JPH09149553A - Active filter - Google Patents

Active filter

Info

Publication number
JPH09149553A
JPH09149553A JP7304885A JP30488595A JPH09149553A JP H09149553 A JPH09149553 A JP H09149553A JP 7304885 A JP7304885 A JP 7304885A JP 30488595 A JP30488595 A JP 30488595A JP H09149553 A JPH09149553 A JP H09149553A
Authority
JP
Japan
Prior art keywords
current
phase
compensation
zero
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7304885A
Other languages
Japanese (ja)
Inventor
Takeshi Nakagawa
剛 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7304885A priority Critical patent/JPH09149553A/en
Publication of JPH09149553A publication Critical patent/JPH09149553A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Networks Using Active Elements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active filter which can perform compensation where specified components are given priority or control where the capacity of components is changed for every component. SOLUTION: This filter converts the phase of the detection currents of three-phase load currents with a phase converter 12, and detects two phases of currents intended for compensation including the higher harmonic currents, positive-phase reactive currents, and antiphase currents of the system with coordinate converters 13, 13', 17, and 17' and low pass filters 11 and 18 from this current, and converts the phase with this two phases of current intended for compensation into a three-phase compensation current command value, and distributes the zero phase components detected, from the detection current of the three-phase load current, with a zero-phase current compensating circuit, into the compensation current command value, and adds it, and removes the effective value of the zero-phase current and the current for compensation. In this case, the effective value of the zero-phase current and the effective value of the higher harmonic components of the current for compensation are obtained with a higher harmonic operating circuit 31 and an effective value operating circuit 32, and the total of these effective values is limited within the device capacity of the active filter with a limiter circuit 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電系統の高調波補償
等に使用するアクティブフィルタに係り、特に零相回路
を有する多相回路における高調波の抑制、無効電力や不
平衡負荷の補償及び零相電流の抑制を行う電力用アクテ
ィブフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active filter used for compensating harmonics in a distribution system, and more particularly to suppressing harmonics in a polyphase circuit having a zero-phase circuit, compensating for reactive power and unbalanced load, and The present invention relates to an active power filter that suppresses zero-phase current.

【0002】[0002]

【従来の技術】一般に、配電系統に接続されている整流
回路等の電力変換装置は、系統からみると、基本波有効
電流を消費する負荷であると同時に基本波無効電流の発
生源であり、また高調波電流の発生源でもあるから、配
電系統に悪影響を及ぼす基本波無効電流と高調波電流を
何等かの方法で分離し除去する必要がある。アクティブ
フィルタは、高調波電流を分離し除去するものとして周
知のものである。
2. Description of the Related Art Generally, a power conversion device such as a rectifier circuit connected to a distribution system is a load that consumes a fundamental active current and a source of a fundamental reactive current when viewed from the system. Since it is also a source of harmonic current, it is necessary to separate and remove the fundamental reactive current and the harmonic current, which adversely affect the distribution system, by some method. Active filters are well known for separating and removing harmonic currents.

【0003】図3は、アクティブフィルタの基本原理を
示すものであり、アクティブフィルタ1は、系統電源2
から高調波電流発生源である負荷3(整流回路など)へ
流れる負荷電流ir(=if+ih)から高調波電流検
出器1Aにより高調波電流ihを検出して、電流発生源
1Bに補償電流指令値ic*(=kih)を送り、電流
発生源1Bにおいて前記高調波電流ihと等しい大きさ
と位相を持つ補償電流ic(=ih)を系統2に送出し
て前記高調波電流ihとキャンセルさせ、系統(負荷)
電流is(ir)を基本波電流ifのみとし、高調波電
流(電力)の補償を行うものである。
FIG. 3 shows the basic principle of an active filter. The active filter 1 is a system power supply 2
From the load current ir (= if + ih) flowing to the load 3 (rectifier circuit, etc.), which is the harmonic current generation source, detects the harmonic current ih by the harmonic current detector 1A, and the compensation current command value is supplied to the current generation source 1B. ic * (= kih) is sent, and the compensating current ic (= ih) having the same magnitude and phase as the harmonic current ih in the current source 1B is sent to the grid 2 to cancel the harmonic current ih. (load)
The current is (ir) is limited to the fundamental wave current if, and the harmonic current (power) is compensated.

【0004】このようなアクティブフィルタ1として
は、図4に示す補償電流指令値演算回路がある。この制
御回路において、負荷電流を検出した負荷検出電流ir
は、相数変換回路12により三相信号から二相信号に変
換され、更に、座標変換器13において系統電源の角速
度基準でもある基本周波の電圧位相基準信号ωtにより
回転座標変換されて基本周波の直交座標上の基本波電流
ifの正相有効分電流ipを含む有効分電流信号と正相
無効分電流iqを含む無効分電流信号に分離される。
As such an active filter 1, there is a compensation current command value calculation circuit shown in FIG. In this control circuit, the load detection current ir for detecting the load current is detected.
Is converted from a three-phase signal to a two-phase signal by the phase number conversion circuit 12, and is further subjected to rotational coordinate conversion by the voltage phase reference signal ωt of the fundamental frequency which is also the angular velocity reference of the system power supply in the coordinate converter 13 to obtain the fundamental frequency. The fundamental wave current if on the orthogonal coordinates is separated into an active component current signal containing the positive-phase active component current ip and a reactive component current signal containing the positive-phase reactive component current iq.

