the low-pass filtering circuit 26, respectively, via the AD conversion input port.

【0017】高域濾波回路23bは、低域濾波回路23
aの出力に含まれる20ないし160Hz以下の低周波
成分例えば20Hz以下の低周波成分を除去し、濾波出
力をAD変換入力ポート経由でディジタル信号処理部2
1a内の絶対値回路26に送り込む。絶対値回路26
は、従来の二乗演算器5に代わって衝撃力演算を行う回
路であるが、8ビットCPUを構成主体とするディジタ
ル信号処理部21aにとっては、帯域濾波演算を部外に
移行させ、なおかつ二乗演算から絶対値演算に変更した
ことで、処理能力負担が大いに軽減されたのは事実であ
る。なお、近似的に余弦曲線に従って減衰する速度に関
し、前述のごとく、余弦曲線上の位相0度と90度の間
できわめて隣接する2点間での衝撃力は、これら2点間
での速度変化分の二乗に比例すると見なしたときに、加
速度データの二乗演算値をもって表すのが妥当である
が、実施例のごとく、二乗演算値を絶対値で置換する一
方で、後続のしきい値判別での判定基準を与えるErを
Erの平方根で置換して対処した場合、衝撃力判定の中
身は実質的に変わらないことになる。
The high-pass filtering circuit 23b is a low-pass filtering circuit 23.
A low-frequency component of 20 to 160 Hz or less, for example, a low-frequency component of 20 Hz or less included in the output of a is removed, and the filtered output is processed by the digital signal processing unit 2 via the AD conversion input port.
It is sent to the absolute value circuit 26 in 1a. Absolute value circuit 26
Is a circuit that performs an impact force calculation instead of the conventional squaring unit 5, but for the digital signal processing unit 21a whose main constituent is an 8-bit CPU, the band-pass filtering calculation is moved to the outside and the squaring calculation is performed. It is a fact that the processing load was greatly reduced by changing from to absolute value calculation. As to the velocity that approximately decays according to the cosine curve, as described above, the impact force between two points that are extremely adjacent between the phase 0 degrees and 90 degrees on the cosine curve is the change in velocity between these two points. When it is considered to be proportional to the square of the minute, it is appropriate to express it as the squared calculated value of the acceleration data, but as in the embodiment, the squared calculated value is replaced with the absolute value while the subsequent threshold value determination is performed. If Er is given as the criterion for (1) and (2) is replaced with the square root of Er to deal with it, the contents of the impact force determination will not substantially change.

【0018】こうして、絶対値回路26から加速度デー
タG(k)の正負に関係なく得られた衝撃力の大きさに
関係する絶対値|G(k)|は、続く比較器27におい
て一定の基準値すなわちErの平方根を基準にしきい値
判別され、波形整形器28に送り込まれる。波形整形器
28は、しきい値を越える衝撃力が比較器27の出力と
して得られたときに、比較器27の出力を一定期間だけ
時間軸方向に伸長し、少なくとも一定時間は持続する波
形に整形するものであり、実施例の場合、比較器27の
出力の立ち上がりでトリガされて30ms持続するワン
ショットパルスを生成するワンショット回路28aと、
このワンショット回路28aの出力ワンショットパルス
と比較器27の原出力との論理和をとるオアゲート回路
28bとで構成してある。このため、絶対値回路26の
出力が危険値を越える急激な衝撃力の変化を示したとき
は、波形整形器28の出力が衝突認定の可能性が大であ
ることを、30msの期間に亙って明示し続けることに
なる。
Thus, the absolute value | G (k) |, which is obtained from the absolute value circuit 26 regardless of whether the acceleration data G (k) is positive or negative, is related to the magnitude of the impact force. The threshold value is discriminated based on the value, that is, the square root of Er, and the result is sent to the waveform shaper 28. The waveform shaper 28 expands the output of the comparator 27 in the time axis direction for a certain period when an impact force exceeding the threshold value is obtained as the output of the comparator 27, and forms a waveform that lasts at least a certain period of time. In the case of the embodiment, the one-shot circuit 28a which is triggered by the rising edge of the output of the comparator 27 and generates a one-shot pulse lasting 30 ms,
It is constituted by an OR gate circuit 28b which takes the logical sum of the output one shot pulse of the one shot circuit 28a and the original output of the comparator 27. Therefore, when the output of the absolute value circuit 26 shows a sudden change in the impact force exceeding the dangerous value, it is considered that the output of the waveform shaper 28 has a high possibility of collision recognition for a period of 30 ms. Will continue to be clearly stated.

【0019】一方、各区間積分器24,25により行わ
れ区間積分は、離散値化された加速度データG(k)
を、第1の短区間積分器24が10ないし14ms例え
ば14msの積分区間Tで、また長区間積分器25が9
0msの積分区間nTでそれぞれ逐次加算して積分演算
することにより行われる。長区間積分器25の長区間積
分出力は、続く比較器29において一定の基準値Vrl
を基準にしきい値判別され、一定の基準値Vrlを越え
る長区間積分値が得られる場合に、判定回路30内の3
入力1出力型のオアゲート回路31に対しハイレベルの
信号を供給する。なお、判定回路30は、オアゲート回
路31の外に2個のアンドゲート回路32,33を内蔵
しており、アンドゲート回路32,33の出力と上記比
較器29の出力がオアゲート回路31に供給される。
On the other hand, the interval integration performed by the interval integrators 24 and 25 is discrete acceleration data G (k).
For the first short interval integrator 24 for an integration interval T of 10 to 14 ms, for example 14 ms, and the long interval integrator 25 for 9 ms.
It is performed by sequentially adding and performing integral calculation in the integration interval nT of 0 ms. The long-interval integrated output of the long-interval integrator 25 is supplied to the subsequent comparator 29 at a constant reference value Vrl.
When the threshold value is discriminated based on, and a long-interval integrated value exceeding a certain reference value Vrl is obtained, 3 in the determination circuit 30 is determined.
A high level signal is supplied to the input 1 output type OR gate circuit 31. The determination circuit 30 includes two AND gate circuits 32 and 33 in addition to the OR gate circuit 31, and the outputs of the AND gate circuits 32 and 33 and the output of the comparator 29 are supplied to the OR gate circuit 31. It

【0020】第1の短区間積分器24の出力は、比較器
34に供給される。比較器34は、短区間積分出力をそ
れぞれ一定の基準値Vrs1を基準にしきい値判別し、
しきい値判別出力を続く波形整形器35に供給する。波
形整形器35は、前述の波形整形器28と同様、ワンシ
ョット回路35aとオアゲート回路35bからなり、第
1の短区間積分器24の出力が衝突認定の可能性が大で
あることを、30ms程度の期間に亙るパルスを出力し
て明示する。波形整形器35の出力はアンドゲート回路
32に供給され、波形整形器28の出力との論理積演算
に供される。
The output of the first short-term integrator 24 is supplied to the comparator 34. The comparator 34 performs threshold value determination on the short-term integrated output with reference to a constant reference value Vrs1.
The threshold discrimination output is supplied to the subsequent waveform shaper 35. Like the waveform shaper 28 described above, the waveform shaper 35 includes a one-shot circuit 35a and an OR gate circuit 35b, and the output of the first short interval integrator 24 has a high possibility of collision recognition for 30 ms. The pulse is output for a certain period of time to be clearly indicated. The output of the waveform shaper 35 is supplied to the AND gate circuit 32 and is subjected to a logical product operation with the output of the waveform shaper 28.

