JPH0914788A - Chemical heat accumulator - Google Patents

Chemical heat accumulator

Info

Publication number
JPH0914788A
JPH0914788A JP7183243A JP18324395A JPH0914788A JP H0914788 A JPH0914788 A JP H0914788A JP 7183243 A JP7183243 A JP 7183243A JP 18324395 A JP18324395 A JP 18324395A JP H0914788 A JPH0914788 A JP H0914788A
Authority
JP
Japan
Prior art keywords
reactor
evaporative condenser
heat exchanger
storage device
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7183243A
Other languages
Japanese (ja)
Inventor
Keiji Suzumura
恵司 鈴村
Fumihiko Asakawa
史彦 浅川
Takamitsu Matsuno
孝充 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP7183243A priority Critical patent/JPH0914788A/en
Publication of JPH0914788A publication Critical patent/JPH0914788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To maintain a liquid level in an evaporating condenser at the most desirable level at the time of reaction regenerating by controlling the liquid level in the condenser having a heat exchanger for evaporating and condensing liquid therein. CONSTITUTION: A bellows unit 12 is disposed in liquid in an evaporating condenser 2, the top plate 14 of the unit 12 is fixed to the top of cylindrical bellows 13, and an expansion member 16 is disposed between the plate 14 and a bottom plate 15. At the time of reaction, a reactive control valve 4 is opened, a second switching valve 19 is closed, the opening of a first switching valve 18 is regulated to regulate the height of the plate 14. At the time of regenerating, the valve 4 is closed, the valve 18 is closed, the valve 19 is opened, the lower pressure in a reactor 3 is introduced into the unit 12, the plate 14 is moved down, and the core of a heat exchanger 7 is exposed with the air. Thus, the liquid level in the condenser 2 can be maintained at the most desirable level at the time of reaction regenerating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、改良された蒸発凝縮器
を有する化学蓄熱装置に関する。
FIELD OF THE INVENTION The present invention relates to a chemical heat storage device having an improved evaporative condenser.

【0002】[0002]

【従来の技術】化学蓄熱装置は、硫化ナトリウム(Na
2S)が5モルの水和水を有し、かつこの水和硫化ナトリ
ウム(Na2S・5H2O )が硫化ナトリウム及び水と次式に
示す様な可逆熱平衡関係にあることを利用する。
2. Description of the Related Art A chemical heat storage device uses sodium sulfide (Na
2 S) has 5 mol of water of hydration, and this hydrated sodium sulfide (Na 2 S · 5H 2 O) has a reversible thermal equilibrium relationship with sodium sulfide and water as shown in the following formula. .

【式1】 加熱により平衡は左方に移行し、Na2S・5H2O はNa2Sと
H2O に分解し、付加熱量は形を変え、Na2SとH2O の形で
保存される。
(Equation 1) Upon heating, the equilibrium shifts to the left and Na 2 S ・ 5H 2 O becomes Na 2 S.
It decomposes into H 2 O, the added heat changes shape, and it is stored in the form of Na 2 S and H 2 O.

【0003】逆にNa2SとH2O との反応で、平衡は右方へ
移行し、Na2S・5H2O を生成すると同時に、Na2Sの1モ
ル当り約300KJの熱量が発生する。化学蓄熱装置は、
かかる水和硫化ナトリウムの性質を利用し、外部エネル
ギーをNa2S及びH2O の形で貯えて置き、このエネルギー
をNa2SとH2O の反応により放出し、冷暖房を行う。
On the contrary, in the reaction between Na 2 S and H 2 O, the equilibrium shifts to the right and Na 2 S · 5H 2 O is produced, and at the same time, a calorific value of about 300 KJ is generated per mol of Na 2 S. To do. The chemical heat storage device is
Utilizing the property of such hydrated sodium sulfide, external energy is stored and stored in the form of Na 2 S and H 2 O, and this energy is released by the reaction of Na 2 S and H 2 O to perform heating and cooling.