【0005】その結果、基本波電流ifの正相有効分電
流ipと正相無効分電流iqは、それぞれ一定の直流成
分として取り扱うことができ、アクティブフィルタの補
償(除去)の対象外であるため、次段のローパスフィル
タ11,11’にて検出され、それぞれ突合せ回路1
5,15’にて前記負荷検出電流ir(有効分、無効
分)から減算され該負荷検出電流irから除去される。
As a result, the positive-phase effective component current ip and the positive-phase reactive component current iq of the fundamental wave current if can be treated as constant DC components, and are not subject to compensation (removal) by the active filter. , The low-pass filters 11 and 11 ′ of the next stage detect the matching circuit 1 respectively.
At 5 and 15 ', the load detection current ir (effective and ineffective) is subtracted and removed from the load detection current ir.

【0006】この場合、基本波正相無効分電流iqは、
アクティブフィルタが高調波補償のみを行う場合は、上
記のごときローパスフィルタで検出され除去されるが、
高調波電流補償のみならず無効電流iqの補償を行う場
合はこの直流成分を除去しない構成とする。
In this case, the fundamental positive phase reactive current iq is
When the active filter performs only harmonic compensation, it is detected and removed by the low-pass filter as described above.
When compensating for the reactive current iq as well as the harmonic current compensation, the DC component is not removed.

【0007】このようにして、基本波正相分電流if
(有効分ip,無効分iq)が除去された負荷検出電流
irは、アクティブフィルタが補償する高調波電流成分
ih(有効分ihp、無効分ihq)のみとなるから、
この高調波電流成分ihを座標変換器13’にて座標逆
変換し、更に相変換器12’により三相信号に変換すれ
ば、アクティブフィルタの補償電流指令値ic*が得ら
れる。
In this way, the fundamental wave positive phase current if
The load detection current ir from which the (effective component ip, the ineffective component iq) is removed becomes only the harmonic current component ih (effective component ihp, ineffective component ihq) compensated by the active filter.
If this harmonic current component ih is subjected to coordinate reverse conversion by the coordinate converter 13 ′ and further converted into a three-phase signal by the phase converter 12 ′, the compensation current command value ic * of the active filter can be obtained.

【0008】なお、一般に、アクティブフィルタ1にお
いては、回路損失があるため、補償電流発生源1Bの直
流側電圧が変化してしまい補償電流指令値ic*どおり
の補償電流icが得られなくなるので、前記直流側電圧
を一定に保つ制御ループを設け、直流側電圧設定値Vs
と直流側電圧検出値Vdとを比較し、その比較偏差信号
により電圧制御器14を制御し、その出力である直流側
電圧一定制御信号を突合せ回路16において前記高調波
有効分電流信号ihpに加算して補償電流指令値ic*
を回路損失分だけ増加させて補償するものである。
Generally, in the active filter 1, since there is a circuit loss, the DC side voltage of the compensation current generating source 1B changes, and the compensation current ic as the compensation current command value ic * cannot be obtained. A control loop for keeping the DC side voltage constant is provided to set the DC side voltage set value Vs.
And the DC side voltage detection value Vd are compared, the voltage controller 14 is controlled by the comparison deviation signal, and the DC side constant voltage control signal which is the output is added to the harmonic effective component current signal ihp in the matching circuit 16. Compensation current command value ic *
Is compensated by increasing the circuit loss.

【0009】他の従来例として、図5に示す制御回路が
ある。同図は、図4の補償電流指令演算回路に、系統2
の基本周波の2倍周波数の電圧位相基準信号2ωtによ
る座標変換器17と、2次調波成分(基本波逆相分)を
検出するローパスフィルタ18,18’及び突合せ回路
19,19’からなる基本波逆相分(2次調波成分)分
離除去回路、並びに座標を元に戻すための系統の基本周
波の2倍周波数の電圧位相基準信号2ωtによる座標逆
変換器17’を付加した場合である。
Another conventional example is a control circuit shown in FIG. The figure shows that the compensating current command calculation circuit of FIG.
Is composed of a coordinate converter 17 based on a voltage phase reference signal 2ωt having a frequency twice as high as the fundamental frequency, low-pass filters 18 and 18 'for detecting a second harmonic component (fundamental wave anti-phase component), and a matching circuit 19 and 19'. In the case where a fundamental wave anti-phase component (second harmonic component) separation / removal circuit and a coordinate inverse converter 17 ′ based on a voltage phase reference signal 2ωt having twice the fundamental frequency of the system for restoring the coordinates are added. is there.

【0010】なお、電流指令値から電流発生源1Bのゲ
ート信号を得る電流制御回路20も併せて示す。
A current control circuit 20 for obtaining the gate signal of the current source 1B from the current command value is also shown.

【0011】この構成の補償電流指令演算回路は、負荷
電流の基本波逆相分を補償の対象外とするものである。
このことを以下に詳細に説明する。
The compensating current command calculation circuit having this configuration excludes the fundamental wave antiphase component of the load current from the compensation target.
This will be described in detail below.

【0012】図4の補償電流指令値演算回路は、基本波
正相分の有効分電流及び無効分電流は直流成分として扱
うことができその分離が容易であるが、負荷不平衡など
に伴い発生する2次調波成分となる基本波逆相分電流に
ついては、その他の高調波電流との区別、分離が容易に
できないため、基本波逆相分電流をもアクティブフィル
タが補償する対象の補償電流として演算してしまうこと
になる。
In the compensating current command value calculating circuit of FIG. 4, the active current and reactive current of the positive phase of the fundamental wave can be treated as a DC component and can be easily separated. Since it is not possible to easily distinguish and separate the fundamental anti-phase component current, which is the second harmonic component, from other harmonic currents, the compensation current of the target that the active filter also compensates for the fundamental anti-phase component current. Will be calculated as

【0013】したがって、アクティブフィルタは、負荷
不平衡時などに発生する基本波逆相分電流をも補償する
ことになるから、本来補償しようとする高調波電流成分
が増加したとき、アクティブフィルタ装置の出力容量の
制限からその高調波電流成分を補償することができない
という問題がある。
Therefore, since the active filter also compensates the fundamental-phase reverse-phase component current that occurs when the load is unbalanced, when the harmonic current component that is originally intended to be compensated increases, the active filter device There is a problem that the harmonic current component cannot be compensated due to the limitation of the output capacitance.