【0021】低域濾波回路23aからディジタル信号処
理部21a内に送り込まれた加速度信号は、第1の短区
間積分器24と長区間積分器25の外に、ソフトウェア
処理による低域濾波回路36を介して第2の短区間積分
器37とリミッタ回路38とに送り込まれる。低域濾波
回路36は、離散値データとして与えられる加速度信号
を差分演算により濾波するディジタルフィルタで構成さ
れ、図2に示す一次低域濾波回路からなる。同図に示し
た低域濾波回路は、1サンプル周期分の遅延を行う遅延
器36aの出力を係数器36bにて係数Eを乗じて加算
器36cに帰還し、入力加速度データに加算する。さら
に、加算器36cの出力に係数器36dにおいて係数D
を乗じた加速度データと、係数器36eにおいて遅延器
36aの出力に係数Dを乗じた1サンプル前の加速度デ
ータとを加算器36fに供給し、ここで両者を加算して
濾波出力とする。低域濾波回路36によるディジタル信
号処理の内容を示す演算式は、同図に付記したz変換伝
達特性H(z)により表される。この演算式は、遮断周
波数fcが1/2πτの一次低域濾波回路のラプラス変
換伝達関数H(s)=1/(1+τs)に双一次変換を
施すことで簡単に導くことができる。ただし、サンプリ
ング周期をTsとしたときに、D=πfcTs/(1+π
fcTs),E=1−2Dである。また、ディジタル信
号処理部21aにおける実際の演算は、第k番目のサン
プリングデータをXkとし、第k番目の濾波出力をYkと
したときに、以下に示す差分方程式に則って行われる。 Yk=D・Xk+D・Xk-1+E・Yk-1 この実施形態においては、サンプリング周期Tsを例え
ば1.0msに選定し、かつD=0.125,E=0.
75に設定しており、図3に示した低域濾波特性を規定
する遮断周波数fcは45Hzとなる。また、係数D,
Eを変えずにサンプリング周期Tsだけを1.2msに
変更した場合、遮断周波数fcは38Hzとなる。この
ように、ソフトウェア処理により実現される低域濾波回
路36は、アナログ回路構成の低域濾波回路23aで抽
出された例えば80Hz以下の加速度信号低域成分か
ら、さらに36〜45Hz以下の低周波成分Gfを抽出
し、これらを第2の短区間積分器37とリミッタ回路3
8とに供給する。
The acceleration signal sent from the low-pass filtering circuit 23a into the digital signal processing unit 21a is sent to the low-pass filtering circuit 36 by software processing in addition to the first short-interval integrator 24 and the long-interval integrator 25. It is sent to the second short-range integrator 37 and the limiter circuit 38 via. The low-pass filter circuit 36 is composed of a digital filter that filters an acceleration signal given as discrete value data by difference calculation, and is composed of a primary low-pass filter circuit shown in FIG. In the low pass filter circuit shown in the figure, the output of the delay unit 36a that delays by one sample period is multiplied by the coefficient E in the coefficient unit 36b and fed back to the adder 36c to be added to the input acceleration data. Furthermore, the coefficient D in the coefficient unit 36d is added to the output of the adder 36c.
The acceleration data multiplied by and the acceleration data one sample before obtained by multiplying the output of the delay unit 36a by the coefficient D in the coefficient unit 36e by one coefficient are supplied to the adder 36f, where they are added to form a filtered output. An arithmetic expression showing the contents of the digital signal processing by the low pass filter circuit 36 is expressed by the z conversion transfer characteristic H (z) attached to the figure. This arithmetic expression can be easily derived by applying a bilinear transformation to the Laplace transform transfer function H (s) = 1 / (1 + τs) of the first-order low-pass filter circuit having a cutoff frequency fc of 1 / 2πτ. However, when the sampling period is Ts, D = πfcTs / (1 + π
fcTs), E = 1-2D. Further, the actual calculation in the digital signal processing unit 21a is performed according to the difference equation shown below when the kth sampling data is Xk and the kth filtered output is Yk. Yk = D * Xk + D * Xk-1 + E * Yk-1 In this embodiment, the sampling period Ts is selected to be 1.0 ms, and D = 0.125, E = 0.
The cutoff frequency fc defining the low-pass filtering characteristic shown in FIG. 3 is 45 Hz. Also, the coefficient D,
When only the sampling period Ts is changed to 1.2 ms without changing E, the cutoff frequency fc becomes 38 Hz. As described above, the low-pass filtering circuit 36 realized by software processing is configured to further reduce the low-frequency component of 36 to 45 Hz from the acceleration signal low-pass component of 80 Hz or less extracted by the low-pass filtering circuit 23a having an analog circuit configuration. Gf is extracted, and these are supplied to the second short-term integrator 37 and the limiter circuit 3
And 8.

【0022】なお、低域濾波回路36により除去される
36〜45Hzから80Hzに含まれる加速度信号低域
成分には、剛性に乏しい車種が路肩に乗り上げた程度で
車体に発生する共振周波数が含まれている。また、こう
した共振周波数はエアバッグの展開を必要とする衝突に
起因して発生するものでないため、低域濾波回路36に
よって判定条件から除外したことは非常に意義深く、衝
突判定精度の向上に寄与することができる。
The acceleration signal low-frequency component contained in the range of 36 to 45 Hz to 80 Hz which is removed by the low-pass filtering circuit 36 includes the resonance frequency generated in the vehicle body to the extent that a vehicle having poor rigidity rides on the road shoulder. ing. Further, since such a resonance frequency is not generated due to a collision that requires deployment of an airbag, it is very significant that it is excluded from the determination condition by the low-pass filtering circuit 36, and it contributes to the improvement of the collision determination accuracy. can do.

