JPH09150250A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH09150250A
JPH09150250A JP30880895A JP30880895A JPH09150250A JP H09150250 A JPH09150250 A JP H09150250A JP 30880895 A JP30880895 A JP 30880895A JP 30880895 A JP30880895 A JP 30880895A JP H09150250 A JPH09150250 A JP H09150250A
Authority
JP
Japan
Prior art keywords
cast slab
slab
groove
cast
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30880895A
Other languages
Japanese (ja)
Inventor
Hisakazu Mizota
久和 溝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30880895A priority Critical patent/JPH09150250A/en
Publication of JPH09150250A publication Critical patent/JPH09150250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out a high speed casting while preventing the bulging in a cast slab supporting zone by forming groove extended along the drawing direction on the surface of the cast slab at the time of introducing the cast slab into the cast slab supporting zone. SOLUTION: In a continuous casting, at least one line of the groove 7 extended along the drawing direction of the cast slab 3 is beforehand formed on the cast slab 3 introduced into the cast slab supporting zone. The solidification in the thickness direction of the cast slab at the groove 7 part is completed at the early time and the successive width (b) of unsolidified part in the cast slab 3 is shortened as the same degree as a bloom to increase a self-supporting action of the cast slab 3. Support rolls 4 having small pitch in the cast slab supporting zone are arranged in the zone until the solidification of the groove 7 part completes, and by this constitution, the reconstruction cost of a continuous caster can be reduced. Further, the bending rigidity of the solidified shell is improved by forming the groove 7. Since the stress of the solidified shell is developed in the compressing side to the static molten iron pressure by forming the outline of this groove 7 to circular arc shape, the development of the bulging is restrained and the internal crack in the cast slab 3 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造、中でも
スラブの連続鋳造方法に関して、その高速化を達成しよ
うとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting, and more particularly to a continuous casting method for slabs, to achieve high speed.

【0002】連続鋳造は、図1に示すように、タンディ
ッシュ1から鋳型2に注入した溶融金属を鋳型2にて鋳
込み、鋳型2から出た鋳片3をサポートロール4の複数
配列からなる鋳片支持域5に導いて引抜き装置6側に案
内する過程にて、鋳片を製造するものである。この連続
鋳造における、生産能力および生産性を増大するために
は、既存の連続鋳造機を利用して高速鋳造化をはかるこ
とが有利であり、そのためには、バルジングを防止する
こと、そして鋳型の出側に設ける鋳片支持域5、いわゆ
る機長を延長すること、が極めて有効である。
In continuous casting, as shown in FIG. 1, molten metal poured from a tundish 1 into a mold 2 is cast in the mold 2, and a cast piece 3 coming out of the mold 2 is composed of a plurality of arrays of support rolls 4. The cast piece is manufactured in the process of guiding the piece to the piece support area 5 and guiding it to the drawing device 6 side. In order to increase the production capacity and productivity in this continuous casting, it is advantageous to use an existing continuous casting machine for high-speed casting, to prevent bulging, and It is extremely effective to extend the slab support area 5 provided on the delivery side, that is, the so-called machine length.

【0003】[0003]

【従来の技術】まず、バルジングを防止して鋳片の内部
割れ等を回避する手段としては、鋳片支持域におけるロ
ールピッチを小さくして鋳片凝固シェルの支持間隔を短
くすること、また2次冷却を強くして鋳片凝固シェルの
強度を高めること、が有効である。前者の手法は極めて
有効であるが、設備の大幅改造が必須であり、設備に多
大の投資が必要であり、既存設備の有効利用が達成し難
い。またロールピッチを小さくするためにロール径を小
さくする必要があるが、ロール強度を確保する上でロー
ルの小径化には限度があり、所期した小ピッチ化は望め
なかった。また、後者の手法は、強冷却による凝固シェ
ルの増厚および温度低下に限界があるため、その効果は
乏しいものであった。
2. Description of the Related Art First, as a means for preventing bulging and avoiding internal cracking of a slab, a roll pitch in a slab support region is made small to shorten a supporting interval of a slab for solidifying a slab. It is effective to strengthen the subsequent cooling to increase the strength of the solidified shell of the cast slab. The former method is extremely effective, but requires major remodeling of equipment, requires a large investment in equipment, and is difficult to achieve effective use of existing equipment. Further, in order to reduce the roll pitch, it is necessary to reduce the roll diameter, but there is a limit to reducing the roll diameter in order to secure the roll strength, and the desired reduction in pitch cannot be expected. In addition, the latter method had a limited effect on increasing the thickness of the solidified shell and decreasing the temperature by strong cooling, and thus its effect was poor.

【0004】一方、機長の延長は、鋳片支持域以降の例
えば引き抜き矯正域などでのバルジングに対して有効で
あるが、既存の連続鋳造機の周辺に機長を延長するため
の場所を確保する必要があり、空いた場所がない場合は
設備の大改造を要するため、実際的ではない。
On the other hand, the extension of the machine length is effective for bulging in the slab support area, for example, in the drawing straightening area, but a space for extending the machine length is secured around the existing continuous casting machine. It is necessary, and if there is no vacant place, it requires a major remodeling of the facility, which is not practical.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、既
存の連続鋳造機に大幅な改造を行うことなしに、特に鋳
片支持域でのバルジングを防止して高速鋳造を実現した
連続鋳造方法について提案することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention is a continuous casting method which realizes high-speed casting by preventing bulging particularly in the slab support area without making a large modification to the existing continuous casting machine. The purpose is to propose.

【0006】[0006]

【課題を解決するための手段】連続鋳造における鋳造速
度は、鋳片の厚みおよび幅に大きく影響され、鋳片厚み
が同じスラブおよびブルームでは、鋳片幅の小さいブル
ームで鋳造の高速化が容易である。なぜなら、鋳片厚
み、そしてサポートロールのロールピッチが同じであっ
ても、鋳片幅の小さいブルームでは鋳片幅方向のバルジ
ングが小さいため、スラブの場合に比べて総バルジング
量も小さくなって、いわゆる鋳片のセルフサポート作用
が強くなるから、内部割れが抑制されて鋳造の高速化が
可能になる。本発明は、このセルフサポート作用をスラ
ブにおいても十分に確保することによって、特にスラブ
の高速連続鋳造を達成するものである。
[Means for Solving the Problems] The casting speed in continuous casting is greatly affected by the thickness and width of the slab. For slabs and blooms with the same slab thickness, it is easy to increase the casting speed with a bloom with a small slab width. Is. Because, the slab thickness, and even if the roll pitch of the support roll is the same, since the bulging in the slab width direction is small in the bloom with a small slab width, the total bulging amount is smaller than in the case of the slab, Since the so-called slab's self-supporting action is strengthened, internal cracking is suppressed and casting speed can be increased. The present invention achieves particularly high-speed continuous casting of a slab by sufficiently securing this self-supporting action even in the slab.

【0007】すなわち、本発明は、鋳型で鋳込んだ鋳片
を、鋳型の出側に設けた鋳片支持域を介して、引抜き装
置側へ搬送するに当たり、鋳片を鋳片支持域に導くに先
立ち、鋳片の表面に鋳片引抜き方向に沿って延びる、少
なくとも1本の溝を形成することを特徴とする連続鋳造
方法である。ここで、溝の輪郭を円弧形状にすること
が、鋳片のバルジングを防止する上で好ましい。
That is, according to the present invention, when the cast slab cast in the mold is conveyed to the drawing device side through the cast slab support area provided on the outlet side of the mold, the slab is guided to the cast slab support area. Prior to the above, the continuous casting method is characterized in that at least one groove extending along the slab drawing direction is formed on the surface of the slab. Here, it is preferable to make the contour of the groove into an arc shape in order to prevent bulging of the cast slab.

【0008】[0008]

【発明の実施の形態】さて、連続鋳造速度について、ス
ラブとブロームとの場合を比較すると、以下の通りであ
る。すなわち、連続鋳造の高速化を制限するバルジン
グ、とりわけ図2に示す、鋳片3をサポートロール4で
支持する鋳片支持域におけるバルジングに起因した、鋳
片3の凝固シェル3aと未凝固部3bとの界面の歪み量εお
よび応力σは、平板モデルの式を適用することによっ
て、次式(1) にて表すことができる。 σ=β×(pa2 /s2 )----(1) ただし、β:応力係数(ロールピッチaおよび鋳片の未
凝固幅bの比a/bから図3に従って導かれる) p:静鉄圧 s:凝固シェル厚み ここで、 ε σ、すなわちε=m・σ----(2) および s=k(L/vc 1/2 ----(3) であるから、上記(1) 〜(3) 式より、 ε=m・β(pa2 ・vc /k2 ・L)----(4) ただし、m:比例定数(ヤング率の逆数に相当する値) k:凝固係数 vc :鋳造速度 L:メニスカスから着目する鋳片位置までの距離
BEST MODE FOR CARRYING OUT THE INVENTION Now, the continuous casting speeds are as follows when the slab and the blast are compared. That is, due to bulging that limits the speeding up of continuous casting, particularly bulging in the slab support area in which the slab 3 is supported by the support roll 4 shown in FIG. 2, the solidified shell 3a and the unsolidified portion 3b of the slab 3 are caused. The amount of strain ε and the stress σ at the interface with and can be expressed by the following equation (1) by applying the equation of the flat plate model. σ = β × (pa 2 / s 2 ) ---- (1) where β: stress coefficient (derived from the roll pitch a and the unsolidified width b of the slab a / b according to FIG. 3) p: Static iron pressure s: Solidified shell thickness Here, ε σ, that is, ε = m · σ ---- (2) and s = k (L / v c ) 1/2 ---- (3) , (1) to (3) from the equation, ε = m · β (pa 2 · v c / k 2 · L) ---- (4) However, m: corresponds to the reciprocal of the proportionality constant (Young's modulus value) k: coagulation factor v c: casting speed L: the distance to the slab location of interest from the meniscus

【0009】一方、鋳片の内部割れ防止条件は、 ε≦εa ----(5) ただし、εa :限界歪み である。ここに、鋳片幅、すなわち未凝固幅の影響を比
較するため、同一位置において限界歪みεa となる鋳造
速度を、スラブおよびブルームのそれぞれについて求め
ると、スラブに関して添字の1およびブルームに関して
添字の2で示すように、 ε1 =mβ1 pa2 c1/k2 L =ε2 =mβ2 pa2 c2/k2 L =εa ∴vc2/vc1=β1 /β2 ∴vc2=vc1・(β1 /β2 )----(6) いま、b1 /a=5およびb2 /a=1とすると、図2
より、β1 =0.5 およびβ2 =0.32となるから、これら
の値を上記(6) 式に代入すると、 vc2=vc1・(0.5 /0.32)=1.56vc1 となる。従って、ブルームの鋳造速度はスラブのそれに
比べて最大1.56倍に高めることが可能であることがわか
る。
On the other hand, the condition for preventing internal cracking of a cast piece is ε ≦ ε a ---- (5) where ε a is the critical strain. Here, in order to compare the influence of the slab width, that is, the unsolidified width, the casting speed at which the critical strain ε a at the same position is obtained for each of the slab and the bloom, the subscript 1 for the slab and the subscript for the bloom 2, ε 1 = mβ 1 pa 2 v c1 / k 2 L = ε 2 = mβ 2 pa 2 v c2 / k 2 L = ε a ∴v c2 / v c1 = β 1 / β 2 ∴v c2 = v c1 · (β 1 / β 2 ) ---- (6) Now, assuming that b 1 / a = 5 and b 2 / a = 1, then FIG.
More, since the beta 1 = 0.5 and beta 2 = 0.32, these values are substituted into equation (6), and v c2 = v c1 · (0.5 /0.32)=1.56v c1. Therefore, it can be seen that the casting speed of bloom can be increased up to 1.56 times that of slab.

【0010】そこで、本発明では、図4(a) および (b)
に示すように、鋳片支持域に導入する鋳片3に、予め、
鋳片の引抜き方向に沿って延びる溝7を少なくとも1本
形成することによって、この溝7部分の鋳片厚み方向の
凝固を早期に完了させ、鋳片の未凝固部の連続幅bを上
記したブルームと同等程度に短縮して、鋳片のセルフサ
ポート作用を増加するのである。
Therefore, according to the present invention, as shown in FIGS.
As shown in, in the slab 3 to be introduced into the slab support area,
By forming at least one groove 7 extending along the drawing direction of the slab, solidification in the slab thickness direction of this groove 7 portion is completed early, and the continuous width b of the unsolidified portion of the slab is described above. It shortens to the same extent as bloom, increasing the self-supporting action of the slab.

【0011】この鋳片のセルフサポート作用の増加によ
って、鋳片支持域のサポートロール4の小ピッチ化は、
溝部の凝固が完了するまでの領域で充足され、連続鋳造
機の改造費は大幅に削減できる。また、溝の形成によっ
て凝固シェルの曲げ剛性が増加するため、溝なしの在来
形状のスラブの鋳造と比較して、サポートロール4のピ
ッチの縮小幅を抑えることができ、この点でも改造費の
削減が可能である。
Due to this increase in the self-supporting action of the slab, the pitch of the support rolls 4 in the slab support region can be reduced.
The area until the solidification of the groove is completed is satisfied, and the cost of modifying the continuous casting machine can be greatly reduced. Further, since the flexural rigidity of the solidified shell is increased by forming the groove, it is possible to suppress the reduction width of the pitch of the support roll 4 as compared with casting of a conventional shape slab having no groove. Can be reduced.

【0012】ここで、溝7の輪郭は、図4(b) に示すよ
うに、円弧形状にすることによって、静鉄圧に対して凝
固シェルの応力が圧縮側になるため、バルジングの発生
が効果的に抑制され、鋳片の内部割れが回避される。特
に、円弧の曲率半径Rが鋳片厚みをHとすると、0.2 H
〜0.4 Hとなる円弧形状に形成することが、溝部の凝固
を促進して鋳片のセルフサポート作用を増加するのに有
利である。また、鋳片には、溝部の鋳片厚みhが、鋳片
厚みHの 0.2〜0.8 倍程度の溝7を、鋳片の幅方向のピ
ッチcがロールピッチaの1〜1.5 倍程度で形成するこ
とが、鋳片の内部割れを防止する上で好ましい。さら
に、溝を鋳片の表裏面に形成する場合は、表裏で対称の
位置に導入することが好ましい。
Here, as shown in FIG. 4 (b), the contour of the groove 7 is formed in an arc shape, so that the stress of the solidified shell is on the compression side with respect to the static iron pressure, so that bulging occurs. It is effectively suppressed and internal cracking of the slab is avoided. Especially, if the radius of curvature R of the arc is H, and the thickness of the slab is H, then 0.2 H
Forming an arc shape of 0.4 H is advantageous in promoting solidification of the groove and increasing the self-supporting action of the slab. Further, in the cast piece, the groove 7 having a cast piece thickness h of the groove portion of about 0.2 to 0.8 times the cast piece thickness H is formed, and the pitch c in the width direction of the cast piece is about 1 to 1.5 times the roll pitch a. It is preferable to prevent internal cracking of the cast slab. Furthermore, when grooves are formed on the front and back surfaces of the slab, it is preferable to introduce the grooves at symmetrical positions on the front and back surfaces.

【0013】なお、溝7の形成時期は鋳片支持域に入っ
てからでも可能であるが、ロールによる押込みでは内部
割れが生じやすいので、鋳片の凝固シェルの強度を確保
し、内部割れを防止する観点から、鋳型内で形成するこ
とが望ましい。すなわち、鋳型内壁部に図4に示すよう
な円弧状の突起を設けることによって、溝を形成するこ
とができる。
The groove 7 can be formed even after entering the slab support area, but since internal cracking is likely to occur when pushed by a roll, the strength of the solidified shell of the slab is ensured and the internal cracking occurs. From the viewpoint of prevention, it is desirable to form it in the mold. That is, the groove can be formed by providing an arc-shaped projection as shown in FIG. 4 on the inner wall of the mold.

【0014】また、鋳片の溝部の厚みを薄くして倍幅鋳
造(狙いの鋳片幅の2倍の幅で鋳造し、トーチ等によっ
て長手方向に1/2 幅に切断することにより、所定幅の鋳
片とする鋳造法)を適用すると、厚みの薄い溝7の部分
を、図4(a) に示すように、トーチ8等で容易に切断す
ることができ、幅切り時の歩留りが向上する。つまり、
倍幅鋳造は同じ鋳造速度でも鋳造幅が倍増するため、生
産能力を倍増できるのである。
Further, the thickness of the groove of the slab is reduced and double-width casting (casting with a width twice as wide as the target slab width, and cutting to a half width in the longitudinal direction with a torch etc. By applying a casting method of forming a slab of width, the thin groove 7 can be easily cut with a torch 8 or the like as shown in FIG. 4 (a), and the yield at the time of width cutting can be improved. improves. That is,
Double-width casting doubles the casting width even at the same casting speed, so the production capacity can be doubled.

【0015】[0015]

【実施例】JIS SS440 に準じた普通鋼を用いて、サイズ
210×2000mmの鋳片を連続鋳造するに当たり、表1に仕
様を示す既存の連続鋳造機を表1に併記するところに従
って改造し、それぞれ1チャージ( 300t)の鋳造を行
った。各鋳造において、鋳片の内部割れが発生しない最
高鋳造速度、鋳造生産能力および設備改造費について調
査した結果を表2に示す。
[Example] Using a standard steel according to JIS SS440, size
In continuously casting 210 × 2000 mm ingots, an existing continuous casting machine whose specifications are shown in Table 1 was modified according to the points shown in Table 1, and casting was performed with 1 charge (300 t). Table 2 shows the results of an investigation of the maximum casting speed at which internal cracking of the slab does not occur, the casting production capacity, and the facility remodeling cost in each casting.