【0004】図8を参照して冷房サイクルについて説明
する。化学蓄熱装置1は蒸発凝縮器2と、反応器3と、
両者を結ぶ通路に設けた反応制御バルブ4とを基本構成
とし、さらに、室内側熱交換器5、ウォータポンプ(P
1 )、第1の四方弁6、凝縮器2の内の熱交換器7、お
よび第2の四方弁8を備える回路、並びに室外側熱交換
器9、第1の四方弁6、ヒータ10、反応器3の内の熱
交換器11、第2の四方弁8、ポンプ(P2 )を備える
回路とを有す。反応制御バルブ4を開き、飽和蒸気圧下
の蒸発凝縮器2から水蒸気を大気圧以下の反応器3に導
く。この際ウォータポンプ(P1 )によって蒸発凝縮器
2内の熱交換器7を介して循環する水は、蒸発潜熱を奪
われることになり、冷却した水となって室内側熱交換器
5に入り、冷風を室内に供給する。この際、反応器3に
入った水蒸気は、Na2Sと反応し、Na2S・5H2O となり、
300KJの熱量が発生する。冷房時にはこの300KJ相
当の熱を放出する。
The cooling cycle will be described with reference to FIG. The chemical heat storage device 1 includes an evaporative condenser 2, a reactor 3, and
A reaction control valve 4 provided in a passage connecting the two is used as a basic configuration, and an indoor heat exchanger 5 and a water pump (P
1 ), a circuit including the first four-way valve 6, the heat exchanger 7 in the condenser 2, and the second four-way valve 8, and the outdoor heat exchanger 9, the first four-way valve 6, the heater 10, The reactor 3 includes a heat exchanger 11, a second four-way valve 8, and a circuit including a pump (P 2 ). The reaction control valve 4 is opened, and water vapor is led from the evaporative condenser 2 under saturated vapor pressure to the reactor 3 at atmospheric pressure or below. At this time, the water circulating through the heat exchanger 7 in the evaporative condenser 2 by the water pump (P 1 ) is deprived of the latent heat of vaporization, and becomes cooled water which enters the indoor heat exchanger 5. , Supply cold air indoors. In this case, the steam entering the reactor 3 is reacted with Na 2 S, Na 2 S · 5H 2 O , and the
Heat of 300KJ is generated. This air emits heat equivalent to 300KJ during cooling.

【0005】反応器3内での化学反応が終了すると、冷
房サイクルが停止するので、反応器3内のNa2Sの水和水
を蒸気として蒸発凝縮器2へ戻す必要がある。このた
め、ヒータ10と熱交換器11を用い、反応器3内を加
熱する。この水和水を蒸気として、凝縮器2内へ完全に
戻した後、再び、冷房サイクルを行うことができる。
When the chemical reaction in the reactor 3 is completed, the cooling cycle is stopped. Therefore, it is necessary to return Na 2 S hydrated water in the reactor 3 to the evaporative condenser 2 as vapor. Therefore, the inside of the reactor 3 is heated by using the heater 10 and the heat exchanger 11. After completely returning the water of hydration to the condenser 2 as steam, the cooling cycle can be performed again.

【0006】図9を参照して暖房サイクルについて説明
する。反応制御バルブ4を開き、飽和蒸気圧下の蒸発凝
縮器2から大気圧以下の反応器3内へ導入された水蒸気
はNa2Sと反応し、水蒸気はNa2Sに吸着固定化される。こ
のとき、Na2Sの1モル当り略300KJの熱量が発生する
ので、ポンプ(P2 )により熱交換器11へ送られた水
は加熱され、室内側熱交換器5で、空気と熱交換し、温
風を室内に送る。反応器3内での化学反応が終了する
と、暖房サイクルが停止するので、冷房サイクルと同じ
ようにヒータ10の熱を熱交換器11を介して反応器3
内に伝え、反応器3の再生を行う。
The heating cycle will be described with reference to FIG. The water vapor introduced from the evaporative condenser 2 under saturated vapor pressure into the reactor 3 under atmospheric pressure reacts with Na 2 S, and the water vapor is adsorbed and immobilized on Na 2 S by opening the reaction control valve 4. At this time, since a heat amount of about 300 KJ is generated per 1 mol of Na 2 S, the water sent to the heat exchanger 11 by the pump (P 2 ) is heated, and the indoor heat exchanger 5 exchanges heat with air. And send warm air indoors. When the chemical reaction in the reactor 3 is completed, the heating cycle is stopped. Therefore, the heat of the heater 10 is transferred to the reactor 3 via the heat exchanger 11 as in the cooling cycle.
It is transmitted to the inside and the reactor 3 is regenerated.

【0007】次に、蓄熱サイクルについて述べる。ヒー
タ10により、反応器3内を熱交換器11を介して加熱
し、反応器中のNa2S・5H2O は分解し、Na2Sは反応器中
に留り、H2O は蒸気となって凝縮器2内へ移行する。反
応制御バルブ4を閉じると、Na2SとH2O は分離し、長時
間の蓄熱が可能である。
Next, the heat storage cycle will be described. The inside of the reactor 3 is heated by the heater 10 via the heat exchanger 11, Na 2 S · 5H 2 O in the reactor is decomposed, Na 2 S remains in the reactor, and H 2 O is vaporized. Then, it moves into the condenser 2. When the reaction control valve 4 is closed, Na 2 S and H 2 O are separated and heat can be stored for a long time.

【0008】[0008]

【発明が解決しようとする課題】化学蓄熱装置を構成す
る主要な部品、即ち水の蒸発、凝縮を行う蒸発凝縮器2
は、特開平6−50687号公報に示される如く、蓄熱
媒体としての水を入れるハウジングと、ハウジング内の
水の中に位置するパイプおよび該パイプに固定された複
数個のフィンからなる。蒸発凝縮器から水蒸気を反応器
内へ供給する冷暖房サイクル中の反応時および反応器内
のNa2S・5H2O の水和水を蒸発分離して水蒸気を凝縮器
へ供給する再生時にはフィンが熱交換のため主に働くこ
とになる。従来例は、反応再生時にはフィンの一部が水
中に没していることから凝縮のための熱交換効率の点で
非効率な点を有し、また、反応時をみても、水の蒸発に
より水位が下がり、フィンの一部が露出し、伝熱面積を
減少させることから、水を多量に凝縮器内に貯えておく
必要があり、装置が大型化し、重量増となる。
A main component of a chemical heat storage device, that is, an evaporative condenser 2 for evaporating and condensing water.
As disclosed in Japanese Unexamined Patent Publication No. 6-50687, it comprises a housing for containing water as a heat storage medium, a pipe located in the water in the housing and a plurality of fins fixed to the pipe. The fins are used during the reaction during the heating / cooling cycle in which steam is supplied from the evaporative condenser to the reactor and during regeneration in which water of hydration of Na 2 S · 5H 2 O in the reactor is separated by evaporation and steam is supplied to the condenser. It will mainly work for heat exchange. The conventional example has an inefficiency in terms of heat exchange efficiency for condensation because part of the fins are submerged in water during reaction regeneration. Since the water level lowers, a part of the fins are exposed, and the heat transfer area is reduced, it is necessary to store a large amount of water in the condenser, resulting in an increase in the size of the device and an increase in weight.

【0009】それ故に、本発明は、前述した従来技術の
不具合を解消させることを解決すべき課題とする。
Therefore, an object of the present invention is to solve the above-mentioned disadvantages of the prior art.

【0010】[0010]

【課題を解決するための手段】本発明は、前述した課題
を解決するために、基本的には蒸発凝縮器内の液位は反
応再生時に人為的に昇降自在とさせる装置を該凝縮器内
に配する手段を採用する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention basically provides a device for internally raising and lowering the liquid level in an evaporative condenser during reaction regeneration. Adopt the means of arranging in.

【0011】具体的には、本発明は、液体を蒸発凝縮さ
せる熱交換器を内部に備える蒸発凝縮器、反応器、反応
器時に該凝縮器から該反応器に蒸気を送り、再生時に該
反応器から該凝縮器に蒸気を送る化学蓄熱装置におい
て、前記蒸発凝縮器内の液体の液面高さを制御する制御
手段を備えたことを特徴とする化学蓄熱装置を提供す
る。
[0011] Specifically, the present invention relates to an evaporative condenser having a heat exchanger for evaporating and condensing a liquid therein, a reactor, a vapor is sent from the condenser to the reactor during the reactor, and the reaction is performed during regeneration. In a chemical heat storage device for sending vapor from a condenser to the condenser, there is provided a chemical heat storage device comprising control means for controlling the liquid level height of the liquid in the evaporative condenser.

【0012】[0012]

【作用】本発明によれば、蒸発凝縮器内の液位は、反応
再生時に最っとも望ましい状態に維持できることから、
反応再生効率は向上する。
According to the present invention, since the liquid level in the evaporative condenser can be maintained at the most desirable state during the reaction regeneration,
The reaction regeneration efficiency is improved.

【0013】[0013]

【実施例】図1と図2を参照する。蒸発凝縮器2内に熱
交換器7を配し、これを図8と図9の従来例と同じく室
内側熱交換器5又は室外側熱交換器9に連通自在とす
る。熱交換器7のコアは波形をなし、蒸発凝縮器2の内
部上室に配される。この蒸発凝縮器2は、従前通り、反
応制御バルブ4を介して反応器3に連通する。該反応器
3内の熱交換器11も、従前通り、室外側熱交換器9又
は室内側熱交換器5に連通自在とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. A heat exchanger 7 is arranged in the evaporative condenser 2, and can be communicated with the indoor heat exchanger 5 or the outdoor heat exchanger 9 as in the conventional example shown in FIGS. 8 and 9. The core of the heat exchanger 7 has a corrugated shape and is arranged in the inner upper chamber of the evaporative condenser 2. The evaporative condenser 2 communicates with the reactor 3 via the reaction control valve 4 as before. The heat exchanger 11 in the reactor 3 is also allowed to communicate with the outdoor heat exchanger 9 or the indoor heat exchanger 5 as before.