【0023】第2の短区間積分器37は、低域濾波回路
36が出力する離散値化された加速度信号の低周波成分
Gfを、10ないし14ms例えば14msの比較的短
い積分区間で逐次加算して積分演算する。この第2の短
区間積分器37の出力は、続く比較器39において一定
の基準値Vrs2を基準にしきい値判別され、一定の基
準値Vrs2を越える短区間積分値が得られる場合に、
判定回路30内のアンドゲート回路33に対しハイレベ
ルの信号を供給する。
The second short-range integrator 37 successively adds the low-frequency components Gf of the discrete-valued acceleration signal output from the low-pass filtering circuit 36 in a relatively short integration period of 10 to 14 ms, for example 14 ms. And perform integral calculation. The output of the second short-range integrator 37 is threshold-value-determined by the subsequent comparator 39 with reference to the constant reference value Vrs2, and when a short-term integrated value exceeding the constant reference value Vrs2 is obtained,
A high level signal is supplied to the AND gate circuit 33 in the determination circuit 30.

【0024】一方、リミッタ回路38は、加速度信号低
周波成分Gfに対しソフトウェア処理により振幅制限を
施す。具体的には、低域濾波回路36の出力を所定のし
きい値Gtを基準に大小判別する判別ステップ38a
と、該判別ステップの判別結果に応じて、低域濾波回路
36の出力がしきい値Gtを越える場合に、低域濾波回
路36の出力をしきい値Gtに固定する上限抑制ステッ
プ38bとが組み込まれており、これらのステップに従
って加速度信号低周波成分を振幅制限する。なお、しき
い値Gtとしては、例えば重力加速度の36倍程度の値
が用いられ、基本波モードや高調波モードの共振に伴っ
て瞬間的に発生する大振幅の低周波成分は、一定限度G
tをもって抑制される。
On the other hand, the limiter circuit 38 limits the amplitude of the acceleration signal low frequency component Gf by software processing. Specifically, a determination step 38a for determining the output of the low-pass filtering circuit 36 based on a predetermined threshold value Gt.
And an upper limit suppressing step 38b for fixing the output of the low-pass filtering circuit 36 to the threshold value Gt when the output of the low-pass filtering circuit 36 exceeds the threshold value Gt according to the determination result of the determining step. Incorporated and amplitude limiting the low frequency components of the acceleration signal according to these steps. As the threshold value Gt, for example, a value of about 36 times the gravitational acceleration is used, and the large-amplitude low-frequency component instantaneously generated due to the resonance of the fundamental wave mode or the harmonic mode is a fixed limit G.
It is suppressed with t.

【0025】リミッタ回路38に続く微分器40は、リ
ミッタ回路38から供給される離散値データをシンプソ
ンの微分公式に則った演算アルゴリズムに従って時間微
分する。シンプソンの公式によれば、加速度信号低周波
成分Gfの現在値Gf(k)とその3サンプル前までの
データGf(k−1),Gf(k−2),Gf(k−
3)とを用い、 {Gf(k)+3Gf(k−1)−3Gf(k−2)−
Gf(k−3)}/6 なる演算により時間微分値が導出される。微分器36
は、得られた時間微分値を比較器41に供給する。比較
器41は、短区間積分出力の時間微分値を一定の基準値
αrを基準にしきい値判別し、しきい値判別出力をアン
ドゲート回路33に供給して比較器39の出力との論理
積演算に供する。
A differentiator 40 following the limiter circuit 38 time-differentiates the discrete value data supplied from the limiter circuit 38 according to a calculation algorithm according to Simpson's differential formula. According to Simpson's formula, the current value Gf (k) of the acceleration signal low-frequency component Gf and the data Gf (k-1), Gf (k-2), and Gf (k-
3) and, {Gf (k) + 3Gf (k-1) -3Gf (k-2)-
The time differential value is derived by the calculation of Gf (k-3)} / 6. Differentiator 36
Supplies the obtained time differential value to the comparator 41. The comparator 41 performs a threshold value determination on the time differential value of the short-term integrated output with reference to a constant reference value αr, supplies the threshold value determination output to the AND gate circuit 33, and performs a logical product with the output of the comparator 39. Provide for calculation.

【0026】このため、絶対値回路26や第1の短区間
積分器24或いは長区間積分器25の出力がしきい値を
越えないような中速の正面衝突が発生したときに、じわ
っと増大するような加速度に対して第2の短区間積分器
24の出力と微分器40の出力がともにしきい値を越え
るため、有効に衝突判定を下すことができる。また、例
えば縁石乗り上げとともに加速度信号低周波成分が急激
な時間変化を示した場合でも、第2の短区間積分器37
の短区間積分出力がしきい値Vrs2以下である場合に
は、衝突判定が下されることはない。また、その逆に第
2の短区間積分器37の短区間積分出力がしきい値Vr
s2を越えても、加速度信号低周波成分が急激な時間変
化を示さない限り、衝突判定が下されることはない。さ
らにまた、例えば時速8マイル(約12.2Km/h)
の衝突ではエアバッグを展開させず、時速12マイル
(約19.2Km/h)の衝突ではエアバッグを展開さ
せるというように、車両の走行速度に基づいて展開条件
を規定したような場合に、特に車体剛性の乏しい車種で
は、時速8マイル以下の衝突において車体に共振が発生
しやすい。しかしながら、低域濾波回路36による前処
理により共振周波数成分が除去された加速度信号Gfに
ついて、短区間積分判定と振幅制限微分判定を施すよう
構成してあるため、衝突判定装置21が不要にエアバッ
グを展開させてしまうことはない。
Therefore, when a medium-speed frontal collision occurs in which the output of the absolute value circuit 26, the first short-range integrator 24, or the long-range integrator 25 does not exceed the threshold value, it gradually increases. With respect to such acceleration, the output of the second short-term integrator 24 and the output of the differentiator 40 both exceed the threshold value, so that the collision determination can be effectively made. In addition, for example, even when the low frequency component of the acceleration signal shows a rapid time change as the curb rides up, the second short interval integrator 37
If the short-range integrated output of is less than or equal to the threshold value Vrs2, the collision determination is not made. On the contrary, the short-term integrated output of the second short-term integrator 37 is the threshold value Vr.
Even if it exceeds s2, the collision determination is not made unless the low frequency component of the acceleration signal shows a rapid time change. Furthermore, for example, 8 mph (about 12.2 km / h)
In the case where the deployment conditions are defined based on the traveling speed of the vehicle, such as the airbag is not deployed in the collision of 10 mph and the airbag is deployed in the collision of 12 mph (about 19.2 km / h), Particularly in a vehicle model having a poor vehicle body rigidity, resonance easily occurs in the vehicle body in a collision at a speed of 8 mph or less. However, since the acceleration signal Gf from which the resonance frequency component has been removed by the pre-processing by the low-pass filtering circuit 36 is configured to be subjected to the short-term integration determination and the amplitude limitation differential determination, the collision determination device 21 is not necessary. Will not be deployed.