【0014】すなわち、実系統における基本波逆相分電
流(2次調波成分電流)は他の高調波電流に比較しその
割合が大きく、また、該基本波逆相分電流は低周波の交
流成分であるから、これら基本波逆相分電流の補償分を
含めその他の高調波電流成分の全てを補償しようとする
と、その装置容量が増大し設備容量(設備費用)に対し
弊害を生じさせる。
That is, the ratio of the fundamental wave anti-phase component current (second harmonic component current) in the actual system is larger than that of the other harmonic currents, and the fundamental wave anti-phase component current is a low frequency alternating current. Since it is a component, if it is attempted to compensate all the other harmonic current components including the compensation component of the fundamental wave anti-phase component current, the device capacity increases, which causes an adverse effect on the equipment capacity (equipment cost).

【0015】この基本波逆相分(2次調波分)電流の分
離方法としては、一般的には、2次調波のバンドパスフ
ィルタの挿入が考えられるが、過渡安定度、周波数変動
に対する位相差の影響などを考慮すると必ずしも良い方
法とはいえない。
As a method of separating the current of the opposite phase (second harmonic) of the fundamental wave, generally, a bandpass filter of the second harmonic can be inserted. However, transient stability and frequency fluctuation It is not always a good method considering the influence of the phase difference.

【0016】また、アクティブフィルタ装置の容量の関
係で基本波逆相分(2次調波成分)電流をリミット制限
しようとしても、その基本波逆相分電流が交流成分であ
るため、その取り扱いが非常に困難となり実現すること
ができない。
Further, even if an attempt is made to limit the current of the fundamental wave anti-phase component (second harmonic component) due to the capacity of the active filter device, since the fundamental wave anti-phase component current is an AC component, it is handled. It will be very difficult to achieve.

【0017】このような基本波逆相分を補償の対象外と
する部分が17〜19の構成になる。この回路動作を以
下に説明する。
The portions 17 to 19 are configured to exclude such a reverse phase component of the fundamental wave from being compensated. This circuit operation will be described below.

【0018】系統(負荷)電流を検出した三相負荷検出
電流irは、相数変換回路12により三相信号から二相
信号に変換され、更に、座標変換器13において系統の
基本周波の直交座標上における基本波正相分電流i1
正相有効分電流i1pを含む有効分電流と正相無効分電流
1qを含む無効分電流とに分離される。この直交座標上
における正相有効分電流i1pと正相無効分電流i1qは、
それぞれ一定の直流成分として取り扱うことができ、ア
クティブフィルタの補償の対象外であるから、次段のロ
ーパスフィルタ11、11’にて検出し分離して、それ
ぞれ突合わせ回路15,15’にて二相負荷検出電流i
rから減算することにより該二相負荷検出電流irから
除去される。
The three-phase load detection current ir for detecting the system (load) current is converted from a three-phase signal to a two-phase signal by the phase number conversion circuit 12, and further, in the coordinate converter 13, the orthogonal coordinates of the fundamental frequency of the system. The fundamental wave positive phase current i 1 is separated into an active current containing a positive phase active current i 1p and a reactive current containing a positive phase reactive current i 1q . The positive phase active current i 1p and the positive phase reactive current i 1q on this rectangular coordinate are
Since each of them can be treated as a constant DC component and is not covered by the compensation of the active filter, they are detected and separated by the low-pass filters 11 and 11 'of the next stage, and are detected by the matching circuits 15 and 15'. Phase load detection current i
It is removed from the two-phase load detection current ir by subtracting from r.

【0019】突合せ回路15,15’にて基本波正相分
電流i1の正相有効分電流i1P及び正相無効分電流i1q
が除去された二相負荷検出電流irは、系統の基本周波
の2倍周波数の電圧位相基準信号2ωtによる座標変換
器17により回転座標変換され、系統の2倍周波の直交
座標上における基本波逆相分電流i2の逆相有効分電流
2pを含む有効分電流と逆相無効分電流i2qを含む無効
分電流とに分離され、分離された逆相有効分電流i2p
逆相無効分電流i2pは、それぞれ一定の直流成分として
取り扱うことができるようになる。
[0019] The positive phase active current of the fundamental wave positive phase component of the current i 1 in the butt circuit 15,15 'i 1P and positive-phase reactive current i 1q
The two-phase load detection current ir from which is removed is subjected to rotational coordinate conversion by the coordinate converter 17 using the voltage phase reference signal 2ωt having the double frequency of the system fundamental frequency, and the fundamental wave inverse on the orthogonal coordinate of the system double frequency is inverted. The active component current i 2p including the anti-phase active component current i 2p of the phase component current i 2 and the reactive component current including the anti-phase reactive component current i 2q are separated, and the separated anti-phase active component current i 2p and anti-phase reactive component are separated. The divided current i 2p can be treated as a constant DC component.

