JPH09150058A - Catalyst for manufacturing ethylene oxide - Google Patents

Catalyst for manufacturing ethylene oxide

Info

Publication number
JPH09150058A
JPH09150058A JP8246062A JP24606296A JPH09150058A JP H09150058 A JPH09150058 A JP H09150058A JP 8246062 A JP8246062 A JP 8246062A JP 24606296 A JP24606296 A JP 24606296A JP H09150058 A JPH09150058 A JP H09150058A
Authority
JP
Japan
Prior art keywords
compound
cesium
lithium
silver
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8246062A
Other languages
Japanese (ja)
Other versions
JP3794070B2 (en
Inventor
Tomoatsu Iwakura
具敦 岩倉
Takako Imamoto
孝子 今元
Katsumi Nakadai
克己 仲代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP24606296A priority Critical patent/JP3794070B2/en
Publication of JPH09150058A publication Critical patent/JPH09150058A/en
Application granted granted Critical
Publication of JP3794070B2 publication Critical patent/JP3794070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to manufacture a long life catalyst for the manufacture of ethylene oxide with high selectivity and superior activity by pretreating a lithium compound and a cesium compound on a porous carrier, then impregnating the porous carrier with a silver commode and the cesium compound through a heating process. SOLUTION: A porous carrier is impregnated with a solution containing a lithium compound and a cesium compound as a pretreatment. Next, the porous carrier bearing lithium and cesium is impregnated with a solution containing a silver compound and the cesium compound and is heat treated. The heating treatment after the impregnation is performed by measuring the temperatures and time required for the deposition of silver on the carrier. Conditions for the deposition of silver present in as much uniformly and fine a particle form as possible on the carrier are selected. The chemical reaction for ethylene to be converted to ethylene oxide using this type of catalyst is performed by routine operation. Thus it is possible to manufacture the ethylene oxide at a high rate of selection under milder conditions compared with a conventional catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エチレンを分子状
酸素により気相接触酸化してエチレンオキシドを製造す
るための改良された銀触媒及びその製造方法に関する。
エチレンオキシドは活性水素化合物に付加重合させて非
イオン系界面活性剤の製造に向けられるほか、水を付加
させてエチレングリコールとなし、ポリエステルやポリ
ウレタン系高分子の原料、エンジン用不凍液などに使用
される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved silver catalyst for producing ethylene oxide by vapor-phase catalytic oxidation of ethylene with molecular oxygen and a method for producing the same.
Ethylene oxide is added to active hydrogen compounds to be polymerized to produce nonionic surfactants, and water is added to form ethylene glycol, which is used as a raw material for polyester and polyurethane polymers, and as an antifreeze for engines. .

【0002】[0002]

【従来の技術】エチレンを分子状酸素により気相接触酸
化して工業的にエチレンオキシドを製造する際に使用さ
れる触媒は銀触媒である。エチレンオキシドを効率よく
生産するために、この銀触媒の改良の要請が強く、より
高選択性、長寿命の触媒の出現が望まれている。このた
め、従来から種々の方法が提案されているが、主活性成
分である銀と反応促進剤であるアルカリ金属等との組合
せ、その配合比の最適化、これらを担持する担体の改良
等がその主なものである。
The catalyst used in the industrial production of ethylene oxide by catalytically oxidizing ethylene with molecular oxygen in a gas phase is a silver catalyst. In order to efficiently produce ethylene oxide, there is a strong demand for improvement of this silver catalyst, and the advent of a catalyst with higher selectivity and longer life is desired. Therefore, various methods have been proposed in the past, but the combination of silver as the main active ingredient and alkali metal as a reaction accelerator, optimization of the compounding ratio, improvement of the carrier carrying these, etc. That is the main one.

【0003】例えば、特開昭49−30286号公報に
は、多孔性の担体に特定量のカリウム、ルビジウム及び
/又はセシウムを銀と同時に堆積せしめた触媒により高
い選択性が得られると述べられている。特開昭53−1
191号公報には、銀及び特定量のナトリウム、カリウ
ム、ルビジウム又はセシウムを含有する触媒により活性
及び選択性が改良されると述べられている。また、特公
昭60−1054号公報においてナトリウム、カリウ
ム、ルビジウム、及びセシウムの2種以上のアルカリ金
属の組合わせによる効果が述べられている。
For example, Japanese Unexamined Patent Publication No. 49-30286 describes that a catalyst prepared by depositing a specific amount of potassium, rubidium and / or cesium simultaneously with silver on a porous carrier provides high selectivity. There is. JP-A-53-1
191 states that catalysts containing silver and certain amounts of sodium, potassium, rubidium or cesium improve activity and selectivity. In addition, Japanese Patent Publication No. 60-1054 discloses the effect of a combination of two or more kinds of alkali metals of sodium, potassium, rubidium and cesium.

【0004】更に、反応促進剤であるアルカリ金属のう
ちで、セシウムとリチウムの併用も知られており、特公
昭62−35813号公報や特開昭55−127144
号公報などに、セシウム成分とリチウム成分を銀と同時
に含浸させてなる触媒が示されている。また、特開平4
−317741号公報には、特定物性の多孔性担体にア
ルカリ金属類を含浸させる場合は、銀と同時含浸する方
法か、特にセシウム成分については担体に銀を担持させ
後に含浸させる方法が触媒性能を向上させる方法として
好ましいと述べられている。
Further, among alkali metals which are reaction accelerators, a combination of cesium and lithium is also known, and is disclosed in JP-B-62-35813 and JP-A-55-127144.
Japanese Unexamined Patent Publication (Kokai) publication discloses a catalyst obtained by impregnating a cesium component and a lithium component simultaneously with silver. In addition, JP-A-4
In JP-A-317741, when a porous carrier having specific physical properties is impregnated with an alkali metal, a method of simultaneously impregnating with a silver or a method of impregnating a carrier with silver and then impregnating the carrier with respect to a cesium component is preferable. It is said that it is preferable as a method for improving it.