【0027】このように、車両の衝突判定装置11によ
れば、車両が衝突したときに乗員に危害が及ぶ塑性衝突
について、車両の前部を無数のばね体が複合された塑性
ばねと見なすことで、衝突により車両が停止に至る過程
で加速度信号の基本1/4正弦波に重畳する各種の振動
波形のなかから、衝突時に顕著な特定の帯域成分を抽出
することにより、速度変化量を追跡しただけでは分から
ない衝撃力を検出し、悪路走行や縁石乗り上げ等に伴う
衝撃等と区別して、安全装置の作動を必要とする衝突で
あることを判定することができる。また、速度変化量に
ついても短期と長期の速度変化量の両面から総合的に衝
突判定するため、緩慢な速度変化量の推移が長区間積分
値に現れるクッションドラム衝突を判定したり、或いは
速度変化量には大差のないポール衝突と悪路走行とを衝
撃力の違いを利用して精度よく判定することができ、特
に加速度信号低周波成分について短区間積分判定と振幅
制限微分判定を衝突判定に導入したことで、加速度がじ
わっと増大するような中速の正面衝突時に有効に衝突判
定を下すことができ、しかも例えば縁石乗り上げととも
に加速度信号低周波成分が急激な時間変化を示した場合
でも、第2の短区間積分器37の出力がしきい値に満た
ないために、誤って衝突判定を下すこともなく、さらに
また車両の走行速度に基づいて展開条件を規定したよう
な場合に、特に車体剛性の乏しい車種は、低速衝突時に
おいて車体に共振が発生しやすくなる傾向にあるが、前
以て共振周波数成分を除去した加速度信号低周波成分G
fについて、短区間積分判定と振幅制限微分判定を施す
ため、不要にエアバッグを展開させてしまうことはな
く、エアバッグの展開を必要とする衝突が発生したこと
を、正確かつ確実に判定することができる。
As described above, according to the vehicle collision determination device 11, in the case of a plastic collision in which an occupant is injured when the vehicle collides, the front portion of the vehicle is regarded as a plastic spring in which numerous spring bodies are combined. The speed change amount is tracked by extracting a remarkable specific band component at the time of a collision from various vibration waveforms superimposed on the basic 1/4 sine wave of the acceleration signal in the process of stopping the vehicle due to the collision. It is possible to detect an impact force that cannot be understood only by doing so and distinguish it from an impact caused by traveling on a bad road, riding on a curb, or the like, and determine that the collision requires the operation of the safety device. In addition, since the speed change amount is comprehensively judged from both short-term and long-term speed change amounts, it is possible to judge a cushion drum collision in which a slow transition of the speed change amount appears in the long-term integrated value, or It is possible to accurately judge a pole collision and a bad road running with no significant difference in amount by utilizing the difference in impact force. Especially, short-range integral judgment and amplitude limit differential judgment are used for collision judgment for the low frequency component of the acceleration signal. By introducing it, it is possible to effectively make a collision determination at the time of a medium-speed frontal collision where the acceleration gradually increases, and even if the acceleration signal low frequency component shows a sudden time change with the curb riding, for example, Since the output of the second short-range integrator 37 does not reach the threshold value, the collision determination is not made by mistake, and the expansion condition is defined based on the traveling speed of the vehicle. If a particularly poor models of body rigidity, tends to resonance to the vehicle body tends to occur at the time of low-speed collision, the acceleration signal a low-frequency component G was removed previously resonance frequency component
Since the short-range integral determination and the amplitude limiting differential determination are performed for f, the airbag is not unnecessarily inflated, and it is accurately and reliably determined that a collision that requires deployment of the airbag has occurred. be able to.

【0028】また、アナログ回路構成の帯域濾波器23
において、衝突時に塑性変形する車両の前部の加速度振
動波形のうち、衝突時に特有の顕著な変化を示す帯域成
分を抽出し、衝撃力の目安として衝突判定に有効活用す
ることができ、さらにこうして抽出した加速度信号の絶
対値をとることにより、加速度信号の正負に関係なく衝
撃力をエネルギ量として算出することができる。また、
比較器27のしきい値レベルを越える衝撃力について
は、瞬間的なものも持続性をもったものも少なくとも一
定時間は持続する波形に整形して処理するため、危険レ
ベルに達した衝撃力の存在を一定時間明示することがで
き、特に論理判断に適した信号波形として衝突判定に供
することができる。また、加速度信号を帯域濾波して二
乗演算していた従来の衝突判定装置1と異なり、帯域濾
過器23をアナログ回路で構成し、二乗演算を絶対値演
算に置き換えたことで、ディジタル信号処理の中枢を担
うCPUを、例えば16ビットCPUではなく8ビット
CPUで構成したり、或いは処理能力に生じた余裕を、
ソフトウェア処理による低域濾波や振幅制限に振り分け
ることができる。
In addition, the bandpass filter 23 having an analog circuit configuration.
In, in the acceleration vibration waveform of the front part of the vehicle that plastically deforms at the time of a collision, a band component showing a remarkable change peculiar at the time of the collision can be extracted and effectively used for the collision determination as a measure of the impact force. By taking the absolute value of the extracted acceleration signal, the impact force can be calculated as the amount of energy regardless of whether the acceleration signal is positive or negative. Also,
As for the impact force exceeding the threshold level of the comparator 27, both the instantaneous force and the persistent force are shaped and processed into a waveform that lasts for at least a certain period of time. The existence can be clearly shown for a certain period of time, and it can be used for collision judgment as a signal waveform particularly suitable for logical judgment. Further, unlike the conventional collision determination device 1 in which the acceleration signal is band-pass filtered to perform a square calculation, the band filter 23 is configured by an analog circuit, and the square calculation is replaced by an absolute value calculation. For example, the CPU that plays a central role is configured with an 8-bit CPU instead of the 16-bit CPU, or the margin generated in the processing capacity is
It can be divided into low-pass filtering and amplitude limiting by software processing.

【0029】また、低域濾波回路36を、離散値データ
として与えられる加速度信号を差分演算により濾波する
ディジタルフィルタで構成された一次低域濾波回路とし
たから、ソフトウェア処理により加速度信号の低周波成
分を抽出することができ、低域濾波の遮断周波数fcが
係数D,Eの設定変更により容易に可変できる。このた
め、車種に応じて異なる低速衝突時の共振周波数に対応
して、容易に最適遮断周波数の設定が可能であり、同様
にまたサンプリング周期Tsに対応した遮断周波数の設
定変更も容易であり、複数の車種に柔軟に対応すること
ができる。
Further, since the low-pass filtering circuit 36 is a primary low-pass filtering circuit composed of a digital filter for filtering the acceleration signal given as the discrete value data by the difference calculation, the low-frequency component of the acceleration signal is processed by software. Can be extracted, and the cutoff frequency fc of low-pass filtering can be easily changed by changing the settings of the coefficients D and E. Therefore, it is possible to easily set the optimum cutoff frequency corresponding to the resonance frequency at the time of low-speed collision that differs depending on the vehicle type, and similarly, it is also easy to change the setting of the cutoff frequency corresponding to the sampling cycle Ts. It can flexibly support multiple vehicle types.