【表1】 [Table 1]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】本発明によれば、既存の連続鋳造機に大
幅な改造を行うことなしに、特にスラブの連続鋳造にお
けるバルジングを防止できるため、従来は設備の大改造
を必要としたスラブの高速鋳造を、安価な改造費で実現
することが可能である。
According to the present invention, it is possible to prevent bulging particularly in continuous casting of slabs without major modification to existing continuous casting machines. High-speed casting can be realized at a low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造の説明図である。FIG. 1 is an explanatory diagram of continuous casting.

【図2】鋳片支持域における従来のスラブを示す説明図
である。
FIG. 2 is an explanatory view showing a conventional slab in a slab support area.

【図3】ロールピッチおよび未凝固幅と応力係数との関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a roll pitch, an unsolidified width and a stress coefficient.

【図4】本発明に従う鋳片の形状を示す説明図である。FIG. 4 is an explanatory view showing the shape of a slab according to the present invention.

【図5】鋳片の形状を示す図である。FIG. 5 is a view showing a shape of a cast piece.

【符号の説明】[Explanation of symbols]

1 タンディッシュ 2 鋳型 3 鋳片 4 サポートロール 5 鋳片支持域 6 引抜き装置 7 溝 8 トーチ 1 Tundish 2 Mold 3 Cast slab 4 Support roll 5 Cast slab support area 6 Drawing device 7 Groove 8 Torch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳型で鋳込んだ鋳片を、鋳型の出側に設
けた鋳片支持域を介して、引抜き装置側へ搬送するに当
たり、鋳片を鋳片支持域に導くに先立ち、鋳片の表面に
鋳片引抜き方向に沿って延びる、少なくとも1本の溝を
形成することを特徴とする連続鋳造方法。
1. When the cast slab cast in the mold is conveyed to the drawing device side through the slab support area provided on the outlet side of the mold, the cast slab is cast before it is guided to the slab support area. A continuous casting method, characterized in that at least one groove is formed on the surface of the piece, the groove extending along the direction in which the cast piece is drawn out.
【請求項2】 溝の輪郭を円弧形状とした請求項1に記
載の連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the contour of the groove is an arc shape.
JP30880895A 1995-11-28 1995-11-28 Continuous casting method Pending JPH09150250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30880895A JPH09150250A (en) 1995-11-28 1995-11-28 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30880895A JPH09150250A (en) 1995-11-28 1995-11-28 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH09150250A true JPH09150250A (en) 1997-06-10

Family

ID=17985566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30880895A Pending JPH09150250A (en) 1995-11-28 1995-11-28 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH09150250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923755A (en) * 2015-06-08 2015-09-23 西安理工大学 Arc-radiation method for eliminating bulging defect of flat nodular cast iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923755A (en) * 2015-06-08 2015-09-23 西安理工大学 Arc-radiation method for eliminating bulging defect of flat nodular cast iron

Similar Documents

Publication Publication Date Title
JP2989737B2 (en) Continuous casting and continuous casting / rolling of steel
DE59103447D1 (en) LIQUID-COOLED CHOCOLATE FOR CONTINUOUSLY STRANDING STEEL STRANDS IN SLAB SIZE.
JP4686477B2 (en) Mold cavity for molds for continuous casting of billets and blooms
JPH09150250A (en) Continuous casting method
JPH08238550A (en) Method for continuously casting steel
US6474401B1 (en) Continuous casting mold
JPH0245534B2 (en)
JP2970343B2 (en) Center porosity reduction method for continuously cast round billet slab
JPH0839219A (en) Method for continuously casting steel and continuous casting and rolling method
JPS6021150A (en) Production of billet having high quality
JP3390606B2 (en) Steel continuous casting method
JP4019476B2 (en) Slab cooling method in continuous casting
US3580325A (en) Continuous casting machine for slabs
JP3093533B2 (en) Continuous casting of thin cast slab
JPS60162560A (en) Continuous casting method of steel
JPH01289552A (en) Forging press apparatus for round shaped continuously cast billet
JPH03198964A (en) Method and apparatus for executing rolling reduction to strand in continuous casting
JP3317260B2 (en) Manufacturing method of round billet slab by continuous casting
JPS5853359A (en) Sequential continuous casting method for dissimilar kinds of steel
JPH0638607Y2 (en) Light reduction roll for slab
JPH0342981B2 (en)
JPS6150045B2 (en)
JPH10328711A (en) Method for continuously casting steel
JP2734040B2 (en) Rough rolling method for non-ferrous metals
JPH06297102A (en) Mold for unsolidified metal rolling reduction continuous casting and continuous casting method using same