【0014】蒸発凝縮器2内の液中内にベローズ装置1
2を配す。ベローズ装置12は円筒状のベロー13と、
その頂部に固定された頂板14と、頂板14と底板15
との間に配されたスプリング状伸縮部材16とからな
り、伸縮部材16は常時は伸張し、頂板14を上昇位置
に保持するので、液位17が高位置となり、熱交換器7
が液中に没する。かくして、蒸発が効率よく成される。
The bellows device 1 is placed in the liquid inside the evaporative condenser 2.
Distribute two. The bellows device 12 includes a cylindrical bellows 13,
Top plate 14 fixed to the top, top plate 14 and bottom plate 15
And a spring-like elastic member 16 disposed between the heat exchanger 7 and the heat exchanger 7 because the elastic member 16 is constantly extended and holds the top plate 14 in the raised position.
Are submerged in the liquid. Thus, evaporation is efficiently performed.

【0015】ベローズ装置12の内部を、反応制御バル
ブ4の蒸発凝縮器2側と第1の開閉弁18を介して接続
しかつ反応制御バルブ4のNa2S凝縮器3側と第2の開閉
弁19を介して接続する。図1の反応時には、反応制御
バルブ4を開、第2の開閉弁19を閉とし、第1の開閉
弁18の開度を調節して頂板14の高さを調整する。
The inside of the bellows device 12 is connected to the evaporative condenser 2 side of the reaction control valve 4 via the first opening / closing valve 18 and to the Na 2 S condenser 3 side of the reaction control valve 4 and the second opening / closing. Connect via valve 19. At the time of the reaction shown in FIG. 1, the reaction control valve 4 is opened, the second opening / closing valve 19 is closed, and the opening of the first opening / closing valve 18 is adjusted to adjust the height of the top plate 14.

【0016】図2に示す再生時には、反応制御バルブ4
を閉、第1の開閉弁18を閉、第2の開閉弁19を開と
させ、反応器3内部の低圧をベローズ装置12内部に導
入し、頂板14を下降させ、熱交換器7のコアを空中に
露出させる。次いで、第2の開閉弁19を閉とし、ベロ
ーズ装置12を図2の状態を保ち、反応制御バルブ4を
開とさせ、反応器3内に作られた蒸気を蒸発凝縮器2に
戻す。反応操作中、蒸発凝縮器2内の液体は蒸発し、蒸
気が反応器3内に送られるため、蒸発凝縮器2内の液位
は徐々に下がるが、この液位17の下がりは、フロート
30で検知し、液位17が図1の状態を維持するようベ
ローズ装置12の高さを、第1の制御弁18の開度によ
り調節する。尚、フロート30によるこの液位17の調
節は、後述する図3、図5および図6の例においても同
じである。
At the time of regeneration shown in FIG. 2, the reaction control valve 4
, The first on-off valve 18 is closed, the second on-off valve 19 is opened, the low pressure inside the reactor 3 is introduced into the bellows device 12, the top plate 14 is lowered, and the core of the heat exchanger 7 is closed. Expose in the air. Next, the second opening / closing valve 19 is closed, the bellows device 12 is maintained in the state of FIG. 2, the reaction control valve 4 is opened, and the vapor generated in the reactor 3 is returned to the evaporative condenser 2. During the reaction operation, the liquid in the evaporative condenser 2 evaporates, and the vapor is sent into the reactor 3, so that the liquid level in the evaporative condenser 2 gradually lowers, but the lowering of the liquid level 17 is caused by the float 30. The height of the bellows device 12 is adjusted by the opening degree of the first control valve 18 so that the liquid level 17 maintains the state of FIG. The adjustment of the liquid level 17 by the float 30 is the same in the examples of FIGS. 3, 5 and 6 described later.

【0017】図3と図4を参照して、本発明の別の実施
例を説明する。この実施例について、図1と図2とに示
した例と異なる構造について以下説明する。ベローズ装
置12′は、常時収縮の部材16′を有し、その内部
は、加熱器20と第1の開閉弁18を介して、反応制御
バルブ4の蒸発凝縮器2側と連通自在とさせる。図示例
では、加熱器20は、反応器3内の高温循環液を利用し
たもので、パイプのコア部21で、ベローズ装置12′
の内部の空気を加熱し、その空気の膨張により頂板14
を、部材16′の収縮運動に抗して、上昇させる。
Another embodiment of the present invention will be described with reference to FIGS. The structure of this embodiment different from that shown in FIGS. 1 and 2 will be described below. The bellows device 12 ′ has a member 16 ′ that is always contracted, and the inside of the bellows device 12 ′ can communicate with the evaporative condenser 2 side of the reaction control valve 4 via the heater 20 and the first opening / closing valve 18. In the illustrated example, the heater 20 uses the high temperature circulating liquid in the reactor 3, and the bellows device 12 ′ is provided at the core portion 21 of the pipe.
The air inside the chamber is heated and the expansion of the air causes the top plate 14
Are raised against the contracting movement of the member 16 '.

【0018】反応時には、図3に示すように、反応制御
バルブ4を開、第1の開閉弁18を閉とし、加熱器20
のコア部21に反応器3からの高温循環液を導入し、周
囲空気を加熱させ、ベローズ装置12′の内部を膨張さ
せる。これにより頂板14が上昇し、熱交換器7を液中
に没せさせる。頂板14の高さ即ち液位17の高さは、
ベローズ装置12′の内部温度により調節させられる。
再生時には、図4に示す如く、反応制御バルブ4を開、
第1の開閉弁18を開、加熱器20への高温循環液の導
入を停止し、ベローズ装置12′の内部の圧を蒸発凝縮
器2の内部圧と同一とさせ、部材16′の収縮能により
頂板14を下げ、液位17を熱交換器7より下方へ移動
させる。
During the reaction, as shown in FIG. 3, the reaction control valve 4 is opened, the first opening / closing valve 18 is closed, and the heater 20 is closed.
The hot circulating liquid from the reactor 3 is introduced into the core portion 21 of the above, and the ambient air is heated to expand the inside of the bellows device 12 '. As a result, the top plate 14 rises, and the heat exchanger 7 is submerged in the liquid. The height of the top plate 14, that is, the height of the liquid level 17 is
It is controlled by the internal temperature of the bellows device 12 '.
At the time of regeneration, as shown in FIG. 4, the reaction control valve 4 is opened,
The first on-off valve 18 is opened, the introduction of the high temperature circulating liquid to the heater 20 is stopped, the pressure inside the bellows device 12 'is made equal to the pressure inside the evaporative condenser 2, and the contraction capability of the member 16' is reduced. Thereby lowering the top plate 14 and moving the liquid level 17 below the heat exchanger 7.

【0019】図5に示す蒸発凝縮器2について説明す
る。この例では、そのハウジング内を、昇降自在な隔壁
板24により液体を入れた室22と気体を入れた室23
とに画定する。気体室23内にバネ材25を配し、図1
に示す如き第1の制御弁18の開度調整、第2の制御弁
19を閉とし、蒸発凝縮器2の室22の圧を他方の室2
3に導入し、隔壁板24を上限位置とさせる。この結
果、熱交換器7は液中に没す。第1の制御弁18の開度
制御により隔壁板24の高さを調節して液位17を図5
の状態に保つ。再生時には、図1の第1の制御弁18と
反応制御弁4とを閉、第2の制御弁19を開とさせ、気
体室23内に反応器3内部の低圧を導入し、隔壁板24
を下降させ、図2の状態を作る。次いで、第2の制御弁
19を閉とし、図2の状態を維持させ、反応制御弁4を
開とし、反応器3からの蒸気を蒸発凝縮器2内の熱交換
器7で効率よく凝縮させる。
The evaporative condenser 2 shown in FIG. 5 will be described. In this example, inside the housing, a chamber 22 containing a liquid and a chamber 23 containing a gas are provided by a partition plate 24 that can be raised and lowered.
And A spring member 25 is arranged in the gas chamber 23, and as shown in FIG.
The opening degree of the first control valve 18 is adjusted, the second control valve 19 is closed, and the pressure of the chamber 22 of the evaporative condenser 2 is adjusted to the other chamber 2 as shown in FIG.
3, and the partition plate 24 is set to the upper limit position. As a result, the heat exchanger 7 is submerged in the liquid. By controlling the opening of the first control valve 18, the height of the partition plate 24 is adjusted to adjust the liquid level 17 to the level shown in FIG.
Keep in the state of. At the time of regeneration, the first control valve 18 and the reaction control valve 4 in FIG. 1 are closed, the second control valve 19 is opened, the low pressure inside the reactor 3 is introduced into the gas chamber 23, and the partition plate 24
Down to make the state shown in FIG. Next, the second control valve 19 is closed, the state shown in FIG. 2 is maintained, the reaction control valve 4 is opened, and the vapor from the reactor 3 is efficiently condensed by the heat exchanger 7 in the evaporative condenser 2. .

【0020】気体室23内にバネ材25に代え常時収縮
部材を配するときには、図3に示す如き加熱器20を用
い、図3と図4に示した如く加熱空気の室23への導入
を可能にすればよい。
When a contracting member is always arranged in the gas chamber 23 instead of the spring member 25, the heater 20 as shown in FIG. 3 is used to introduce heated air into the chamber 23 as shown in FIGS. 3 and 4. It should be possible.

【0021】図6に示す例は、隔壁板24により区画さ
れる気体室23内にバネ材25と、隔壁板24を昇降さ
せるアクチュエータ26を配したものである。アクチュ
エータ26は油圧、液圧、電動モータの何れを利用する
ものでもよい。本例では、反応操作中、アクチュエータ
26により隔壁板24を上昇させ、液位17を一定の高
さに保つ図6の状態を作る。この際、液体の重量はバネ
材25で一部受けるので、アクチュエータ26への負荷
は小さい。一方、再生操作中、隔壁板24を下降させ、
図2に相当する状態を作る。本例は、図1〜図5に示し
た例において用いた第1と第2の制御弁18、19を不
用とする。
In the example shown in FIG. 6, a spring member 25 and an actuator 26 for moving the partition plate 24 up and down are arranged in a gas chamber 23 defined by the partition plate 24. The actuator 26 may use any one of hydraulic pressure, hydraulic pressure, and electric motor. In this example, during the reaction operation, the partition plate 24 is raised by the actuator 26 to create the state of FIG. 6 in which the liquid level 17 is maintained at a constant height. At this time, the weight of the liquid is partly received by the spring member 25, so that the load on the actuator 26 is small. On the other hand, during the regenerating operation, the partition plate 24 is lowered,
Create a state corresponding to FIG. In this example, the first and second control valves 18 and 19 used in the example shown in FIGS. 1 to 5 are unnecessary.

【0022】図7に示す例は、蒸発凝縮器2内にベロー
ズ装置や隔壁板を用いることなく、熱交換器7自身を液
位に応じて昇降自在としたものである。熱交換器7は、
金属ベローズやゴム等からなる伸縮ホース27を介して
室内側熱交換器5に接続され、かつ蒸発凝縮器2の外側
に配したアクチュエータ28のロッド29に結合される
構成を有す。
In the example shown in FIG. 7, the heat exchanger 7 itself can be moved up and down according to the liquid level without using a bellows device or a partition plate in the evaporative condenser 2. The heat exchanger 7 is
It has a configuration in which it is connected to the indoor heat exchanger 5 via an expansion / contraction hose 27 made of metal bellows, rubber or the like, and is connected to a rod 29 of an actuator 28 arranged outside the evaporative condenser 2.

【0023】反応操作中、液位17が下がると、この液
位17を、昇降自在なフロート31が検知し、アクチュ
エータ28を作動させ、液位17の低下分、熱交換器7
を下げ、該熱交換器7を常時液中に位置させるようにす
る。又、再生操作中、熱交換器7を液位17より上方に
位置させるが、凝縮による液位17の上昇はフロート3
1で検知し、アクチュエータ28を動作させ、液位17
の上昇分、熱交換器7を上昇させ、熱交換器7の全て又
は一部を常に液位17より上方に位置させ、凝縮効率を
高める。
When the liquid level 17 is lowered during the reaction operation, the float 31 which can be raised and lowered detects this liquid level 17 and actuates the actuator 28 to decrease the amount of the liquid level 17 by the heat exchanger 7.
So that the heat exchanger 7 is always positioned in the liquid. Further, during the regenerating operation, the heat exchanger 7 is positioned above the liquid level 17, but the rise of the liquid level 17 due to condensation does not occur in the float 3
1, the actuator 28 is operated, and the liquid level 17
The heat exchanger 7 is lifted by the amount of increase of 1, and all or part of the heat exchanger 7 is always positioned above the liquid level 17 to enhance the condensation efficiency.

【0024】[0024]

【効果】本発明によれば、反応再生時にもっとも望まれ
る液位を蒸発凝縮器に維持できるので、反応再生効率が
高い。
[Effect] According to the present invention, since the most desired liquid level can be maintained in the evaporative condenser during the reaction regeneration, the reaction regeneration efficiency is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の反応時の状態を示す図である。FIG. 1 is a diagram showing a state during a reaction of an example of the present invention.

【図2】本発明の一例の再生時の状態を示す図である。FIG. 2 is a diagram showing a state during reproduction of an example of the present invention.

【図3】本発明の他の例の反応時の状態を示す図であ
る。
FIG. 3 is a diagram showing a state during reaction of another example of the present invention.

【図4】本発明の他の例の再生時の状態を示す図であ
る。
FIG. 4 is a diagram showing a state during reproduction of another example of the present invention.