【0030】また、リミッタ回路38が、低域濾波回路
36の出力を所定のしきい値Gtを基準に大小判別する
判別ステップ38aと、判別ステップ38aの判別結果
に応じて、低域濾波回路36の出力がしきい値Gtを越
える場合は、低域濾波回路36の出力をしきい値Gtに
固定する上限抑制ステップ38bとに従ってソフトウェ
ア上で振幅制限するため、振幅制限により制限される上
限の重力加速度を規定するしきい値Gtを、ソフトウェ
ア上で簡単に設定することができ、複数の車種に柔軟に
対応することができる。
Further, the limiter circuit 38 judges the magnitude of the output of the low-pass filtering circuit 36 based on a predetermined threshold value Gt, and the low-pass filtering circuit 36 according to the judgment result of the judging step 38a. Output exceeds the threshold Gt, the output of the low-pass filtering circuit 36 is amplitude-limited by software in accordance with the upper-limit suppressing step 38b for fixing the output to the threshold Gt. The threshold value Gt that defines the acceleration can be easily set on the software and can flexibly deal with a plurality of vehicle types.

【0031】また、微分器36が、短区間積分器24か
ら離散値データとして与えられる短区間積分出力をシン
プソンの微分公式に則った演算アルゴリズムに従って時
間微分する構成としたから、離散値データとして与えら
れる振幅制限出力をソフトウェア処理により時間微分す
ることができ、現在値を示すサンプルデータから3サン
プル前までのサンプルデータを用いて加減算処理により
演算できるため、ディジタル信号処理による時間微分を
簡単に実行することができる。
Since the differentiator 36 is configured to time-differentiate the short-term integral output given as the discrete-value data from the short-term integrator 24 according to the operation algorithm according to Simpson's differential formula, it is given as the discrete-value data. The amplitude limited output can be time-differentiated by software processing and can be calculated by addition / subtraction processing using sample data up to 3 samples before from the sample data showing the current value, so time differentiation by digital signal processing is easily executed. be able to.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、車両に
加わる加速度を現在値まで短区間積分する一方、現在値
まで長区間積分し、かつ前記加速度の低周波成分を現在
値まで短区間積分する一方、振幅制限して時間微分し、
かつ前記加速度から抽出される車両の衝突時に顕著に現
れる特定の帯域成分の絶対値をとって衝撃力を演算し、
該衝撃力と前記短区間積分出力がともに所定のしきい値
を越えるか、又は前記加速度の低周波成分の前記短区間
積分出力及び前記振幅制限微分出力とがともに所定のし
きい値を越えるか、又は前記長区間積分出力が所定のし
きい値を越えるかを判別して衝突を判定する構成とした
から、車両が衝突したときに乗員に危害が及ぶ塑性衝突
について、車両の前部を無数のばね体が複合された塑性
ばねと見なすことで、衝突により車両が停止に至る過程
で加速度信号の基本1/4正弦波に重畳する各種の振動
波形のなかから、衝突時に顕著な特定の帯域成分を抽出
することにより、速度変化量を追跡しただけでは分から
ない衝撃力を検出し、悪路走行や縁石乗り上げ等に伴う
衝撃等と区別して、安全装置の作動を必要とする衝突で
あることを判定することができ、また速度変化量につい
ても短期と長期の速度変化量の両面から総合的に衝突判
定するため、緩慢な速度変化量の推移が長区間積分値に
現れるクッションドラム衝突を判定したり、或いは速度
変化量には大差のないポール衝突と悪路走行とを衝撃力
の違いを利用して精度よく判定することができ、特に加
速度信号低周波成分について短区間積分判定と振幅制限
微分判定を衝突判定に導入したことで、加速度がじわっ
と増大するような中速の正面衝突時に有効に衝突判定を
下すことができ、しかも例えば縁石乗り上げとともに加
速度信号低周波成分が急激な時間変化を示した場合で
も、短区間積分出力がしきい値に満たないために、誤っ
て衝突判定を下すこともなく、さらにまた例えば時速8
マイル(約12.2Km/h)の衝突ではエアバッグを
展開させず、時速12マイル(約19.2Km/h)の
衝突ではエアバッグを展開させるというように、車両の
走行速度に基づいて展開条件を規定したような場合に、
特に車体剛性の乏しい車種は、時速8マイル以下の衝突
において車体に共振が発生しやすくなる傾向を示すが、
前以て共振周波数成分を除去した加速度信号低周波成分
について、短区間積分判定と振幅制限微分判定を施すた
め、不要にエアバッグを展開させてしまうことはなく、
エアバッグの展開を必要とする衝突が発生したことを、
正確かつ確実に判定することができる等の優れた効果を
奏する。
As described above, according to the present invention, the acceleration applied to the vehicle is integrated over a short period up to the current value, while it is integrated over a long period up to the current value, and the low frequency component of the acceleration is over a short period up to the current value. While integrating, limit amplitude and differentiate with time,
And the impact force is calculated by taking the absolute value of a specific band component that appears remarkably at the time of a vehicle collision extracted from the acceleration,
Whether the impact force and the short-range integrated output both exceed a predetermined threshold value, or both the short-range integrated output and the amplitude limiting differential output of the low frequency component of the acceleration both exceed a predetermined threshold value. Alternatively, since the collision is determined by determining whether the long-range integrated output exceeds a predetermined threshold value, the plastic frontal collision in which the occupant is injured when the vehicle collides is counted innumerable at the front of the vehicle. By considering it as a plastic spring that is composed of multiple spring bodies, it is possible to identify a particular band at the time of a collision from among various vibration waveforms that are superimposed on the basic 1/4 sine wave of the acceleration signal during the process of stopping the vehicle due to the collision. It is a collision that requires the operation of a safety device by detecting the impact force that cannot be understood only by tracking the speed change amount by extracting the components and distinguishing it from the impact caused by running on a bad road or climbing a curb. Judge It is also possible to determine the speed change amount comprehensively from both the short-term and long-term speed change amount, so that it is possible to judge a cushion drum collision in which a slow change in the speed change amount appears in the long-term integrated value, Alternatively, it is possible to accurately judge a pole collision and a bad road traveling that have no great difference in speed change amount by utilizing the difference in impact force, and particularly perform short-range integral judgment and amplitude-limited differential judgment for the low frequency component of the acceleration signal. By introducing this into collision judgment, it is possible to make a collision judgment effectively in the case of a medium-speed frontal collision where the acceleration gradually increases, and, for example, the acceleration signal low-frequency component shows a rapid time change with the curb riding. In this case, since the short-range integrated output does not reach the threshold value, the collision determination is not made by mistake.
The airbag is not deployed in a mileage collision (about 12.2 Km / h), and the airbag is deployed in a 12 mph collision speed (about 19.2 Km / h). If you have specified the conditions,
Especially in car models with poor body rigidity, resonance tends to occur in the car body in a collision at a speed of 8 mph or less,
For the acceleration signal low frequency component from which the resonance frequency component has been removed beforehand, short-range integration determination and amplitude limit differential determination are performed, so there is no need to deploy the airbag unnecessarily.
That there was a collision requiring the deployment of an airbag,
It has excellent effects such as accurate and reliable determination.