【0020】そこで、この従来例においては、基本波逆
相分電流i2をもアクティブフィルタの補償の対象外と
するものであるから、基本波逆相分電流i2の逆相有効
分電流i2pと逆相無効分電流i2pを次段のローパスフィ
ルタ18、18’にて検出分離して、それぞれ突合せ回
路19、19’にて前記二相負荷検出電流irから減算
することにより、前段の基本波正相分電流i1と同様
に、基本波逆相分(2次調波成分)電流i2も前記二相
負荷検出電流irから除去される。
Therefore, in this conventional example, since the fundamental wave anti-phase component current i 2 is also excluded from the compensation of the active filter, the anti-phase effective component current i 2 of the fundamental wave anti-phase component current i 2 is 2p and the negative-phase reactive current i 2p are detected and separated by the low-pass filters 18 and 18 ′ of the next stage, and subtracted from the two-phase load detection current ir by the matching circuits 19 and 19 ′, respectively. Similarly to the fundamental wave positive phase current i 1 , the fundamental wave antiphase (second harmonic component) current i 2 is also removed from the two-phase load detection current ir.

【0021】基本波正相分電流i1と基本波逆相分電流
2が除去された前記二相負荷検出電流irは、アクテ
ィブフィルタの補償対象である高調波成分電流のみとな
り、座標を元に戻すための系統の基本周波の2倍周波の
電圧位相基準信号2ωtによる座標逆変換器17’と、
基本周波の電圧位相基準信号ωtによる座標逆変換器1
3’及び相変換器12’を介することによりアクティブ
フィルタの三相補償電流指令値ic*が得られる。
The two-phase load detection current ir from which the fundamental wave positive-phase component current i 1 and the fundamental wave anti-phase component current i 2 are removed is only the harmonic component current that is the compensation target of the active filter, The coordinate inverse converter 17 'by the voltage phase reference signal 2ωt having the double frequency of the fundamental frequency of the system for returning to
Inverse coordinate converter 1 based on the voltage phase reference signal ωt of the fundamental frequency
The three-phase compensation current command value ic * of the active filter is obtained through 3'and the phase converter 12 '.

【0022】以上までのアクティブフィルタを零相回路
を有する多相回路に適用した場合、零相電流の制御を行
えないため、そこに流れる高調波電流の抑制が期待でき
ない。
When the active filters described above are applied to a multi-phase circuit having a zero-phase circuit, the zero-phase current cannot be controlled, so that suppression of the harmonic current flowing therethrough cannot be expected.

【0023】図6には3相3線式アクティブフィルタを
示し、このアクティブフィルタをそのまま3相4線式系
統のアクティブフィルタとして適用すると、各相間に流
れる電流成分は制御可能であるが、中性線に流れる零相
電流成分は制御できない。
FIG. 6 shows a three-phase three-wire active filter, and if this active filter is applied as it is as an active filter of a three-phase four-wire system, the current component flowing between each phase can be controlled, but it is neutral. The zero-phase current component flowing in the line cannot be controlled.

【0024】このため、電源側の高調波の抑制や平衡化
ができなくなる。特に、負荷として単相の整流器などが
各相と中性線間に不均一に接続されている場合など、零
相電流の3次高調波成分が増大し、電源電圧を大きく歪
ませてしまう。また、各負荷容量が非常に不均一な場
合、零相電流の基本波成分も増大し、電源側の平衡化が
不可能となる。
Therefore, it becomes impossible to suppress or balance harmonics on the power supply side. In particular, when a single-phase rectifier or the like is unevenly connected as a load between each phase and the neutral line, the third harmonic component of the zero-phase current increases, and the power supply voltage is significantly distorted. Further, when the load capacities are very uneven, the fundamental wave component of the zero-phase current also increases, making it impossible to balance the power supply side.

【0025】この零相電流の補償も行うアクティブフィ
ルタとして、図7に示す制御回路がある。同図が図5と
異なる部分は、破線ブロックで示す零相電流補償回路2
1を追加している。
As an active filter which also compensates for this zero-phase current, there is a control circuit shown in FIG. 5 is different from FIG. 5 in that the zero-phase current compensation circuit 2 shown by a broken line block
1 is added.

【0026】この零相電流補償回路21は、各相R,
S,Tの各負荷電流変成信号を加算回路22で互いに加
算することにより零相電流成分を求め、この零相電流成
分を係数演算回路23で係数1/3を乗算することによ
り各相分に分配した零相電流補償量を求め、これら零相
電流補償量を加算器24R,24S,24Tにおいて相変
換器12’からの各相補償電流指令値に加算し、この加
算結果を電流制御回路20の出力電流指令値とする。
This zero-phase current compensating circuit 21 is provided for each phase R,
A zero-phase current component is obtained by adding the S and T load current shift signals to each other in the adder circuit 22, and this zero-phase current component is multiplied by a coefficient ⅓ in the coefficient calculation circuit 23 to obtain each phase component. The distributed zero-phase current compensation amount is obtained, these zero-phase current compensation amounts are added to the respective phase compensation current command values from the phase converter 12 ′ in the adders 24 R , 24 S , and 24 T , and the addition result is added to the current. The output current command value of the control circuit 20 is used.

【0027】この従来例では、3相4線回路に特有の零
相電流をアクティブフィルタから補償零相電流として発
生させることにより、電源側の零相電流を零にし、そこ
に含まれる高調波成分の影響や不平衡成分の影響を除去
できる。
In this conventional example, a zero-phase current peculiar to a three-phase four-wire circuit is generated as a compensated zero-phase current from the active filter, so that the zero-phase current on the power supply side is reduced to zero and the harmonic components contained therein. It is possible to remove the effect of the and the effect of the unbalanced component.

【0028】[0028]

【発明が解決しようとする課題】3相4線式系統では、
電流が3次高調波を含む場合は、零相電流が各相の3次
高調波の3倍になるため、アクティブフィルタの装置容
量のうち零相電流補償が占める比率が大きくなる。その
ため、零相補償容量を正確に算出し、循環電流の補償量
と合わせて適切なリミッタ(制限)を施すことが必要と
なる。
In the three-phase four-wire system,
When the current includes the third-order harmonic, the zero-phase current becomes three times as large as the third-order harmonic of each phase, so that the proportion of the zero-phase current compensation in the device capacity of the active filter becomes large. Therefore, it is necessary to accurately calculate the zero-phase compensation capacity and apply an appropriate limiter (limit) together with the compensation amount of the circulating current.

【0029】しかしながら、従来の3相4線式アクティ
ブフィルタの制御回路では、零相電流と高調波電流の瞬
時値のみを演算するため、零相補償容量の演算がなされ
ておらず、補償指令値が装置容量を超過してしまう場合
がある。
However, in the conventional control circuit of the three-phase four-wire active filter, since only the instantaneous values of the zero-phase current and the harmonic current are calculated, the zero-phase compensation capacity is not calculated, and the compensation command value is not calculated. May exceed the device capacity.

【0030】本発明の目的は、零相回路を有する多相回
路における零相電流と高調波電流に対する補償を適切に
するアクティブフィルタを提供することにある。
An object of the present invention is to provide an active filter that appropriately compensates for zero-phase current and harmonic current in a multi-phase circuit having a zero-phase circuit.

【0031】本発明の他の目的は、特定成分を優先した
補償や成分毎に補償容量を変えた制御ができるアクティ
ブフィルタを提供することにある。
Another object of the present invention is to provide an active filter which can perform compensation by giving priority to a specific component or control by changing the compensation capacity for each component.

【0032】[0032]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、零相回路を有する多相回路の系統から負
荷に供給する3相負荷電流の検出電流を相変換して2相
負荷検出電流とし、該2相負荷検出電流から系統の高調
波電流又は正相無効電流及び逆相電流も含めた2相の補
償対象電流を検出し、この2相の補償対象電流を相変換
して3相補償電流指令値とし、前記3相負荷電流の検出
電流から検出した零相成分を前記3相補償電流指令値に
分配加算して負荷電流から補償対象電流を除去するアク
ティブフィルタにおいて、前記零相電流の実効値及び補
償対象電流の高調波成分の実効値を求め、これら実効値
の合計をアクティブフィルタの装置容量以内に制限する
リミッタ手段を設けたことを特徴とする。
In order to solve the above-mentioned problems, the present invention phase-converts a detection current of a three-phase load current supplied from a system of a multi-phase circuit having a zero-phase circuit to a two-phase circuit. The load detection current is detected, and the two-phase load current is used to detect the two-phase compensation current including the harmonic current of the system or the positive-phase reactive current and the negative-phase current, and the two-phase compensation current is phase-converted. A three-phase compensation current command value, and a zero-phase component detected from the detected current of the three-phase load current is distributed and added to the three-phase compensation current command value to remove the current to be compensated from the load current. The present invention is characterized in that limiter means for determining the effective value of the zero-phase current and the effective value of the harmonic component of the current to be compensated and limiting the total of these effective values within the device capacity of the active filter is provided.

【0033】また、前記リミッタ手段は、前記2相負荷
検出電流から高調波電流と正相電流及び逆相電流をフー
リエ変換で求め、正相電流及び逆相電流を前記2相の補
償対象電流の検出信号とし、高調波電流をその実効値演
算のための信号とすることを特徴とする。
Further, the limiter means obtains a harmonic current, a positive-phase current and a negative-phase current from the two-phase load detection current by Fourier transform, and calculates a positive-phase current and a negative-phase current of the two-phase compensation currents. The detection signal is used, and the harmonic current is used as a signal for calculating its effective value.

【0034】また、前記リミッタ手段は、前記正相無効
電流と逆相電流と高調波電流及び零相電流の各容量の何
れか1つを優先させて装置容量以内に制限すること、又
は各電流毎に補償容量を指定する選択機能を設けたこと
を特徴とする。
The limiter means gives priority to any one of the positive-phase reactive current, the negative-phase current, the harmonic current, and the zero-phase current, and limits them within the device capacity, or the respective currents. It is characterized in that a selection function for designating a compensation capacity for each is provided.

【0035】[0035]

【実施例】図1は、本発明の実施形態を示す補償電流指
令値演算回路図である。同図の構成において、図7と同
等の演算要素には同じ符号を付して示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram of a compensating current command value calculating circuit showing an embodiment of the present invention. In the configuration of the figure, the same operation elements as those of FIG. 7 are denoted by the same reference numerals.

【0036】実効値演算回路31は、零相電流補償回路
21が検出する零相電流の実効値を演算で求める。
The effective value calculation circuit 31 calculates the effective value of the zero-phase current detected by the zero-phase current compensation circuit 21.

【0037】高調波容量演算回路32は、突き合わせ回
路19、19’の出力(3相循環電流)から高調波成分
の実効値を演算で求める。
The harmonic capacity calculating circuit 32 calculates the effective value of the harmonic component from the outputs (three-phase circulating current) of the matching circuits 19 and 19 '.

【0038】リミッタ回路33は、実効値演算回路31
と高調波容量演算回路32から得る実効値演算結果を取
り込み、これらの補償容量の合計がアクティブフィルタ
の補償容量以内になるよう制限するリミッタ制御信号を
発生する。
The limiter circuit 33 is an effective value calculation circuit 31.
And the effective value calculation result obtained from the harmonic capacity calculation circuit 32 is fetched, and a limiter control signal for limiting the total of these compensation capacities to be within the compensation capacities of the active filters is generated.

【0039】リミッタ回路33が制限対象とするのは、
零相電流と3相循環電流のほかに、ローパスフィルタ1
1’からの正相無効電力と、ローパスフィルタ18、1
8’から得る逆相電流になり、これらを制限するリミッ
タ制御信号も選択的に発生する選択機能を設けている。
The limiter circuit 33 is to be restricted
In addition to zero-phase current and three-phase circulating current, low-pass filter 1
Positive-phase reactive power from 1'and low-pass filter 18, 1
The selection function is provided to selectively generate the limiter control signal for limiting the reverse-phase current obtained from 8 '.

【0040】リミッタ回路33からのリミッタ制御信号
は、各制限対象となる信号系統に設けた可変利得アンプ
34〜38の利得(ゲイン)制御信号として与える。
The limiter control signal from the limiter circuit 33 is given as a gain control signal for the variable gain amplifiers 34 to 38 provided in the signal systems to be restricted.

【0041】可変利得アンプ34は、零相電流補償回路
21の零相電流の利得をリミッタ制御信号に応じて利得
制御して補償電流指令値側へ出力する。可変利得アンプ
35は、突き合わせ回路19、19’からの高調波電流
の利得を制御する。可変利得アンプ36は、ローパスフ
ィルタ11’からの無効電力検出信号の利得制御をし、
この出力を座標逆変換器17’の無効電力補償信号に加
算することにより無効電力補償を制限する。可変利得ア
ンプ37、38は、ローパスフィルタ18、18’から
の出力の利得制御をし、この出力を可変利得アンプ35
の出力に加算することにより逆相電流補償を制限する。
The variable gain amplifier 34 gain-controls the gain of the zero-phase current of the zero-phase current compensating circuit 21 according to the limiter control signal and outputs it to the compensation current command value side. The variable gain amplifier 35 controls the gain of the harmonic current from the matching circuit 19, 19 '. The variable gain amplifier 36 controls the gain of the reactive power detection signal from the low pass filter 11 ′,
The reactive power compensation is limited by adding this output to the reactive power compensation signal of the coordinate inverse converter 17 '. The variable gain amplifiers 37 and 38 perform gain control of the outputs from the low-pass filters 18 and 18 ′, and output the outputs from the variable gain amplifier 35.
The negative-phase current compensation is limited by adding to the output of.

【0042】ここで、リミッタ回路33のリミッタ方式
としては、次の3通りの何れかで実現でき、特定成分の
優先補償や成分毎の補償容量指定を可能とする。
Here, the limiter system of the limiter circuit 33 can be realized by any of the following three methods, and priority compensation of a specific component and compensation capacity designation for each component are possible.

【0043】(1)正相無効補償容量と逆相補償容量と
高調波補償容量及び零相補償容量を予め設定した設定値
と比較し、補償指令値の上限を設定値に制限する方式。
(1) A method of limiting the upper limit of the compensation command value to the set value by comparing the positive phase reactive compensation capacity, the negative phase compensation capacity, the harmonic compensation capacity, and the zero phase compensation capacity with preset set values.

【0044】(2)正相無効補償容量と逆相補償容量と
高調波補償容量及び零相補償容量から全体の補償容量を
演算し、装置容量以上であれば、
(2) The total compensation capacity is calculated from the positive-phase reactive compensation capacity, the negative-phase compensation capacity, the harmonic compensation capacity, and the zero-phase compensation capacity.

【0045】[0045]

【数1】 (Equation 1)

【0046】なるゲインGを各補償指令値に乗算する方
式。
A method of multiplying each compensation command value by the gain G.

【0047】(3)正相無効補償容量と逆相補償容量と
高調波補償容量及び零相補償容量のうち、何れか1つを
優先させて装置容量まで補償する。他の成分は、残りの
装置容量内で補償するように、
(3) Prioritizing any one of the positive-phase reactive compensation capacity, the negative-phase compensation capacity, the harmonic compensation capacity, and the zero-phase compensation capacity to compensate the apparatus capacity. Other components are compensated for within the remaining device capacity,

【0048】[0048]

【数2】 (Equation 2)

【0049】なるゲインGを乗算する方式。A method of multiplying the gain G by

【0050】図2は、本発明の他の実施形態を示す補償
電流指令値演算回路図である。同図が図1と異なる部分
は、フーリエ変換により3相循環電流の容量等を求める
点にある。
FIG. 2 is a compensation current command value calculation circuit diagram showing another embodiment of the present invention. The difference between FIG. 1 and FIG. 1 is that the capacity of the three-phase circulating current is obtained by Fourier transform.

【0051】フーリエ変換部41は、相数変換回路12
の出力からフーリエ変換によって3相循環電流を周波数
解析し、正相有効電流と正相無効電流と逆相電流及び高
調波電流を求める。
The Fourier transform unit 41 includes a phase number conversion circuit 12
The frequency of the three-phase circulating current is analyzed by the Fourier transform from the output of 1 to obtain the positive-phase active current, the positive-phase reactive current, the negative-phase current, and the harmonic current.

【0052】このうち、高調波電流は、高調波容量演算
回路32に与えられて高調波電流補償制限に利用され
る。
Of these, the harmonic current is given to the harmonic capacity calculation circuit 32 and used for limiting the harmonic current compensation.

【0053】また、正相有効電流と正相無効電流と逆相
電流については、図1のローパスフィルタ11、1
1’、18、18’で抽出するのに代えてフーリエ変換
部41の演算結果を利用することで、各ローパスフィル
タ11、11’、18、18’を省略し、各突き合わせ
回路15、15’、19、19’で基本波正相分除去と
逆相分除去を行う。
Regarding the positive-phase active current, the positive-phase reactive current, and the negative-phase current, the low-pass filters 11 and 1 shown in FIG.
By using the calculation result of the Fourier transform unit 41 instead of extracting by 1 ′, 18, 18 ′, each low-pass filter 11, 11 ′, 18, 18 ′ is omitted, and each matching circuit 15, 15 ′. , 19 and 19 ', the fundamental wave positive phase component removal and the reverse phase component removal are performed.

【0054】[0054]

【発明の効果】以上のとおり、本発明によれば、補償対
象電流に零相電流も含めたものとする多相回路のアクテ
ィブフィルタにおいて、零相電流及び高調波電流の実効
値を求めて装置容量以内に制限するリミッタ手段を設け
たため、3相循環電流及び零相電流の補償をしながら、
装置運用上不可欠なリミッタを適切にかけることができ
る。
As described above, according to the present invention, in the active filter of the polyphase circuit in which the current to be compensated includes the zero-phase current, the effective values of the zero-phase current and the harmonic current are calculated to obtain the device. Since the limiter means for limiting the capacity to within the capacity is provided, while compensating for the three-phase circulating current and the zero-phase current,
A limiter, which is indispensable for device operation, can be applied appropriately.

【0055】また、高調波容量をフーリエ変換で演算す
ることにより、それに伴ってローパスフィルタ回路を削
減することができる。
By calculating the harmonic capacity by Fourier transform, the number of low-pass filter circuits can be reduced accordingly.

【0056】また、リミッタ回路に選択機能を設けるた
ことにより、特性成分を優先した補償や成分毎に補償容
量を指定した装置運転が可能となる。
Further, by providing the limiter circuit with a selection function, it becomes possible to perform compensation in which the characteristic component is prioritized and to operate the device in which the compensation capacity is designated for each component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すアクティブフィルタの
補償電流指令値演算回路。
FIG. 1 is a compensation current command value calculation circuit for an active filter according to an embodiment of the present invention.

【図2】本発明の他の実施形態を示す補償電流指令値演
算回路。
FIG. 2 is a compensation current command value calculation circuit according to another embodiment of the present invention.

【図3】アクティブフィルタの原理図。FIG. 3 is a principle diagram of an active filter.

【図4】従来のアクティブフィルタの補償電流指令値演
算回路。
FIG. 4 is a compensation current command value calculation circuit for a conventional active filter.

【図5】従来の3相3線式アクティブフィルタの制御回
路。
FIG. 5 is a control circuit of a conventional 3-phase 3-wire active filter.

【図6】3相3線式アクティブフィルタ。FIG. 6 is a three-phase three-wire active filter.

【図7】従来の3相4線式アクティブフィルタの制御回
路。
FIG. 7 is a control circuit of a conventional 3-phase 4-wire active filter.

【符号の説明】[Explanation of symbols]

1…アクティブフィルタ 2…配電系統 3…系統負荷 11,11’,18、18’…ローパスフィルタ 12,12’…相変換器 13,13’,17,17’…座標変換器 20…電流制御回路 21…零相電流補償回路 31…実効値演算回路 32…高調波演算回路 33…リミッタ回路 34、35、36、37、38…可変利得アンプ 41…フーリエ変換部 DESCRIPTION OF SYMBOLS 1 ... Active filter 2 ... Distribution system 3 ... System load 11, 11 ', 18, 18' ... Low pass filter 12, 12 '... Phase converter 13, 13', 17, 17 '... Coordinate converter 20 ... Current control circuit 21 ... Zero-phase current compensation circuit 31 ... Effective value calculation circuit 32 ... Harmonic calculation circuit 33 ... Limiter circuit 34, 35, 36, 37, 38 ... Variable gain amplifier 41 ... Fourier transform unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03H 11/04 8731−5J H03H 11/04 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H03H 11/04 8731-5J H03H 11/04 L

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 零相回路を有する多相回路の系統から負
荷に供給する3相負荷電流の検出電流を相変換して2相
負荷検出電流とし、該2相負荷検出電流から系統の高調
波電流又は正相無効電流及び逆相電流も含めた2相の補
償対象電流を検出し、この2相の補償対象電流を相変換
して3相補償電流指令値とし、前記3相負荷電流の検出
電流から検出した零相成分を前記3相補償電流指令値に
分配加算して負荷電流から補償対象電流を除去するアク
ティブフィルタにおいて、 前記零相電流の実効値及び補償対象電流の高調波成分の
実効値を求め、これら実効値の合計をアクティブフィル
タの装置容量以内に制限するリミッタ手段を設けたこと
を特徴とするアクティブフィルタ。
1. A two-phase load detection current is phase-converted from a detected current of a three-phase load current supplied from a multi-phase circuit system having a zero-phase circuit to a load, and a harmonic of the system is generated from the two-phase load detection current. The current or the current to be compensated for the two phases including the positive-phase reactive current and the negative-phase current is detected, and the current to be compensated for the two phases is phase-converted into a three-phase compensation current command value to detect the three-phase load current. In an active filter that removes a current to be compensated from a load current by distributing and adding a zero-phase component detected from a current to the three-phase compensation current command value, an effective value of the zero-phase current and an effective harmonic component of the current to be compensated An active filter comprising a limiter means for obtaining a value and limiting the total of these effective values within the device capacity of the active filter.
【請求項2】 前記リミッタ手段は、前記2相負荷検出
電流から高調波電流と正相電流及び逆相電流をフーリエ
変換で求め、正相電流及び逆相電流を前記2相の補償対
象電流の検出信号とし、高調波電流をその実効値演算の
ための信号とすることを特徴とする請求項1記載のアク
ティブフィルタ。
2. The limiter means obtains a harmonic current, a positive-phase current and a negative-phase current from the two-phase load detection current by Fourier transform, and obtains a positive-phase current and a negative-phase current of the two-phase compensation currents. The active filter according to claim 1, wherein the detection signal is used as a signal for calculating the effective value of the harmonic current.
【請求項3】 前記リミッタ手段は、前記正相無効電流
と逆相電流と高調波電流及び零相電流の各容量の何れか
1つを優先させて装置容量以内に制限すること、又は各
電流毎に補償容量を指定する選択機能を設けたことを特
徴とする請求項1又は2記載のアクティブフィルタ。
3. The limiter means gives priority to any one of the capacities of the positive-phase reactive current, the negative-phase current, the harmonic current, and the zero-phase current, and limits the capacity within the device capacity, or the respective currents. 3. The active filter according to claim 1, further comprising a selection function for designating a compensation capacitance for each.
JP7304885A 1995-11-24 1995-11-24 Active filter Pending JPH09149553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7304885A JPH09149553A (en) 1995-11-24 1995-11-24 Active filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7304885A JPH09149553A (en) 1995-11-24 1995-11-24 Active filter

Publications (1)

Publication Number Publication Date
JPH09149553A true JPH09149553A (en) 1997-06-06

Family

ID=17938457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7304885A Pending JPH09149553A (en) 1995-11-24 1995-11-24 Active filter

Country Status (1)

Country Link
JP (1) JPH09149553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706181B1 (en) * 2005-09-06 2007-04-12 인하대학교 산학협력단 Single-Phase Active Power Filter Using Rotating Reference Frame
JP2010011613A (en) * 2008-06-26 2010-01-14 Fuji Electric Systems Co Ltd Pwm converter device
CN104181390A (en) * 2014-08-18 2014-12-03 信元瑞电气有限公司 Harmonic detection method based on zero-sequence current separation of three-phase four-wire system
CN105223418A (en) * 2015-09-22 2016-01-06 清华大学 The measuring method of subsynchronous and supersynchronous harmonic phasor and measurement mechanism
CN107579522A (en) * 2017-09-11 2018-01-12 云南电网有限责任公司西双版纳供电局 Coordinated control system based on Ip Iq theories harmonic wave controls and reactive-load compensation
JP2018110467A (en) * 2016-12-28 2018-07-12 三菱重工サーマルシステムズ株式会社 Active filter, control method and program
CN112398130A (en) * 2020-11-07 2021-02-23 闽南理工学院 Active power filter harmonic reference current extraction method based on triangular quadrature

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706181B1 (en) * 2005-09-06 2007-04-12 인하대학교 산학협력단 Single-Phase Active Power Filter Using Rotating Reference Frame
JP2010011613A (en) * 2008-06-26 2010-01-14 Fuji Electric Systems Co Ltd Pwm converter device
CN104181390A (en) * 2014-08-18 2014-12-03 信元瑞电气有限公司 Harmonic detection method based on zero-sequence current separation of three-phase four-wire system
CN105223418A (en) * 2015-09-22 2016-01-06 清华大学 The measuring method of subsynchronous and supersynchronous harmonic phasor and measurement mechanism
JP2018110467A (en) * 2016-12-28 2018-07-12 三菱重工サーマルシステムズ株式会社 Active filter, control method and program
CN107579522A (en) * 2017-09-11 2018-01-12 云南电网有限责任公司西双版纳供电局 Coordinated control system based on Ip Iq theories harmonic wave controls and reactive-load compensation
CN112398130A (en) * 2020-11-07 2021-02-23 闽南理工学院 Active power filter harmonic reference current extraction method based on triangular quadrature

Similar Documents

Publication Publication Date Title
JP2760646B2 (en) Current command value calculation device for power converter
US5567994A (en) Active harmonic filter with time domain analysis
JP3338159B2 (en) Amplitude / phase detector
EP1705789A2 (en) Power inverter system and method of correcting supply voltage of the same
EP0595319B1 (en) PWM inverter control system and method
US5909366A (en) Controller for power transducers
US20030062776A1 (en) Control system for active power filters
US6604056B2 (en) Method and system of harmonic regulation
JPH011429A (en) Reactive power regulator
JP2001286150A (en) Power-converter unit
KR100459000B1 (en) Three-phase four-wire active power filter control divice
JPH09149553A (en) Active filter
US3992651A (en) Active symmetrical component network for protective relays
JPH0779574A (en) Control circuit for three-level inverter
JP3403056B2 (en) Converter control device
JP3444011B2 (en) Active filter for electric power
JP3378410B2 (en) Active filter
JP3261852B2 (en) Active filter compensation current command value calculation circuit
JP3265397B2 (en) Power converter control method and power converter using the method
JPH10201099A (en) Active filter
JP2839702B2 (en) Power / harmonic current / negative phase current detection circuit
KR101916947B1 (en) Apparatus for measuring a three-phase root mean square output in a power system
JPH10243561A (en) Flicker suppressor
JP2003339119A (en) Power system compensation device
JPH05284652A (en) Control circuit for universal filter