【図5】本発明の第三実施例を示す部分断面図である。FIG. 5 is a partial sectional view showing a third embodiment of the present invention.

【図6】本発明の第四実施例を示す部分断面図である。FIG. 6 is a partial sectional view showing a fourth embodiment of the present invention.

【図7】本発明の第五実施例を示す部分断面図である。FIG. 7 is a partial sectional view showing a fifth embodiment of the present invention.

【図8】冷房サイクルを示す説明図である。FIG. 8 is an explanatory diagram showing a cooling cycle.

【図9】暖房サイクルを示す説明図である。FIG. 9 is an explanatory diagram showing a heating cycle.

【符号の説明】[Explanation of symbols]

2 蒸発凝縮器 3 反応器 4 反応制御バルブ 5 室内側熱交換器 7、11 熱交換器 9 室外側熱交換器 12、12′ ベローズ装置 14 頂板 16、16′ 伸張・収縮部材 17 液位 18、19 開閉弁 20 加熱器 2 evaporative condenser 3 reactor 4 reaction control valve 5 indoor heat exchanger 7, 11 heat exchanger 9 outdoor heat exchanger 12, 12 'bellows device 14 top plate 16, 16' extension / contraction member 17 liquid level 18, 19 on-off valve 20 heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松野 孝充 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takamitsu Matsuno 1 Toyota-cho, Toyota-shi, Aichi Toyota Automobile Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 液体を蒸発凝縮させる熱交換器を内部に
備える蒸発凝縮器、反応器、反応器時に該凝縮器から該
反応器に蒸気を送り、再生時に該反応器から該凝縮器に
蒸気を送る化学蓄熱装置において、前記蒸発凝縮器内の
液体の液面高さを制御する制御手段を備えたことを特徴
とする化学蓄熱装置。
1. An evaporative condenser having a heat exchanger for evaporating and condensing a liquid therein, a reactor, a vapor is sent from the condenser to the reactor at the time of the reactor, and vapor is regenerated from the reactor to the condenser at the time of regeneration. In the chemical heat storage device for sending the chemical heat storage device, a control means for controlling the liquid level height of the liquid in the evaporative condenser is provided.
【請求項2】 制御手段がベローズ装置であり、ベロー
ズ装置が反応時伸張し、かつ再生時収縮し熱交換器を構
成するコアの少なくとも主要部を液位より上方に位置さ
せることを特徴とする化学蓄熱装置。
2. The control means is a bellows device, and the bellows device expands at the time of reaction and contracts at the time of regeneration to position at least a main part of the core constituting the heat exchanger above the liquid level. Chemical heat storage device.
【請求項3】 ベローズ装置の内部と、反応制御バルブ
の蒸発凝縮器側とを常時閉の第1の開閉弁を介しかつ反
応器側と常時閉の第2の開閉弁を介して連通可能であ
り、反応時第1の開閉弁を開とし、再生時第2の開閉弁
を開とする請求項2記載の化学蓄熱装置。
3. The inside of the bellows device and the evaporative condenser side of the reaction control valve can be communicated with each other through a normally closed first opening / closing valve and with the reactor side through a normally closing second opening / closing valve. The chemical heat storage device according to claim 2, wherein the first open / close valve is opened during reaction and the second open / close valve is opened during regeneration.
【請求項4】 ベローズ装置がその内部に常時伸張作用
をなす膨脹収縮部材を有す請求項3記載の化学蓄熱装
置。
4. The chemical heat storage device according to claim 3, wherein the bellows device has therein an expansion / contraction member that constantly expands.
【請求項5】 ベローズ装置の内部と、反応制御バル
ブ、蒸発凝縮器側とを常時閉の第1の開閉弁と加熱器と
を介して連通可能である請求項2記載の化学蓄熱装置。
5. The chemical heat storage device according to claim 2, wherein the inside of the bellows device and the reaction control valve and the evaporative condenser side can be communicated with each other through a normally open first opening / closing valve and a heater.
【請求項6】 加熱器が反応器内の高温循環水を導入す
る構成であり、ベローズ装置内に常時収縮作用をなす膨
脹収縮部材を有す請求項5記載の化学蓄熱装置。
6. The chemical heat storage device according to claim 5, wherein the heater is configured to introduce high-temperature circulating water in the reactor, and has an expansion / contraction member that constantly contracts in the bellows device.
【請求項7】 制御手段が蒸発凝縮器内を昇降する隔壁
板を有し、該隔壁板が蒸発凝縮器内の圧又は反応器内の
圧に応じて昇降する構成である請求項1記載の化学蓄熱
装置。
7. The structure according to claim 1, wherein the control means has a partition plate that moves up and down in the evaporative condenser, and the partition plate moves up and down according to the pressure in the evaporative condenser or the pressure in the reactor. Chemical heat storage device.
【請求項8】 制御手段が蒸発凝縮器内を昇降する隔壁
板を有し、該隔壁板がアクチュエータにより昇降する請
求項1記載の化学蓄熱装置。
8. The chemical heat storage device according to claim 1, wherein the control means has a partition plate that moves up and down in the evaporative condenser, and the partition plate moves up and down by an actuator.
【請求項9】 制御手段が蒸発凝縮器内の熱交換器と室
内外の熱交換器とを接続する伸縮ホースと、蒸発凝縮器
内の熱交換器を昇降させるアクチュエータとを有する請
求項1記載の化学蓄熱装置。
9. The control means has a telescopic hose connecting the heat exchanger inside the evaporative condenser and the heat exchanger inside and outside the room, and an actuator for moving up and down the heat exchanger inside the evaporative condenser. Chemical heat storage device.
JP7183243A 1995-06-28 1995-06-28 Chemical heat accumulator Pending JPH0914788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7183243A JPH0914788A (en) 1995-06-28 1995-06-28 Chemical heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7183243A JPH0914788A (en) 1995-06-28 1995-06-28 Chemical heat accumulator

Publications (1)

Publication Number Publication Date
JPH0914788A true JPH0914788A (en) 1997-01-17

Family

ID=16132289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7183243A Pending JPH0914788A (en) 1995-06-28 1995-06-28 Chemical heat accumulator

Country Status (1)

Country Link
JP (1) JPH0914788A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183043A (en) * 2006-01-06 2007-07-19 Sanki Eng Co Ltd Latent heat storage device and its operating method
JP2010270983A (en) * 2009-05-22 2010-12-02 Toyota Motor Corp Exhaust heat recovery device
JP2013204867A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Chemical heat-accumulating system
JP2013204862A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Chemical heat-accumulating system
JP2015141012A (en) * 2014-01-30 2015-08-03 株式会社デンソー chemical heat storage system
JP2015183883A (en) * 2014-03-20 2015-10-22 株式会社デンソー chemical heat storage device
JP2016223730A (en) * 2015-06-02 2016-12-28 株式会社豊田中央研究所 Evaporative condenser, evaporator, condenser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183043A (en) * 2006-01-06 2007-07-19 Sanki Eng Co Ltd Latent heat storage device and its operating method
JP2010270983A (en) * 2009-05-22 2010-12-02 Toyota Motor Corp Exhaust heat recovery device
JP2013204867A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Chemical heat-accumulating system
JP2013204862A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Chemical heat-accumulating system
JP2015141012A (en) * 2014-01-30 2015-08-03 株式会社デンソー chemical heat storage system
JP2015183883A (en) * 2014-03-20 2015-10-22 株式会社デンソー chemical heat storage device
JP2016223730A (en) * 2015-06-02 2016-12-28 株式会社豊田中央研究所 Evaporative condenser, evaporator, condenser

Similar Documents

Publication Publication Date Title
DK2076717T3 (en) DEVICE AND PROCEDURE FOR HEAT TRANSFER IN CLOSED CIRCUIT
US5272891A (en) Intermittent sorption cycle with integral thermosyphon
JPH0914788A (en) Chemical heat accumulator
GB2099980A (en) Heat transfer panels
US4497438A (en) Adaptive, modulating boiler control system
JPS6154156B2 (en)
US4125151A (en) Package heat exchanger system for heating and cooling
JP3644661B2 (en) Heat utilization system using hydrogen storage alloy
GB2125158A (en) Heat-exchanger device
JPS6141499Y2 (en)
SU1038750A1 (en) Hot water supply solar-power-system
JP3594436B2 (en) Hydrogen storage type cooling device
KR900009687Y1 (en) Storage heater
JPS6150212B2 (en)
JPS63209526A (en) Cooling and heating apparatus for culture of plant
JPS5939953A (en) Heat-exchanger
JPH07104013B2 (en) Refrigerant natural circulation heat transfer device
SU1536166A2 (en) Installation for utilization of heat energy
JPS5878055A (en) Heater for air-conditioning
RU2194935C2 (en) Heat-transferring device
JPH0213764A (en) Latent heat retriever
JPH11118284A (en) Heat utilizing system utilizing hydrogen absorbing alloy
KR930023696A (en) Regenerative heating devices, heat storage elements and cushions, shoes, vest angle mattress and blanket using them
JPS62223978A (en) Heat controller of fuel cell
JPS59167663A (en) Recovery device for waste heat from heat pump