【0033】また、本発明は、衝撃力演算手段を、加速
度センサの出力から車両の衝突時に顕著に現れる特定の
帯域成分を抽出するアナログ回路構成の帯域濾波器と、
帯域濾波器の出力の絶対値をとる絶対値回路と、絶対値
回路の出力を所定値を基準にしきい値判別する比較器
と、比較器の出力を少なくとも一定時間は持続する波形
に整形する波形整形器とから構成したので、帯域濾波器
において、衝突時に塑性変形する車両の前部の加速度振
動波形のうち、衝突時に特有の顕著な変化を示す帯域成
分を抽出し、衝撃力の目安として衝突判定に有効活用す
ることができ、さらにこうして抽出した加速度信号の絶
対値をとることにより、加速度信号の正負に関係なく衝
撃力をエネルギ量として算出することができ、また比較
器のしきい値レベルを越える衝撃力については、瞬間的
なものも持続性をもったものも少なくとも一定時間は持
続する波形に整形して処理するため、危険レベルに達し
た衝撃力の存在を一定時間明示することができ、特に論
理判断に適した信号波形として衝突判定に供することが
でき、また加速度信号を帯域濾波して二乗演算していた
従来の衝突判定装置と異なり、帯域濾過器をアナログ回
路で構成し、二乗演算を絶対値演算に置き換えたこと
で、ディジタル信号処理の中枢であるCPUを、例えば
16ビットCPUではなく8ビットCPUで構成した
り、処理能力に生じた余裕をソフトウェア処理による低
域濾波や振幅制限に振り分けたりすることができる等の
効果を奏する。
Further, according to the present invention, the impact force calculating means is a band-pass filter having an analog circuit structure for extracting a specific band component which appears remarkably at the time of a vehicle collision from the output of the acceleration sensor.
An absolute value circuit that takes the absolute value of the output of the bandpass filter, a comparator that determines the threshold value of the output of the absolute value circuit based on a predetermined value, and a waveform that shapes the output of the comparator into a waveform that lasts at least for a certain period of time. Since it is composed of a shaper, the bandpass filter extracts the band component showing the remarkable change peculiar to the collision from the acceleration vibration waveform of the front part of the vehicle that plastically deforms at the time of the collision, and uses it as a measure of the impact force. It can be effectively used for judgment, and by taking the absolute value of the acceleration signal extracted in this way, it is possible to calculate the impact force as the amount of energy regardless of whether the acceleration signal is positive or negative, and the threshold level of the comparator. With regard to the impact force that exceeds the limit, since both instantaneous and persistent impact waves are shaped and processed into waveforms that last for at least a certain period of time, it is possible to detect the impact force that has reached a dangerous level. Time can be clearly indicated, and it can be used for collision judgment as a signal waveform particularly suitable for logical judgment.Also, unlike the conventional collision judgment device that band-filters the acceleration signal to perform square calculation, the band-pass filter is an analog signal. By using a circuit and replacing the square operation with an absolute value operation, the CPU, which is the center of digital signal processing, is configured with, for example, an 8-bit CPU instead of a 16-bit CPU, and a margin generated in processing capability is processed by software. There is an effect that it can be distributed to the low-pass filtering and the amplitude limitation.

【0034】また、低域濾波回路を、離散値データとし
て与えられる加速度信号を差分演算により濾波するディ
ジタルフィルタで構成された一次低域濾波回路としたか
ら、ソフトウェア処理により加速度信号の低周波成分を
抽出することができ、低域濾波の遮断周波数が係数値の
設定変更により容易に可変できるため、車種に応じて異
なる低速衝突時の共振周波数に対応して、容易に最適遮
断周波数の設定が可能であり、同様にまたサンプリング
周波数に対応した遮断周波数の設定変更も容易であり、
複数の車種に柔軟に対応することができる等の効果を奏
する。
Further, since the low-pass filtering circuit is a primary low-pass filtering circuit composed of a digital filter for filtering the acceleration signal given as the discrete value data by the difference calculation, the low-frequency component of the acceleration signal is processed by software. It can be extracted, and the cutoff frequency of low-pass filtering can be easily changed by changing the setting of the coefficient value, so it is possible to easily set the optimum cutoff frequency according to the resonance frequency at the time of low-speed collision that differs depending on the vehicle type. Similarly, it is also easy to change the setting of the cutoff frequency corresponding to the sampling frequency.
It is possible to flexibly deal with a plurality of vehicle types.

【0035】また、リミッタ回路は、前記低域濾波回路
の出力を所定のしきい値を基準に大小判別する判別ステ
ップと、該判別ステップの判別結果に応じて、前記低域
濾波回路の出力が前記しきい値を越える場合は、該低域
濾波回路の出力を前記しきい値に固定する上限抑制ステ
ップとに従ってソフトウェア上で振幅制限するため、振
幅制限により制限される上限の重力加速度を規定するし
きい値を、ソフトウェア上で簡単に設定することがで
き、複数の車種に柔軟に対応することができる等の効果
を奏する。
The limiter circuit determines whether the output of the low-pass filtering circuit is large or small on the basis of a predetermined threshold value, and the output of the low-pass filtering circuit according to the result of the determination in the judging step. When exceeding the threshold value, the amplitude of the output of the low-pass filtering circuit is limited by software in accordance with the upper limit suppressing step of fixing the output to the threshold value. Therefore, the upper limit gravity acceleration limited by the amplitude limit is defined. The threshold value can be easily set on software, and it is possible to flexibly deal with a plurality of vehicle types.