【0005】[0005]

【発明が解決しようとする課題】以上のように、エチレ
ンオキシド製造用触媒については、反応促進剤がアルカ
リ金属である場合に限ってもいろいろな提案がなされて
いるが、未だ十分に満足すべきレベルに達しているとは
言えず、触媒性能改善のための努力が、継続して行われ
ている状況にある。本発明の目的は、従来の触媒に比較
してより高い選択率と優れた活性を合わせ持ち、且つ長
寿命のエチレンオキシド製造用触媒を提供することにあ
る。
As described above, regarding the catalyst for producing ethylene oxide, various proposals have been made even if the reaction accelerator is an alkali metal, but the level is still satisfactory. However, the efforts to improve the catalyst performance are still being made. An object of the present invention is to provide a catalyst for producing ethylene oxide, which has a higher selectivity and excellent activity as compared with conventional catalysts and has a long life.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意研究を行った結果、リチウムとセ
シウムによる前処理を施した多孔性担体に銀とセシウム
を担持した触媒を用いることによりエチレンオキシドに
ついて高い選択率が得られることを見出し、本発明を完
成した。即ち、本発明は、多孔性担体にリチウム化合物
とセシウム化合物を前処理し、次いで、銀化合物及びセ
シウム化合物を含浸させ加熱処理してなることを特徴と
するエチレンを酸化してエチレンオキシドを製造するた
めの触媒に存する。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst in which silver and cesium are supported on a porous carrier pretreated with lithium and cesium is used. It was found that a high selectivity for ethylene oxide can be obtained by using it, and the present invention has been completed. That is, the present invention is characterized in that the porous carrier is pretreated with a lithium compound and a cesium compound, then impregnated with a silver compound and a cesium compound, and heat-treated to oxidize ethylene to produce ethylene oxide. Exists in the catalyst of.

【0007】[0007]

【発明の実施の形態】以下、本発明の触媒について詳細
に説明する。 (多孔性担体)本発明の触媒は多孔性担体に触媒主成分
として銀を担持させた触媒である。多孔性担体として
は、アルミナ、炭化珪素、チタニア、ジルコニア、マグ
ネシア等の多孔性耐火物が挙げられるが、主成分がα−
アルミナであるものが特に好適である。また、多孔性担
体には通常10%程度を上限としてシリカ成分を含有さ
せたものであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention will be described in detail below. (Porous carrier) The catalyst of the present invention is a catalyst in which silver is supported on the porous carrier as a main component of the catalyst. Examples of the porous carrier include porous refractory materials such as alumina, silicon carbide, titania, zirconia, and magnesia, but the main component is α-.
Alumina is particularly preferred. Further, the porous carrier may contain a silica component with an upper limit of about 10%.

【0008】本発明においては多孔性担体の諸物性がそ
の触媒活性に大きな影響を与える場合がある。多孔性担
体の表面積は、通常0.1〜10m2/g、好ましくは
0.6〜5m2/g、更に好ましくは0.8〜2m2/gで
あるものが望ましい。また、かかる表面積を保持して触
媒成分の含浸操作を容易にするという点で、担体の吸水
率が好ましくは20〜50%、更に好ましくは25〜4
5%であるものが望ましい。
In the present invention, the physical properties of the porous carrier may greatly affect its catalytic activity. The surface area of the porous carrier is usually 0.1 to 10 m 2 / g, preferably 0.6 to 5 m 2 / g, and more preferably 0.8 to 2 m 2 / g. In addition, the water absorption of the carrier is preferably 20 to 50%, more preferably 25 to 4 from the viewpoint of maintaining such surface area and facilitating the impregnation operation of the catalyst component.
It is preferably 5%.

【0009】(触媒組成)本発明の触媒は、全触媒重量
に対して、銀を、好ましくは5〜30重量%、更に好ま
しくは8〜20重量%含有する。また、本発明の触媒
は、銀以外にリチウムとセシウムを必須成分とする。か
かる成分の触媒中での含有量は、全触媒重量に対して、
好ましくは、リチウムが100〜2000ppm及びセ
シウム250〜2000ppmであり、更に好ましく
は、リチウムが200〜1000ppm及びセシウム3
00〜1600ppmである。かかる範囲以外では公知
の銀触媒以上の充分な触媒としての効果が得られにく
い。また、セシウムとリチウムの含有割合としては、そ
の重量比(Li/Cs)が、好ましくは0.05〜8、
更に好ましくは0.1〜4である。
(Catalyst composition) The catalyst of the present invention contains silver in an amount of preferably 5 to 30% by weight, more preferably 8 to 20% by weight based on the total weight of the catalyst. Further, the catalyst of the present invention contains lithium and cesium as essential components in addition to silver. The content of such components in the catalyst, relative to the total catalyst weight,
Preferably, lithium is 100 to 2000 ppm and cesium is 250 to 2000 ppm, and more preferably, lithium is 200 to 1000 ppm and cesium 3 is.
It is 00 to 1600 ppm. Outside of this range, it is difficult to obtain a sufficient catalytic effect over the known silver catalyst. As the content ratio of cesium and lithium, the weight ratio (Li / Cs) is preferably 0.05 to 8,
More preferably, it is 0.1-4.

【0010】更に、本発明の触媒は、リチウムとセシウ
ム以外のアルカリ金属成分の含有を排除するものではな
く、本発明の触媒の特徴を損なわない範囲において、ナ
トリウム、カリウム、ルビジウム、セシウム等を金属原
子として通常10〜10000ppm程度含有していて
もよい。
Further, the catalyst of the present invention does not exclude the inclusion of an alkali metal component other than lithium and cesium, and sodium, potassium, rubidium, cesium, etc. can be added to the metal as long as the characteristics of the catalyst of the present invention are not impaired. You may contain normally about 10-10000 ppm as an atom.

【0011】また、本発明の触媒の特徴を損なわない範
囲において、助触媒成分として作用しうるその他成分も
通常10〜10000ppm程度含有させてもよく、ベ
リリウム、カルシウム、ストロンチウム、バリウム、マ
グネシウム等のアルカリ土類金属、銅、金等の11族金
属、亜鉛、カドミウム、水銀等の12族元素、ホウ素、
ガリウム、インジウム、タリウム等の13族元素、ゲル
マニウム、スズ、鉛等の14族元素、リン、砒素、アン
チモン、ビスマス等の15族元素、チタン、ジルコニウ
ム、ハフニウム等の4族元素、珪素、バナジウム、ニオ
ブ、タンタル等の5族元素、クロム、モリブデン、タン
グステン等の6族金属、レニウム等の7族金属、スカン
ジウムイットリウム、サマリウム、セリウム、ランタ
ン、ネオジウム、プラセオジウム、ユーロピウム等の希
土類金属などが例示される。以上の任意成分は、後述の
触媒調製における前処理工程及び本処理工程のいずれに
おいて担体に担持させてもよいが、好ましくは、本処理
工程で銀成分と同時含浸する方法が採用される。
Further, other components which can act as a co-catalyst component may be contained usually in an amount of about 10 to 10000 ppm as long as the characteristics of the catalyst of the present invention are not impaired, and alkali metals such as beryllium, calcium, strontium, barium and magnesium are included. Group 11 metals such as earth metals, copper and gold, Group 12 elements such as zinc, cadmium and mercury, boron,
Group 13 elements such as gallium, indium and thallium, Group 14 elements such as germanium, tin and lead, Group 15 elements such as phosphorus, arsenic, antimony and bismuth, Group 4 elements such as titanium, zirconium and hafnium, silicon, vanadium, Examples include group 5 elements such as niobium and tantalum, group 6 metals such as chromium, molybdenum and tungsten, group 7 metals such as rhenium, scandium yttrium, samarium, cerium, lanthanum, neodymium, praseodymium, and rare earth metals such as europium. . The above optional components may be supported on the carrier in any of the pretreatment step and the main treatment step in the catalyst preparation described later, but a method of simultaneously impregnating with the silver component in the main treatment step is preferably adopted.

【0012】(触媒の調製、前処理工程)本発明の触媒
は、多孔性担体にリチウム化合物とセシウム化合物を含
有する溶液で前処理し、次いで、銀化合物及びセシウム
化合物を含有する溶液を含浸させ、加熱処理して調製さ
れるものであるが、以下、初めの多孔性担体にリチウム
化合物を含有する溶液で前処理する工程を「前処理工
程」、また、前処理後の銀化合物及びセシウム化合物を
含浸させ、加熱処理する工程を「本処理工程」と、各々
定義することで説明する。
(Preparation of Catalyst, Pretreatment Step) In the catalyst of the present invention, the porous carrier is pretreated with a solution containing a lithium compound and a cesium compound, and then impregnated with a solution containing a silver compound and a cesium compound. , Which is prepared by heat treatment, but hereinafter, "pretreatment step" is a step of pretreating the first porous carrier with a solution containing a lithium compound, and also a silver compound and a cesium compound after the pretreatment. The step of impregnating and heat-treating will be defined as "main treatment step".

【0013】本発明の前処理とは、多孔性担体にリチウ
ム及びセシウムを沈着させる処理であり、多孔性担体に
リチウム化合物とセシウム化合物を含有する溶液を含浸
させ、これを乾燥処理することをいう。含浸させる方法
としては、リチウム化合物とセシウム化合物を含有する
溶液中に多孔性担体を浸漬する方法または多孔性担体に
リチウム化合物とセシウム化合物の含有溶液を噴霧する
方法が挙げられる。なお、該処理は、リチウム化合物と
セシウム化合物の両方を含有する溶液で行ってもよい
し、リチウム化合物含有溶液での処理とセシウム化合物
含有溶液の処理を別々に行ってもよい。乾燥処理として
は、含浸処理後、多孔性担体と余剰のリチウム化合物と
セシウム化合物の含有溶液を分離後、減圧乾燥、あるい
は加熱処理による乾燥等が挙げられる。該加熱処理とし
ては、好ましくは100〜300℃、更に好ましくは1
30〜200℃での空気、窒素等の不活性ガス、過熱水
蒸気を利用する方法が好ましい。特に好ましいのは過熱
水蒸気を利用する方法である。
The pretreatment of the present invention is a treatment for depositing lithium and cesium on a porous carrier, and impregnating the porous carrier with a solution containing a lithium compound and a cesium compound, and drying the impregnated solution. . Examples of the method of impregnation include a method of immersing the porous carrier in a solution containing the lithium compound and the cesium compound, and a method of spraying the solution containing the lithium compound and the cesium compound on the porous carrier. The treatment may be performed with a solution containing both a lithium compound and a cesium compound, or the treatment with the lithium compound-containing solution and the treatment with the cesium compound-containing solution may be performed separately. Examples of the drying treatment include, after the impregnation treatment, separating the porous carrier and the solution containing the excess lithium compound and the cesium compound, followed by drying under reduced pressure or drying by heat treatment. The heat treatment is preferably 100 to 300 ° C., more preferably 1
A method of using air at 30 to 200 ° C., an inert gas such as nitrogen, or superheated steam is preferable. Particularly preferred is a method utilizing superheated steam.

【0014】本発明の前処理工程で使用されるリチウム
化合物は特に制限はないが、本処理工程で、一旦担体に
担持させたリチウム成分の再溶出の起こりにくいという
観点から、水への溶解度が比較的低いものが望ましく、
炭酸リチウム、重炭酸リチウムあるいは、シュウ酸リチ
ウム、酢酸リチウム等のカルボン酸のリチウム塩が好ま
しく、炭酸リチウム又は重炭酸リチウムが特に好まし
い。また、溶媒としては、使用するリチウム化合物に対
して、不活性で、溶解性が高ければ、特に限定なく使用
でき、低沸点の有機溶媒、水等が挙げられる。
The lithium compound used in the pretreatment step of the present invention is not particularly limited, but in this treatment step, the solubility in water is less likely to cause re-elution of the lithium component once supported on the carrier. Relatively low is desirable,
Lithium carbonate, lithium bicarbonate, or a lithium salt of a carboxylic acid such as lithium oxalate or lithium acetate is preferable, and lithium carbonate or lithium bicarbonate is particularly preferable. The solvent can be used without particular limitation as long as it is inactive and highly soluble in the lithium compound used, and examples thereof include low-boiling organic solvents and water.

【0015】また、本発明で使用されるセシウム化合物
の種類は特に限定はなく、セシウムの硝酸塩、水酸化
物、ハロゲン化物、炭酸塩、重炭酸塩、カルボン酸塩等
が例示される。なお、この場合に使用するリチウム化合
物と同一のアニオン塩を使用することが取り扱い上、好
ましく、例えば、炭酸塩、重炭酸塩、カルボン酸塩等が
好ましい。
The type of cesium compound used in the present invention is not particularly limited, and examples thereof include cesium nitrates, hydroxides, halides, carbonates, bicarbonates and carboxylates. In this case, it is preferable in terms of handling to use the same anion salt as the lithium compound used, and for example, carbonate, bicarbonate, carboxylate and the like are preferable.

【0016】この場合、担体に含浸させる全セシウム量
の好ましくは5〜95%、更に好ましくは10〜80%
を、リチウム化合物と同時に前処理工程で含浸加熱処理
を行い、担体にリチウムとともにセシウムも沈着担持さ
せる。従って、この前処理工程で担体に担持されるセシ
ウムの含有量は、好ましくは50〜1800ppm、更
に好ましくは75〜1375ppmである。なお、前処
理工程でのセシウムの担持量が多すぎると、後述する本
処理工程でのセシウム担持量を少なくすることになり、
選択性が低下するので、あまり好ましくない。本発明の
方法を採用することで、本処理工程のみで全セシウムを
含浸させる方法と比較して、より高い選択性を有する触
媒を得ることができる。
In this case, preferably 5 to 95%, more preferably 10 to 80% of the total amount of cesium impregnated in the carrier.
Is subjected to impregnation and heat treatment in a pretreatment step at the same time as the lithium compound to deposit and support cesium together with lithium on the carrier. Therefore, the content of cesium supported on the carrier in this pretreatment step is preferably 50 to 1800 ppm, more preferably 75 to 1375 ppm. If the amount of cesium supported in the pretreatment process is too large, the amount of cesium supported in the main treatment process described below will be reduced,
It is less preferable because the selectivity is lowered. By adopting the method of the present invention, a catalyst having higher selectivity can be obtained as compared with the method of impregnating all cesium only in this treatment step.

【0017】(触媒の調製、本処理工程)本処理工程
は、前記の前処理工程でリチウムとセシウムを担持させ
た多孔性担体に、銀化合物及びセシウム化合物を含有す
る溶液を含浸させ加熱処理させる工程である。
(Preparation of Catalyst, Main Treatment Step) In this main treatment step, a porous carrier supporting lithium and cesium in the above-mentioned pretreatment step is impregnated with a solution containing a silver compound and a cesium compound and subjected to heat treatment. It is a process.

【0018】本処理工程で、銀を担体に沈着担持させる
ために有利に使用される銀化合物としては、例えばアミ
ン化合物と溶媒中で可溶な錯体を形成し、そして500
℃以下、好ましくは300℃以下、より好ましくは26
0℃以下の温度で分解して銀を析出するものがある。そ
の例としては、酸化銀、硝酸銀、炭酸銀、あるいは、酢
酸銀、シュウ酸銀などの各種カルボン酸銀を挙げること
ができるが、シュウ酸銀が特に好ましい。錯体形成剤と
してのアミン化合物は、上記銀化合物を溶媒中で可溶化
し得るものが用いられる。かかるアミン化合物として
は、例えばピリジン、アセトニトリル、アンモニア、1
〜6個の炭素を有するアミン類などが挙げられる。中で
もアンモニア、ピリジン、ブチルアミンなどのモノアミ
ン、エタノールアミンなどのアルカノールアミン、エチ
レンジアミン、1,3−プロパンジアミンの如きポリア
ミンが好ましい。特にエチレンジアミン及び/又は1,
3−プロパンジアミンの使用、特にその混合使用が最適
である。
The silver compound which is advantageously used for depositing and depositing silver on the carrier in the present processing step is, for example, an amine compound which forms a complex soluble in a solvent, and 500
℃ or less, preferably 300 ℃ or less, more preferably 26
Some of them decompose at a temperature of 0 ° C. or less to deposit silver. Examples thereof include silver oxide, silver nitrate, silver carbonate, or various silver carboxylates such as silver acetate and silver oxalate, and silver oxalate is particularly preferable. As the amine compound as the complex forming agent, one capable of solubilizing the silver compound in a solvent is used. Examples of such amine compounds include pyridine, acetonitrile, ammonia, 1
And amines having 6 carbons. Among them, ammonia, pyridine, monoamines such as butylamine, alkanolamines such as ethanolamine, and polyamines such as ethylenediamine and 1,3-propanediamine are preferable. Especially ethylenediamine and / or 1,
Most suitable is the use of 3-propanediamine, especially a mixture thereof.

【0019】銀化合物の含浸方法としては、銀化合物を
アミン化合物との水溶液の形として用いることが最も現
実的であるが、アルコールなどを加えた水溶液としても
用い得る。最終的には触媒成分として5〜30重量%の
銀が担持されるように含浸液中の銀濃度は決定される。
また、含浸の後、要すれば減圧、加熱、スプレー吹き付
けなどを併せて行うこともできる。アミンは銀化合物を
錯化するに必要な量(通常アミノ基2個が銀1原子に対
応する)で加えられる。この場合アミン化合物は、上記
必要量より5〜30%過剰に加えるのが、反応性の面か
ら好ましい。
The most practical method of impregnating the silver compound is to use the silver compound in the form of an aqueous solution with the amine compound, but it can also be used as an aqueous solution containing alcohol or the like. Finally, the silver concentration in the impregnating solution is determined so that 5 to 30% by weight of silver is supported as a catalyst component.
In addition, after impregnation, if necessary, decompression, heating, spraying and the like can be performed together. The amine is added in the amount necessary to complex the silver compound (usually two amino groups correspond to one silver atom). In this case, the amine compound is preferably added in an amount of 5 to 30% in excess of the above-mentioned required amount from the viewpoint of reactivity.

【0020】本処理工程で使用されるセシウム化合物
は、前記の前処理工程の説明で掲げたものを使用すれば
よい。セシウム化合物は銀化合物水溶液中に溶解し、銀
と同時に担体上に担持すればよい。この本処理工程で担
体に担持されるセシウムの含有量は好ましくは200〜
2000ppm、更に好ましくは225〜1525pp
mである。本処理工程でのセシウムの担持量が少なけれ
ば、選択性が低下し、逆に多すぎる(即ち全セシウム量
が多くなる)と活性、選択性が低下する。なお、本発明
ではリチウム化合物を前処理工程で含浸させることを特
徴の一つとしているが、本処理工程でリチウム化合物の
一部を含浸させることを排除するものではない。
As the cesium compound used in this treatment step, those listed in the above description of the pretreatment step may be used. The cesium compound may be dissolved in an aqueous solution of a silver compound and loaded on a carrier at the same time as silver. The content of cesium supported on the carrier in this main treatment step is preferably 200 to
2000 ppm, more preferably 225-1525 pp
m. If the amount of cesium supported in this treatment step is small, the selectivity is lowered, and conversely, if it is too large (that is, the total cesium amount is large), the activity and the selectivity are lowered. Although one feature of the present invention is that the lithium compound is impregnated in the pretreatment step, impregnation of part of the lithium compound in the main treatment step is not excluded.

【0021】含浸後の加熱処理は、銀が担体上に析出す
るのに必要な温度と時間を測定して実施する。担体上に
銀ができるだけ均一に、微細な粒子で存在するように析
出する条件を選ぶことが最も好ましい。一般的に加熱処
理は、高温、長時間となるほど、析出した銀粒子の凝集
を促進するので好ましくない。好ましい加熱処理は、1
30℃〜300℃で、加熱した空気(又は窒素などの不
活性ガス)又は、過熱水蒸気を使用して、5分から30
分の短時間行われる。好ましい上記熱処理は、触媒調製
工程の時間短縮という観点からも望ましく、他に過熱水
蒸気を使用すると、担体上の銀の分布が均一になり触媒
性能も向上するので特に好ましい。
The heat treatment after impregnation is carried out by measuring the temperature and time required for the silver to be deposited on the carrier. It is most preferable to select the conditions under which silver precipitates on the carrier as uniformly as possible and in the form of fine particles. In general, the heat treatment is not preferable because it accelerates the agglomeration of the precipitated silver particles at higher temperatures and longer times. The preferred heat treatment is 1
5 minutes to 30 minutes using heated air (or an inert gas such as nitrogen) or superheated steam at 30 ° C to 300 ° C.
It is done for a short time of a minute. The above-mentioned preferable heat treatment is also desirable from the viewpoint of shortening the time of the catalyst preparation step, and the use of superheated steam is particularly preferable because the distribution of silver on the carrier becomes uniform and the catalyst performance is improved.

【0022】(反応方法)本発明の触媒を用いてエチレ
ンをエチレンオキシドに転換する反応は、慣用操作で実
施できる。反応圧力は通常0.1〜3.6MPa(0〜
35kg/cm2G)であり、反応温度は通常180〜
350℃、好ましくは200〜300℃である。反応原
料ガスの組成は、一般に、エチレンが1〜40容量%、
分子状酸素が1〜20容量%の混合ガスが用いられ、ま
た、一般に希釈剤、例えばメタンや窒素等の不活性ガス
を一定割合、例えば1〜70容量%で存在させることが
できる。分子状酸素含有ガスとしては、通常、空気ある
いは工業用酸素が用いられる。更に、反応改変剤とし
て、例えばハロゲン化炭化水素を0.1〜50ppm程
度、反応原料ガスに加えることにより触媒中のホットス
ポットの形成を防止でき、且つ触媒の性能、殊に触媒選
択性を大幅に改善させることができる。
(Reaction Method) The reaction for converting ethylene to ethylene oxide using the catalyst of the present invention can be carried out by a conventional operation. The reaction pressure is usually 0.1 to 3.6 MPa (0 to
35 kg / cm 2 G), and the reaction temperature is usually 180-
The temperature is 350 ° C, preferably 200 to 300 ° C. The composition of the reaction raw material gas is generally 1 to 40% by volume of ethylene,
A mixed gas having 1 to 20% by volume of molecular oxygen is used, and a diluent, for example, an inert gas such as methane or nitrogen can generally be present in a fixed ratio, for example, 1 to 70% by volume. Air or industrial oxygen is usually used as the molecular oxygen-containing gas. Further, as a reaction modifier, for example, by adding about 0.1 to 50 ppm of a halogenated hydrocarbon to the reaction raw material gas, the formation of hot spots in the catalyst can be prevented, and the performance of the catalyst, especially the catalyst selectivity, can be significantly increased. Can be improved.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれらの実施例により限定されるもの
ではない。なお、実施例等に用いた担体の物性を以下の
表−1に示す。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The physical properties of the carrier used in Examples and the like are shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1 (1)担体の前処理 α−アルミナ担体A(表面積1.04m2/g、吸水率3
2.3%、平均細孔径1.4μm、シリカ3%、8φ×
3φ×8mmのリング状)50gを炭酸リチウム(Li
2CO3)0.94gと炭酸セシウム(Cs2CO3)0.0
87gが溶解した水溶液100mlに浸漬させ、余分な
液を切り、次いで、これを150℃の過熱水蒸気にて1
5分間、2m/秒の流速で加熱し、リチウムとセシウム
成分を含浸させた担体を調製した。
Example 1 (1) Pretreatment of carrier α-alumina carrier A (surface area 1.04 m 2 / g, water absorption 3)
2.3%, average pore diameter 1.4 μm, silica 3%, 8φ ×
50 g of 3φ × 8 mm ring-shaped lithium carbonate (Li
2 CO 3 ) 0.94 g and cesium carbonate (Cs 2 CO 3 ) 0.0
Immerse it in 100 ml of an aqueous solution in which 87 g is dissolved, cut off excess liquid, and then add 1 by using superheated steam at 150 ° C.
A carrier impregnated with lithium and cesium components was prepared by heating for 5 minutes at a flow rate of 2 m / sec.

【0026】(2)シュウ酸銀の調製 硝酸銀(AgNO3 )228gとシュウ酸カリウム(K
224・H2O)135gを各々1リットルの水に溶解
した後、水溶液中で60℃に加温しながら徐々に混合
し、シュウ酸銀の白色沈殿を得た。濾過後、蒸留水によ
り沈殿を洗浄した。
(2) Preparation of silver oxalate 228 g of silver nitrate (AgNO 3 ) and potassium oxalate (K
(2 C 2 O 4 .H 2 O) (135 g) was dissolved in 1 liter of water, and then gradually mixed in an aqueous solution while heating at 60 ° C. to obtain a white precipitate of silver oxalate. After filtration, the precipitate was washed with distilled water.

【0027】(3)銀アミン錯体溶液の調製 (2)で得たシュウ酸銀(AgC24、含水率19.4
7%)の一部(12.3g)を、エチレンジアミン3.
42g、プロパンジアミン0.94g、及び水4.54
gよりなるアミン混合水溶液に徐々に添加して溶解さ
せ、銀アミン錯体溶液を調製した。この銀アミン錯体溶
液に、攪拌しながら塩化セシウム(CsCl)1.14
重量%と硝酸セシウム(CsNO3)1.98重量%を含
有する混合水溶液1mlを添加した。該混合液に、更
に、水酸化バリウム八水和物(Ba(OH)2 ・8H2
O)の0.66重量%水溶液1mlを添加した。
(3) Preparation of silver amine complex solution Silver oxalate obtained in (2) (AgC 2 O 4 , water content 19.4)
7%) and a part (12.3 g) of ethylenediamine 3.
42 g, propanediamine 0.94 g, and water 4.54
A silver amine complex solution was prepared by gradually adding and dissolving the mixture in an amine mixed aqueous solution of g. To this silver amine complex solution, while stirring, cesium chloride (CsCl) 1.14
1 ml of a mixed aqueous solution containing 1% by weight and 1.98% by weight of cesium nitrate (CsNO 3 ) was added. The mixed solution was further mixed with barium hydroxide octahydrate (Ba (OH) 2 .8H 2
1 ml of a 0.66% by weight aqueous solution of O) was added.

【0028】(4)銀触媒の調製 (1)で調製したリチウムとセシウムが含浸されたα−
アルミナ担体50gを、(3)で得たセシウム及びバリ
ウムを含有するこの銀アミン錯体溶液に、エバポレータ
ー中で減圧下、40℃の加温中で含浸した。この含浸担
体を200℃の過熱水蒸気にて15分間、2m/秒の流
速で加熱し、触媒を得た。該触媒における銀(Ag)、
セシウム(Cs)、リチウム(Li)及びバリウム(B
a)の担持率は12%、595ppm、500ppm、
50ppmであった。
(4) Preparation of silver catalyst α-impregnated with lithium and cesium prepared in (1)
50 g of an alumina carrier was impregnated with this silver amine complex solution containing cesium and barium obtained in (3) under reduced pressure in an evaporator while heating at 40 ° C. This impregnated carrier was heated with superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / sec to obtain a catalyst. Silver (Ag) in the catalyst,
Cesium (Cs), lithium (Li) and barium (B
The loading rate of a) is 12%, 595 ppm, 500 ppm,
It was 50 ppm.

【0029】(5)エチレンの酸化反応 上記方法で調製した触媒を、6〜10メッシュに砕き、
その3mlを内径7.5mmのSUS製反応管に充填
し、反応ガス(エチレン30%、酸素8.5%、塩化ビ
ニル1.5ppm、二酸化炭素6.0%、残り窒素)
を、GHSV4300hr-1、圧力0.8MPa(7k
g/cm2G)で流し、反応を行った。反応を開始して
1週間経過後の、酸素転化率が40%になるときの反応
温度T40(℃)と酸素転化率が40%となるときのエチ
レン基準の酸化エチレンの選択率S40(%)を表−2に
示す。
(5) Oxidation reaction of ethylene The catalyst prepared by the above method is crushed into 6 to 10 mesh,
3 ml thereof was filled in a SUS reaction tube having an inner diameter of 7.5 mm, and a reaction gas (ethylene 30%, oxygen 8.5%, vinyl chloride 1.5 ppm, carbon dioxide 6.0%, residual nitrogen).
GHSV4300hr -1 , pressure 0.8MPa (7k
The reaction was carried out by flowing at g / cm 2 G). One week after the start of the reaction, the reaction temperature T 40 (° C.) when the oxygen conversion rate becomes 40% and the ethylene-based ethylene oxide selectivity S 40 (when the oxygen conversion rate becomes 40%) %) Is shown in Table-2.

【0030】実施例2 リチウムの担持量が300ppmとなるように前処理工
程での炭酸リチウムの含浸量を変更した以外は実施例1
と同様の方法で触媒を調製し反応を行った。反応結果を
表−2に示す。
Example 2 Example 1 except that the impregnated amount of lithium carbonate in the pretreatment step was changed so that the supported amount of lithium was 300 ppm.
A catalyst was prepared and a reaction was carried out in the same manner as in. Table 2 shows the reaction results.

【0031】実施例3 リチウムの担持量が700ppmとなるように前処理工
程での炭酸リチウムの含浸量を変更した以外は実施例1
と同様の方法で触媒を調製し反応を行った。反応結果を
表−2に示す。
Example 3 Example 1 was repeated except that the impregnation amount of lithium carbonate in the pretreatment step was changed so that the amount of lithium supported was 700 ppm.
A catalyst was prepared and a reaction was carried out in the same manner as in. Table 2 shows the reaction results.

【0032】実施例4、5 前処理工程と本処理工程で担持させるセシウムの量を表
−2に示すように変更した以外は実施例1と同様の方法
で触媒を調製し反応を行った。反応結果を表−2に示
す。
Examples 4 and 5 A catalyst was prepared and reacted in the same manner as in Example 1 except that the amounts of cesium supported in the pretreatment step and the main treatment step were changed as shown in Table 2. Table 2 shows the reaction results.

【0033】比較例1、2 担体にリチウムを担持せず、かつ、前処理工程ではセシ
ウムを担持させず、本処理工程で担持させるセシウムの
量を表−2に示すように変更した以外は実施例1と同様
の方法で触媒を調製し反応を行った。反応結果を表−2
に示す。
Comparative Examples 1 and 2 Implemented except that lithium was not loaded on the carrier, cesium was not loaded in the pretreatment step, and the amount of cesium loaded in the main treatment step was changed as shown in Table 2. A catalyst was prepared and reacted in the same manner as in Example 1. Table 2 shows the reaction results.
Shown in

【0034】比較例3 前処理工程と本処理工程で担持させるセシウムの量を表
−2に示すように変更した以外は比較例1と同様の方法
で触媒を調製し反応を行った。反応結果を表−2に示
す。
Comparative Example 3 A catalyst was prepared and reacted in the same manner as in Comparative Example 1 except that the amounts of cesium supported in the pretreatment step and the main treatment step were changed as shown in Table 2. Table 2 shows the reaction results.

【0035】比較例4 リチウムの担持量が500ppmとなるように本処理工
程で硝酸リチウムを含浸させた以外は比較例1と同様の
方法で触媒を調製し反応を行った。反応結果を表−2に
示す。なお、硝酸リチウムの代わりに炭酸リチウムの使
用を試みたが、銀アミン錯体溶液中への炭酸リチウムの
溶解度が低く、リチウムを500ppm相当担持させる
ことができなかった。
Comparative Example 4 A catalyst was prepared and reacted in the same manner as in Comparative Example 1 except that lithium nitrate was impregnated in this treatment step so that the supported amount of lithium was 500 ppm. Table 2 shows the reaction results. It was tried to use lithium carbonate instead of lithium nitrate, but the solubility of lithium carbonate in the silver amine complex solution was low, and it was not possible to support lithium in an amount of 500 ppm.

【0036】比較例5 リチウム原子の担持量が500ppmとなるように本処
理工程で硝酸リチウムを含浸させた以外は比較例3と同
様の方法で触媒を調製し反応を行った。反応結果を表−
2に示す。
Comparative Example 5 A catalyst was prepared and reacted in the same manner as in Comparative Example 3 except that lithium nitrate was impregnated in this treatment step so that the supported amount of lithium atoms was 500 ppm. Table of reaction results
It is shown in FIG.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例6〜16 担体の種類、セシウムの担持段階と担持量を表−3に示
すように変更した以外は実施例1と同様の方法で触媒を
調製し反応を行った。反応結果を表−3に示す。
Examples 6 to 16 Catalysts were prepared and reacted in the same manner as in Example 1 except that the type of carrier, the loading stage of cesium and the loading amount were changed as shown in Table 3. The reaction results are shown in Table-3.

【0039】[0039]

【表3】 [Table 3]

【0040】実施例17 セシウムの担持段階と担持量を表−4に示すように変更
し、かつ、銀アミン錯体溶液中に、更に過レニウム酸ア
ンモニウムを添加した以外は実施例1と同様の方法で触
媒を調製し反応を行った。該触媒における銀(Ag)、
セシウム(Cs)、リチウム(Li)及びレニウム(R
e)の担持率は12%、870ppm、500ppm、
370ppmであった.反応結果を表−4に示す。本実
施例の触媒ではレニウム成分添加の影響で反応温度がT
40が高くなっているが、選択率(S40)の顕著な向上が
認められる。
Example 17 The same method as in Example 1 except that the loading stage and loading amount of cesium were changed as shown in Table 4 and ammonium perrhenate was further added to the silver amine complex solution. A catalyst was prepared and the reaction was carried out. Silver (Ag) in the catalyst,
Cesium (Cs), lithium (Li) and rhenium (R
The loading rate of e) is 12%, 870 ppm, 500 ppm,
It was 370 ppm. The reaction results are shown in Table-4. In the catalyst of this example, the reaction temperature is T due to the addition of the rhenium component.
Although 40 is high, a remarkable improvement in selectivity (S 40 ) is recognized.

【0041】実施例18 担体Aの代わりに担体Iを用い、本処理工程で用いる銀
アミン錯体溶液中に、所定量の硝酸セシウム(CsNO
3)、タングステン酸リチウム(Li2WO4)及び硝酸リ
チウム(LiNO3)を添加した以外は、実施例1と同
様の方法で調製し、反応を行った。Ag、Cs、W及び
Liの担持率は、20%、937ppm、468pp
m、667ppmであった。反応結果を表−4に示す。
Example 18 The carrier I was used in place of the carrier A, and a predetermined amount of cesium nitrate (CsNO) was added to the silver amine complex solution used in this treatment step.
3 ), lithium tungstate (Li 2 WO 4 ) and lithium nitrate (LiNO 3 ) were added, and the reaction was carried out in the same manner as in Example 1. The loading rates of Ag, Cs, W and Li are 20%, 937 ppm and 468 pp.
m, was 667 ppm. The reaction results are shown in Table-4.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】本発明の触媒を用いることにより、従来
の触媒と比較して温和な条件下で高い選択率でエチレン
オキシドを製造することができる。
Industrial Applicability By using the catalyst of the present invention, ethylene oxide can be produced with a high selectivity under mild conditions as compared with the conventional catalysts.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 多孔性担体にリチウム化合物とセシウム
化合物を含有する溶液で前処理し、次いで、銀化合物及
びセシウム化合物を含有する溶液を含浸させ、加熱処理
してなることを特徴とするエチレンを酸化してエチレン
オキシドを製造するための触媒。
1. Ethylene characterized in that the porous carrier is pretreated with a solution containing a lithium compound and a cesium compound, then impregnated with a solution containing a silver compound and a cesium compound, and heat-treated. A catalyst for the oxidation to produce ethylene oxide.
【請求項2】 銀を5〜30重量%含有することを特徴
とする請求項1の触媒。
2. A catalyst according to claim 1, which contains 5 to 30% by weight of silver.
【請求項3】 リチウムを100〜2000ppm及び
セシウム250〜2000ppm含有することを特徴と
する請求項1又は2の触媒。
3. The catalyst according to claim 1, which contains lithium in an amount of 100 to 2000 ppm and cesium in an amount of 250 to 2000 ppm.
【請求項4】 セシウムとリチウムの重量比(Li/C
s)が0.1〜4であることを特徴とする請求項1ない
し3のいずれかの触媒。
4. A weight ratio of cesium to lithium (Li / C
The catalyst according to claim 1, wherein s) is 0.1 to 4.
【請求項5】 多孔性担体に含浸させる全セシウムの1
0〜80%をリチウム化合物と同時に含浸させることを
特徴とする請求項1ないし4の触媒。
5. One of all cesium impregnated into a porous carrier.
5. The catalyst according to claim 1, wherein 0 to 80% is impregnated with a lithium compound at the same time.
【請求項6】 多孔性担体の表面積が0.6〜5m2/g
であることを特徴とする請求項1ないし5のいずれかの
触媒。
6. The surface area of the porous carrier is 0.6 to 5 m 2 / g.
The catalyst according to any one of claims 1 to 5, wherein
【請求項7】 多孔性担体の主成分がα−アルミナであ
ることを特徴とする請求項1ないし6のいずれかの触
媒。
7. The catalyst according to claim 1, wherein the main component of the porous carrier is α-alumina.
【請求項8】 リチウム化合物が炭酸リチウム又は重炭
酸リチウムであることを特徴とする請求項1ないし7の
いずれかの触媒。
8. The catalyst according to claim 1, wherein the lithium compound is lithium carbonate or lithium bicarbonate.
【請求項9】 リチウム化合物がカルボン酸のリチウム
塩であることを特徴とする請求項1ないし8のいずれか
の触媒。
9. The catalyst according to claim 1, wherein the lithium compound is a lithium salt of a carboxylic acid.
【請求項10】 前処理がリチウム化合物を含有する溶
液を含浸後、加熱処理することを特徴とする請求項1な
いし9のいずれかの触媒。
10. The catalyst according to claim 1, wherein the pretreatment is a heat treatment after impregnating a solution containing a lithium compound.
【請求項11】 前処理の加熱処理の際に過熱水蒸気を
用いることを特徴とする請求項10の触媒。
11. The catalyst according to claim 10, wherein superheated steam is used in the heat treatment of the pretreatment.
【請求項12】 銀化合物、セシウム化合物及び錯体形
成剤としてのアミン化合物を含有する溶液を用いて、銀
化合物及びセシウム化合物を含浸させることを特徴とす
る請求項1ないし11のいずれかの触媒。
12. The catalyst according to claim 1, wherein the silver compound and the cesium compound are impregnated with a solution containing a silver compound, a cesium compound and an amine compound as a complex-forming agent.
【請求項13】 銀化合物及びセシウム化合物を含浸さ
せ加熱処理する際に過熱水蒸気を用いることを特徴とす
る請求項1ないし12のいずれかの触媒。
13. The catalyst according to any one of claims 1 to 12, wherein superheated steam is used when the silver compound and the cesium compound are impregnated and heat-treated.
【請求項14】 エチレンを、請求項1ないし13のい
ずれかの触媒の存在下、分子状酸素により気相接触酸化
することを特徴とするエチレンオキシドの製造方法。
14. A process for producing ethylene oxide, which comprises subjecting ethylene to vapor-phase catalytic oxidation with molecular oxygen in the presence of the catalyst according to claim 1.
JP24606296A 1995-09-25 1996-09-18 Catalyst for ethylene oxide production Expired - Lifetime JP3794070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24606296A JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-246055 1995-09-25
JP24605595 1995-09-25
JP24606296A JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005225345A Division JP4206404B2 (en) 1995-09-25 2005-08-03 Catalyst for ethylene oxide production

Publications (2)

Publication Number Publication Date
JPH09150058A true JPH09150058A (en) 1997-06-10
JP3794070B2 JP3794070B2 (en) 2006-07-05

Family

ID=26537546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24606296A Expired - Lifetime JP3794070B2 (en) 1995-09-25 1996-09-18 Catalyst for ethylene oxide production

Country Status (1)

Country Link
JP (1) JP3794070B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000865A (en) * 1999-06-24 2001-01-09 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2001104788A (en) * 1999-10-05 2001-04-17 Mitsubishi Chemicals Corp Catalyst for preparing ethylene oxide and method for preparation of ethylene oxide
JP2001104787A (en) * 1999-10-05 2001-04-17 Mitsubishi Chemicals Corp Catalyst for preparing ethylene oxide and method for preparation of ethylene oxide
JP2005052838A (en) * 1997-12-25 2005-03-03 Nippon Shokubai Co Ltd Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2006021199A (en) * 1995-09-25 2006-01-26 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide
WO2007116585A1 (en) * 2006-04-10 2007-10-18 Mitsubishi Chemical Corporation Catalyst for ethylene oxide production, method for producing the same, and method for producing ethylene oxide
WO2010113963A1 (en) * 2009-03-31 2010-10-07 株式会社日本触媒 Catalyst for ethylene oxide production and method for producing ethylene oxide
JP2011212614A (en) * 2010-03-31 2011-10-27 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide
JP2013198875A (en) * 2012-03-26 2013-10-03 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide using the same
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021199A (en) * 1995-09-25 2006-01-26 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide
JP2005052838A (en) * 1997-12-25 2005-03-03 Nippon Shokubai Co Ltd Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2001000865A (en) * 1999-06-24 2001-01-09 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2001104788A (en) * 1999-10-05 2001-04-17 Mitsubishi Chemicals Corp Catalyst for preparing ethylene oxide and method for preparation of ethylene oxide
JP2001104787A (en) * 1999-10-05 2001-04-17 Mitsubishi Chemicals Corp Catalyst for preparing ethylene oxide and method for preparation of ethylene oxide
EP2679305A1 (en) 2006-04-10 2014-01-01 Mitsubishi Chemical Corporation Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
WO2007116585A1 (en) * 2006-04-10 2007-10-18 Mitsubishi Chemical Corporation Catalyst for ethylene oxide production, method for producing the same, and method for producing ethylene oxide
EP2682186A1 (en) 2006-04-10 2014-01-08 Mitsubishi Chemical Corporation Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
US8716175B2 (en) 2006-04-10 2014-05-06 Mitsubishi Chemical Corporation Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
WO2010113963A1 (en) * 2009-03-31 2010-10-07 株式会社日本触媒 Catalyst for ethylene oxide production and method for producing ethylene oxide
JP5570500B2 (en) * 2009-03-31 2014-08-13 株式会社日本触媒 Catalyst for producing ethylene oxide and method for producing ethylene oxide
US9090577B2 (en) 2009-03-31 2015-07-28 Nippon Shokubai Co., Ltd. Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2011212614A (en) * 2010-03-31 2011-10-27 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide
JP2013198875A (en) * 2012-03-26 2013-10-03 Nippon Shokubai Co Ltd Catalyst for production of ethylene oxide and production method of ethylene oxide using the same
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Also Published As

Publication number Publication date
JP3794070B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US5705661A (en) Catalyst for production of ethylene oxide
JP3961568B2 (en) Production method of epoxidation catalyst
CN1087191C (en) epoxidation catalyst and process
EP0624398B1 (en) Catalyst for production of ethylene oxide and process for producing the catalyst
JP3573361B2 (en) Ethylene oxide catalyst and production method
JP4206404B2 (en) Catalyst for ethylene oxide production
JP3794070B2 (en) Catalyst for ethylene oxide production
US8716175B2 (en) Catalyst for producing ethylene oxide, process for producing the catalyst and process for producing ethylene oxide
JP3355661B2 (en) Catalyst production method
JP3233652B2 (en) Silver catalyst for ethylene oxide production
JP3789261B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767251B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3794215B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3767279B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3508200B2 (en) Catalyst for producing ethylene oxide and method for producing the same
JP3263967B2 (en) Catalyst for ethylene oxide production
JP4051995B2 (en) Olefin oxide production catalyst and process for producing olefin oxide using the catalyst
JP2637795B2 (en) Catalyst for ethylene oxide production
JP2701240B2 (en) Catalyst for ethylene oxide production
JP3823716B2 (en) Method for producing a catalyst for producing ethylene oxide from ethylene
CN117258786A (en) Silver catalyst for producing ethylene oxide by ethylene oxidation and preparation method and application thereof
JPH06296867A (en) Catalyst for manufacturing ethylene oxide
JP2007301554A (en) Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
JP2002088074A (en) Method for treating catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

EXPY Cancellation because of completion of term