【0036】さらにまた、微分器が、短区間積分器から
離散値データとして与えられる短区間積分出力をシンプ
ソンの微分公式に則った演算アルゴリズムに従って時間
微分する構成としたから、離散値データとして与えられ
る振幅制限出力をソフトウェア処理により時間微分する
ことができ、現在値を示すサンプルデータから3サンプ
ル前のサンプルデータを用いて加減算処理により演算で
きるため、ディジタル信号処理による時間微分を簡単に
実行することができる等の効果を奏する。
Furthermore, since the differentiator is configured to time-differentiate the short-term integral output given as the discrete-value data from the short-term integrator according to the operation algorithm according to Simpson's differential formula, it is given as the discrete-value data. The amplitude limited output can be time-differentiated by software processing, and can be calculated by addition / subtraction processing using sample data three samples before from the sample data showing the current value, so time differentiation by digital signal processing can be easily executed. There is an effect such as being able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の車両の衝突判定装置の一実施形態を示
す回路構成図である。
FIG. 1 is a circuit diagram showing an embodiment of a vehicle collision determination device according to the present invention.

【図2】図1に示したディジタルフィルタからなる低域
濾波回路の回路構成図である。
FIG. 2 is a circuit configuration diagram of a low-pass filter circuit including the digital filter shown in FIG.

【図3】図2に示した低域濾波回路の濾波特性を示す図
である。
FIG. 3 is a diagram showing a filtering characteristic of the low-pass filtering circuit shown in FIG.

【図4】従来の車両の衝突判定装置の一例を示す回路構
成図である。
FIG. 4 is a circuit configuration diagram showing an example of a conventional vehicle collision determination device.

【図5】図4に示した車両の衝突判定装置の衝突判定条
件を示す図である。
5 is a diagram showing a collision determination condition of the vehicle collision determination device shown in FIG.

【符号の説明】[Explanation of symbols]

21 車両の衝突判定装置 21a ディジタル信号処理部 22 加速度センサ 23 帯域濾波器 24 第1の短区間積分器 25 長区間積分器 26 絶対値回路 27,29,34,39,41 比較器 28 波形整形器 30 判定回路 31 オアゲート回路 32,33 アンドゲート回路 36 低域濾波回路 37 第2の短区間積分器 38 リミッタ回路 40 微分器 21 Vehicle Collision Judgment Device 21a Digital Signal Processing Unit 22 Acceleration Sensor 23 Bandpass Filter 24 First Short Section Integrator 25 Long Section Integrator 26 Absolute Value Circuit 27, 29, 34, 39, 41 Comparator 28 Waveform Shaper 30 Judgment Circuit 31 OR Gate Circuit 32, 33 AND Gate Circuit 36 Low-pass Filtering Circuit 37 Second Short Section Integrator 38 Limiter Circuit 40 Differentiator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車両に加わる加速度を検出し、該加速度
を現在値まで短区間積分する一方、現在値まで長区間積
分し、かつ前記加速度の低周波成分を現在値まで短区間
積分する一方、振幅制限して時間微分し、かつ前記加速
度から抽出される車両の衝突時に顕著に現れる特定の帯
域成分の絶対値をとって衝撃力を演算し、該衝撃力と前
記短区間積分出力がともに所定のしきい値を越えるか、
又は前記加速度の低周波成分の前記短区間積分出力及び
前記振幅制限微分出力とがともに所定のしきい値を越え
るか、又は前記長区間積分出力が所定のしきい値を越え
るかを判別して衝突を判定することを特徴とする車両の
衝突判定方法。
1. An acceleration applied to a vehicle is detected, the acceleration is short-term integrated to a current value, a long-term integration is performed to the current value, and a low-frequency component of the acceleration is short-term integrated to a current value. The impact force is calculated by taking the absolute value of a specific band component which is limited in amplitude and time-differentiated and which is prominent at the time of a vehicle collision extracted from the acceleration, and the impact force and the short-term integrated output are both predetermined. Crossing the threshold of
Alternatively, it is determined whether the short-range integrated output of the low-frequency component of the acceleration and the amplitude-limited differential output both exceed a predetermined threshold value or the long-range integrated output exceeds a predetermined threshold value. A vehicle collision determination method characterized by determining a collision.
【請求項2】 車両に加わる加速度を検出する加速度セ
ンサと、該加速度センサの出力を現在値まで比較的短い
区間だけ積分する第1の短区間積分器と、前記加速度の
低周波成分を抽出する低域濾波回路と、該低域濾波回路
の出力を現在値まで比較的短い区間だけ積分する第2の
短区間積分器と、前記低域濾波回路の出力を一定の上限
以下に振幅制限するリミッタ回路と、該リミッタ回路の
出力を時間微分する微分器と、前記加速度センサの出力
を現在値まで比較的長い区間に亙って積分する長区間積
分器と、前記加速度センサの出力から抽出される車両の
衝突時に顕著に現れる特定の帯域成分の絶対値をとって
衝撃力を演算する衝撃力演算手段と、該衝撃力演算手段
の出力と前記第1の短区間積分器の出力がともに所定の
しきい値を越えるか、又は前記第2の短区間積分器の出
力と前記微分器の出力がともに所定のしきい値を越える
か、又は前記長区間積分器の出力が所定のしきい値を越
えるかを判別して衝突を判定する判定回路とを具備する
ことを特徴とする車両の衝突判定装置。
2. An acceleration sensor for detecting an acceleration applied to a vehicle, a first short interval integrator for integrating an output of the acceleration sensor up to a current value in a relatively short interval, and a low frequency component of the acceleration is extracted. A low-pass filtering circuit, a second short-term integrator that integrates the output of the low-pass filtering circuit for a relatively short period up to a current value, and a limiter that limits the amplitude of the output of the low-pass filtering circuit below a certain upper limit. A circuit, a differentiator for differentiating the output of the limiter circuit with respect to time, a long interval integrator for integrating the output of the acceleration sensor over a relatively long interval up to the current value, and an output from the acceleration sensor The impact force calculating means for calculating the impact force by taking the absolute value of a specific band component that appears remarkably at the time of a vehicle collision, and the output of the impact force calculating means and the output of the first short-range integrator are both predetermined values. Exceeds threshold , Or whether the output of the second short-range integrator and the output of the differentiator both exceed a predetermined threshold value, or whether the output of the long-term integrator exceeds a predetermined threshold value. A collision determination device for a vehicle, comprising: a determination circuit for determining a collision.
【請求項3】 前記衝撃力演算手段は、前記加速度セン
サの出力から車両の衝突時に顕著に現れる特定の帯域成
分を抽出するアナログ回路構成の帯域濾波器と、該帯域
濾波器の出力の絶対値をとる絶対値回路と、該絶対値回
路の出力を所定値を基準にしきい値判別する比較器と、
該比較器の出力を少なくとも一定時間は持続する波形に
整形する波形整形器とを含むことを特徴とする請求項2
記載の車両の衝突判定装置。
3. The impact force calculating means extracts an output of the acceleration sensor from the output of the acceleration sensor for a specific band component that appears remarkably at the time of a vehicle collision, and a bandpass filter having an analog circuit configuration, and an absolute value of the output of the bandpass filter. An absolute value circuit, and a comparator for discriminating the threshold value of the output of the absolute value circuit based on a predetermined value,
3. A waveform shaper that shapes the output of the comparator into a waveform that lasts at least for a certain period of time.
The vehicle collision determination device described.
【請求項4】 前記低域濾波回路は、離散値データとし
て与えられる加速度信号を差分演算により濾波するディ
ジタルフィルタで構成された一次低域濾波回路であるこ
とを特徴とする請求項2記載の車両の衝突判定装置。
4. The vehicle according to claim 2, wherein the low-pass filtering circuit is a first-order low-pass filtering circuit configured by a digital filter that filters an acceleration signal given as discrete value data by difference calculation. Collision detector.
【請求項5】 前記リミッタ回路は、前記低域濾波回路
の出力を所定のしきい値を基準に大小判別する判別ステ
ップと、該判別ステップの判別結果に応じて、前記低域
濾波回路の出力が前記しきい値を越える場合は、該低域
濾波回路の出力を前記しきい値に固定する上限抑制ステ
ップとに従ってソフトウェア上で振幅制限することを特
徴とする請求項2記載の車両の衝突判定装置。
5. The limiter circuit judges whether the output of the low-pass filtering circuit is large or small on the basis of a predetermined threshold value, and the output of the low-pass filtering circuit according to the judgment result of the judging step. 3. When the value exceeds the threshold value, the amplitude is limited by software according to an upper limit suppressing step of fixing the output of the low-pass filtering circuit to the threshold value. apparatus.
【請求項6】 前記微分器は、前記リミッタ回路から供
給される離散値データをシンプソンの微分公式に則った
演算アルゴリズムに従って時間微分することを特徴とす
る請求項2記載の車両の衝突判定装置。
6. The vehicle collision determination device according to claim 2, wherein the differentiator differentiates the discrete value data supplied from the limiter circuit in time according to an arithmetic algorithm based on Simpson's differential formula.
JP31146595A 1995-11-30 1995-11-30 Vehicle collision determination method and collision determination device Expired - Fee Related JP3289583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31146595A JP3289583B2 (en) 1995-11-30 1995-11-30 Vehicle collision determination method and collision determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31146595A JP3289583B2 (en) 1995-11-30 1995-11-30 Vehicle collision determination method and collision determination device

Publications (2)

Publication Number Publication Date
JPH09150709A true JPH09150709A (en) 1997-06-10
JP3289583B2 JP3289583B2 (en) 2002-06-10

Family

ID=18017560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31146595A Expired - Fee Related JP3289583B2 (en) 1995-11-30 1995-11-30 Vehicle collision determination method and collision determination device

Country Status (1)

Country Link
JP (1) JP3289583B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606646B2 (en) 2004-01-28 2009-10-20 Denso Corporation Passive safety system and determination device
JP2010105493A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Device and method of determining collision, vehicle, and program
KR101028367B1 (en) * 2008-12-23 2011-04-11 주식회사 현대오토넷 Airback Electronic Control Unit and Applicable Method thereof
CN111361422A (en) * 2020-03-24 2020-07-03 江铃汽车股份有限公司 Automobile rear collision power-off protection method and system
CN112504441A (en) * 2020-12-15 2021-03-16 西安热工研究院有限公司 Vibration acceleration signal segmentation and integration method based on important information reconstruction
CN114333318A (en) * 2021-12-31 2022-04-12 成都路行通信息技术有限公司 Motorcycle collision detection method based on sensor space angle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606646B2 (en) 2004-01-28 2009-10-20 Denso Corporation Passive safety system and determination device
JP2010105493A (en) * 2008-10-29 2010-05-13 Hino Motors Ltd Device and method of determining collision, vehicle, and program
KR101028367B1 (en) * 2008-12-23 2011-04-11 주식회사 현대오토넷 Airback Electronic Control Unit and Applicable Method thereof
CN111361422A (en) * 2020-03-24 2020-07-03 江铃汽车股份有限公司 Automobile rear collision power-off protection method and system
CN111361422B (en) * 2020-03-24 2021-07-16 江铃汽车股份有限公司 Automobile rear collision power-off protection method and system
CN112504441A (en) * 2020-12-15 2021-03-16 西安热工研究院有限公司 Vibration acceleration signal segmentation and integration method based on important information reconstruction
CN112504441B (en) * 2020-12-15 2022-12-13 西安热工研究院有限公司 Vibration acceleration signal segmentation and integration method based on important information reconstruction
CN114333318A (en) * 2021-12-31 2022-04-12 成都路行通信息技术有限公司 Motorcycle collision detection method based on sensor space angle
CN114333318B (en) * 2021-12-31 2023-04-28 成都路行通信息技术有限公司 Motorcycle collision detection method based on sensor space angle

Also Published As

Publication number Publication date
JP3289583B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP3329080B2 (en) Vehicle collision determination method and collision determination device
CA2106603C (en) Crash/non-crash discrimination using frequency components of acceleration uniquely generated upon crash impact
WO2006054744A1 (en) Tire slipping state detecting method and tire slipping state detecting device
JPH06286571A (en) Device and method for starting safety device in car
US20100324858A1 (en) Method and device for determining the change in the footprint of a tire
JP6434499B2 (en) System for estimation of one or more parameters related to vehicle load, in particular for estimation of absolute value and distribution of load
JP3769459B2 (en) Tire burst prediction device
EP1690748B1 (en) Vehicle rollover detection method based on differential Z-axis acceleration
CN110072762B (en) Device and method for detecting manual manipulation of a steering wheel
CN101516685A (en) Device and method for actuating passenger protection means
JP3289583B2 (en) Vehicle collision determination method and collision determination device
JP3937182B2 (en) Judgment method of lateral acceleration of car
KR20160060052A (en) Method for detecting an imbalance of a vehicle wheel while the vehicle is rolling
JP4354607B2 (en) Drift removal apparatus, drift removal method, and moving body behavior detection sensor.
JP3329101B2 (en) Vehicle collision determination method and collision determination device
US20040117100A1 (en) Hydroplaning detection apparatus
JP3118980B2 (en) Vehicle collision determination device
JP3125365B2 (en) Vehicle collision determination device
US8386130B2 (en) Occupant protection device
JP3289593B2 (en) Vehicle collision determination method and collision determination device
JP2001109738A (en) Device and method for detecting peak time
JP3055361B2 (en) Vehicle collision determination method and collision determination device
JP2000043745A (en) Road surface state judging device
JP2761800B2 (en) Vehicle collision determination device
JP2001108702A (en) Bad road determination system and method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees