JPH09145684A - Flaw detection method for fiber reinforced wire - Google Patents

Flaw detection method for fiber reinforced wire

Info

Publication number
JPH09145684A
JPH09145684A JP7328328A JP32832895A JPH09145684A JP H09145684 A JPH09145684 A JP H09145684A JP 7328328 A JP7328328 A JP 7328328A JP 32832895 A JP32832895 A JP 32832895A JP H09145684 A JPH09145684 A JP H09145684A
Authority
JP
Japan
Prior art keywords
electric wire
fiber
flaw detection
reinforced electric
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328328A
Other languages
Japanese (ja)
Inventor
Akio Ozawa
明夫 小澤
Katsuhiro Ouchi
勝広 大内
Koji Nagano
宏治 長野
Hiromitsu Kuroda
洋光 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP7328328A priority Critical patent/JPH09145684A/en
Publication of JPH09145684A publication Critical patent/JPH09145684A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect flaw of a fiber reinforced conduction accurately on a production line. SOLUTION: A water tank 16 is arranged in the stranding process of fiber reinforced conductors 19 and an ultrasonic probes 18 are arranged around the conductors 19. The ultrasonic probes 18 is split into four sections and detects flaw over the entire circumference of conductors 19. The ultrasonic probes 18 are fixed to the water tank 16 by means of jigs 17 and each section can be adjusted in movement. Inside diameter of the ultrasonic probes 18 is preferably set 2-3mm larger than the outside diameter of fiber reinforced conductors 19 in order to prevent generation of water bubble. Since the fiber reinforced conductors 19 are passed through a water tank and a submersible ultrasonic flaw detector is installed, high accurate noncontact flaw detection of fiber reinforced wire can be realized during movement of the wire on a production line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は繊維強化電線の探傷
方法に関するものである。
TECHNICAL FIELD The present invention relates to a flaw detection method for a fiber-reinforced electric wire.

【0002】[0002]

【従来の技術】繊維強化電線の経年劣化監視方法として
図4に示すように架空送電線として使用されている繊維
強化電線1に一定間隔でAEセンサを取り付け繊維破断
時の劣化信号を検出する方法が知られている。
2. Description of the Related Art As a method for monitoring deterioration of fiber-reinforced electric wires over time, as shown in FIG. 4, a method of detecting deterioration signals at the time of fiber breakage by attaching AE sensors at regular intervals to a fiber-reinforced electric wire 1 used as an overhead transmission line. It has been known.

【0003】[0003]

【発明が解決しようとする課題】前記AEセンサによる
方法は架空状態で繊維が破断した時に発生する音を検出
したり、また亀裂が存在する場合はその亀裂が進展した
時に発生する音を検知するものであり、何らかの外部的
な力が必要であり、また、これは使用状態での監視方法
であって、現場生産ラインにおける繊維強化電線の探傷
方法はこれまでに存在しない。本発明は従来技術とは異
なる方法を採用することにより、ニッキング(繊維強化
電線の撚り線作業時に、素線間の相互接触力によって発
生する傷)及び連続押出工程で発生し見逃してしまった
アルミ被覆部のとぎれ(図5)等の検出を撚り線作業工
程で無接触に行う方法を提供するものである。
The method using the AE sensor detects a sound generated when a fiber breaks in an imaginary state, or detects a sound generated when the crack propagates when a crack exists. However, it requires some external force, and this is a method of monitoring in use, and there has been no method for flaw detection of a fiber-reinforced electric wire in a field production line. By adopting a method different from the prior art, the present invention has been overlooked by nicking (damage caused by mutual contact force between strands during twisting work of a fiber-reinforced electric wire) and continuous extrusion process. It is intended to provide a method for contactless detection (FIG. 5) of a covering portion and the like in a twisted wire working step.

【0004】[0004]

【課題を解決するための手段】本発明は、撚り線工程に
ある繊維強化電線を水槽中に通し、水槽内に水浸式超音
波探傷装置を設置することにより、繊維強化電線に接触
せずに精度よく、したがって生産ラインにあって移動中
の繊維強化電線の探傷を可能としたものである。
According to the present invention, a fiber-reinforced electric wire in a twisted wire step is passed through a water tank, and a water immersion type ultrasonic flaw detector is installed in the water tank so that the fiber-reinforced electric wire does not come into contact with the electric wire. With high accuracy, therefore, it is possible to detect a fiber reinforced electric wire on the production line which is moving.

【0005】[0005]

【発明の実施の形態】本発明を図面に基づいて説明す
る。図1は繊維強化電線の撚り線工程に水浸式超音波探
傷装置を配置した本発明の概略図である。ペイオフ装置
8を経て送り出された中心素線22は、6個のボビンが
セットされ回転している第1の撚り線工程(a)に進
み、その周囲に電線が撚られ捲回される。次に、12個
のボビンがセットされ回転している第2の撚り線工程
(b)に進み、その外周に電線が撚られ捲回される。同
様に18個のボビンがセットされ回転している第3の撚
り線工程(c)では、更にその外周に電線が撚られ捲回
される。この後、作業工程にある繊維強化電線は水槽中
に配置された超音波探傷装置11の中を通過し、キャプ
スタン引取機13を経て巻取機14によりドラムに巻取
られる。図2は水槽中に配置した超音波探傷装置の中を
繊維強化電線が通過してゆく状態での水槽の断面を拡大
して示したものである。図2で超音波探触子18は取扱
性を考慮して4分割されており、1つの超音波探触子1
8は図3(イ)に示すように90度の範囲内を確実に探
傷し、4つで全周をもれなく検知できるように配置され
ている。図3(ロ)に示すように本発明の超音波探傷は
斜角探傷である。超音波探触子18は水槽16に治具1
7を介して、その位置を調節可能に取り付けられてお
り、その材質はチタン酸バリウム系圧電素子、ポリマー
系圧電素子が適している。また、探傷感度は繊維強化電
線19の線速には影響されない。超音波探触子18の内
径は、繊維強化電線19と超音波探触子18間で泡が発
生するのを抑えるため電線19の外径よりも2〜3mm
大きくすることが最適である。泡が存在すると超音波は
そこで反射してしまい誤判定の要因となる。内層の探傷
の場合、素線間の反射による影響があるが、これについ
ては予め超音波の入射角、入射角方向の進行距離から反
射してくる時間を算出しておき、信号処理回路によって
反射波を消去させることにより、SN比を向上させるこ
とができる。本探傷によれば素線上の0.1mm程度の
傷が明確に検出できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. FIG. 1 is a schematic view of the present invention in which a water-immersion type ultrasonic flaw detector is arranged in a stranding process of a fiber-reinforced electric wire. The central wire 22 sent out through the pay-off device 8 advances to the first twisted wire step (a) in which six bobbins are set and is rotated, and the electric wire is twisted and wound around the first twisted wire step (a). Next, in the second twisted wire step (b) in which 12 bobbins are set and rotated, the electric wire is twisted and wound around the outer circumference thereof. Similarly, in the third twisted wire step (c) in which 18 bobbins are set and rotated, an electric wire is further twisted and wound around the outer circumference thereof. After that, the fiber-reinforced electric wire in the working process passes through the ultrasonic flaw detector 11 arranged in the water tank, passes through the capstan take-up machine 13, and is taken up by the take-up machine 14 on the drum. FIG. 2 is an enlarged view showing a cross section of the water tank in a state where the fiber-reinforced electric wire is passing through the ultrasonic flaw detector arranged in the water tank. In FIG. 2, the ultrasonic probe 18 is divided into four in consideration of handleability, and one ultrasonic probe 1
As shown in FIG. 3A, 8 is arranged so that flaw detection can be surely performed within a range of 90 degrees, and the entire circumference can be detected by four. As shown in FIG. 3B, the ultrasonic flaw detection of the present invention is oblique flaw detection. The ultrasonic probe 18 is attached to the water tank 16 with the jig 1
The position of the barium titanate-based piezoelectric element and the polymer-based piezoelectric element are suitable. The flaw detection sensitivity is not affected by the linear velocity of the fiber-reinforced electric wire 19. The inner diameter of the ultrasonic probe 18 is 2 to 3 mm larger than the outer diameter of the electric wire 19 in order to suppress generation of bubbles between the fiber-reinforced electric wire 19 and the ultrasonic probe 18.
It is best to make it large. When bubbles are present, the ultrasonic waves are reflected there, which causes a false determination. In the case of flaw detection on the inner layer, there is an effect due to reflection between the strands, which is calculated in advance from the incident angle of ultrasonic waves and the traveling time in the incident angle direction, and reflected by the signal processing circuit. The SN ratio can be improved by eliminating the waves. According to this flaw detection, a flaw of about 0.1 mm on the wire can be clearly detected.

【0006】[0006]

【発明の効果】本発明の探傷方法により、 (1)従来行われていなかった生産ラインでの繊維強化
電線の内外層探傷が可能となった。 (2)また、内外層の素線表面の0.1mmの傷を明確
に検出でき、これによって予め安全を確認した状態で架
線を行うことができる。 (3)内層の探傷の場合には、信号処理回路により素線
間の反射波を消失させることにより誤判定を避けること
ができる。
According to the flaw detection method of the present invention, (1) it has become possible to perform flaw detection on the inner and outer layers of a fiber-reinforced electric wire in a production line, which has not been conventionally performed. (2) In addition, a 0.1 mm scratch on the surface of the inner and outer strands can be clearly detected, which allows the overhead wire to be carried out in a state where safety has been confirmed in advance. (3) In the case of flaw detection on the inner layer, erroneous determination can be avoided by eliminating the reflected wave between the wires by the signal processing circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】繊維強化電線の生産ラインに水浸式超音波探傷
装置を配置した本発明の概略図。
FIG. 1 is a schematic view of the present invention in which a water immersion type ultrasonic flaw detector is arranged in a production line of fiber-reinforced electric wires.

【図2】水浸式超音波探傷装置を配置した水槽の拡大断
面図。
FIG. 2 is an enlarged sectional view of a water tank in which a water immersion type ultrasonic flaw detector is arranged.

【図3】(イ)図2における1つの超音波探触子の探傷
範囲を示した図。(ロ)(イ)の斜面入射による探傷を
代表的な入射線で示した斜視概略図。
3A is a diagram showing a flaw detection range of one ultrasonic probe in FIG. 2. FIG. (B) A schematic perspective view showing flaw detection by oblique incidence of (a) with representative incident lines.

【図4】従来の繊維強化電線の架線状態での劣化監視方
法を示した概略図。
FIG. 4 is a schematic diagram showing a conventional method for monitoring deterioration of a fiber-reinforced electric wire in an overhead wire state.

【図5】繊維強化素線の連続押出工程におけるアルミ被
覆部のとぎれを示した図。
FIG. 5 is a diagram showing breaks in an aluminum coating portion in a continuous extrusion process of fiber-reinforced strands.

【符号の説明】[Explanation of symbols]

1 繊維強化電線を用いた架空送電線 15 巻取ド
ラム搬送装置 2 AEセンサ 16 水槽 3 懸垂クランプ 17 超音波
探触子移動治具 4 碍子 18 超音波
探触子 5 鉄塔 19 繊維強
化電線 6 プリフォームワイヤ 20 水 7 アルミ被覆部 21 素線亀
裂部 8 ペイオフ装置 22 中心素
線 9 空ボビンコンベア a 第1の
撚り線工程 10 ボビンゲージ b 第2
の撚り線工程 11 超音波探傷装置 c 第3
の撚り線工程 12 計尺装置 13 キャプスタン引取機 14 ドラムトラバース式巻取機
1 Overhead power transmission line using fiber reinforced electric wire 15 Winding drum conveyor 2 AE sensor 16 Water tank 3 Suspended clamp 17 Ultrasonic probe moving jig 4 Insulator 18 Ultrasonic probe 5 Steel tower 19 Fiber reinforced electric wire 6 Preform Wire 20 Water 7 Aluminum coating 21 Strand crack 8 Payoff device 22 Center strand 9 Empty bobbin conveyor a 1st stranding process 10 Bobbin gauge b 2nd
Stranded wire process 11 Ultrasonic flaw detector c 3
Stranded wire process 12 Measuring device 13 Capstan take-up machine 14 Drum traverse winder

フロントページの続き (72)発明者 長野 宏治 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 黒田 洋光 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内Front Page Continuation (72) Inventor Koji Nagano 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Hitachi Power Systems Co., Ltd. (72) Inventor Yoko Koda 5-1-1 Hidaka-cho, Ibaraki Prefecture No. 1 Power Systems Laboratory, Hitachi Cable, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化電線の撚り線工程に、水浸式超
音波探傷装置を設置することにより、移動状態において
無接触で探傷を行うことを特徴とした繊維強化電線の探
傷方法。
1. A method for flaw detection of a fiber-reinforced electric wire, which comprises performing contactless flaw detection in a moving state by installing a water-immersion type ultrasonic flaw detector in a twisting step of the fiber-reinforced electric wire.
【請求項2】 水槽内に超音波探触子を設置すると共
に、撚り線工程にある繊維強化電線を前記超音波探触子
に接触させることなく水槽内を通過させ、探傷を行うこ
とを特徴とした請求項1記載の繊維強化電線の探傷方
法。
2. The ultrasonic probe is installed in the water tank, and the fiber-reinforced electric wire in the twisting process is passed through the water tank without contacting the ultrasonic probe to detect flaws. The method for flaw detection of a fiber-reinforced electric wire according to claim 1.
【請求項3】 撚り線工程にある繊維強化電線の全周を
90度づつ分担して全周の探傷をもれなく行う4つの超
音波探触子を、水槽内に設置したことを特徴とした請求
項2記載の繊維強化電線の探傷方法。
3. A four-wave ultrasonic probe, which is arranged in a twisted wire process and which divides the entire circumference of the fiber-reinforced electric wire by 90 degrees so as to detect flaws on the entire circumference, is installed in a water tank. Item 2. A method for flaw detection of a fiber-reinforced electric wire according to Item 2.
【請求項4】 撚り線工程にある繊維強化電線の外周に
配置された超音波探触子の内径を、前記電線の外径より
も2〜3mm大きくすることにより電線と超音波探触子
との間での水泡の発生を防止したことを特徴とした請求
項2又は請求項3記載の繊維強化電線の探傷方法。
4. The electric wire and the ultrasonic probe are made by increasing the inner diameter of the ultrasonic probe arranged on the outer periphery of the fiber-reinforced electric wire in the twisted wire step by 2 to 3 mm larger than the outer diameter of the electric wire. The method for flaw detection of a fiber-reinforced electric wire according to claim 2 or 3, characterized in that water bubbles are prevented from occurring between them.
【請求項5】 撚り線工程にある繊維強化電線の内層の
探傷において、素線間の反射波を信号処理回路により消
失させ内層素線の傷による信号と素線間反射波による信
号とを識別してSN比を向上させたことを特徴とする請
求項1記載の繊維強化電線の探傷方法。
5. In the flaw detection of the inner layer of the fiber-reinforced electric wire in the twisted wire process, the reflected wave between the strands is eliminated by a signal processing circuit, and the signal due to the flaw of the inner layer strand and the signal due to the reflected wave between strands are distinguished. The flaw detection method for a fiber-reinforced electric wire according to claim 1, wherein the SN ratio is improved.
JP7328328A 1995-11-22 1995-11-22 Flaw detection method for fiber reinforced wire Pending JPH09145684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328328A JPH09145684A (en) 1995-11-22 1995-11-22 Flaw detection method for fiber reinforced wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328328A JPH09145684A (en) 1995-11-22 1995-11-22 Flaw detection method for fiber reinforced wire

Publications (1)

Publication Number Publication Date
JPH09145684A true JPH09145684A (en) 1997-06-06

Family

ID=18209010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328328A Pending JPH09145684A (en) 1995-11-22 1995-11-22 Flaw detection method for fiber reinforced wire

Country Status (1)

Country Link
JP (1) JPH09145684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144489A (en) * 2002-10-21 2004-05-20 Ryobi Ltd Method of judging quality of casting having composite member inside
CN115479988A (en) * 2022-08-03 2022-12-16 核工业西南物理研究院 High-temperature superconducting strand ultrasonic automatic detection device, system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144489A (en) * 2002-10-21 2004-05-20 Ryobi Ltd Method of judging quality of casting having composite member inside
CN115479988A (en) * 2022-08-03 2022-12-16 核工业西南物理研究院 High-temperature superconducting strand ultrasonic automatic detection device, system and method

Similar Documents

Publication Publication Date Title
JP2010239687A (en) Fault inspection device for overhead electric wire
KR20180113213A (en) Rope damage diagnostic test equipment
JPH09145684A (en) Flaw detection method for fiber reinforced wire
JPS58203190A (en) Method and apparatus for monitoring twisted body in twisting process
KR102621607B1 (en) Magnetic measuring device
JP2010008213A (en) Damage detector of wire rope
JPH09304354A (en) Method for detecting disconnection of cable element wire
JP2001164485A (en) Detector for breakage of strand
EP1425621B1 (en) Method and apparatus for monitoring cable stranding
JPH08195131A (en) External pressure detectable optical composite submarine installed long body
JP3918821B2 (en) Optical cable manufacturing method and manufacturing apparatus
JPH09145304A (en) Inspection method for tube or tube cable
JPH09281083A (en) Method for defecting rust of armored cable
JP7037854B2 (en) Rope diameter ultrasonic measuring jig
JP2518484B2 (en) Optical stranded wire flaw detection method and equipment
JPS63295782A (en) Twisted wire inspecting apparatus
JPH08306249A (en) Stranding machine for fiber reinforced electric cable
JPS5928851B2 (en) Optical fiber cable failure monitoring method
JPH04125012A (en) Mounting jig for piezoelectric element for detecting defect of stranded wire
EA043586B1 (en) METHOD FOR CONTROLLING THE ACCUMULATION OF FATIGUE DAMAGE IN OVERHEAD POWER LINE WIRES
JPH04249207A (en) Optical fiber sensor and cable using the same
JPS60250251A (en) Flaw detection for wire rod
JPS6196477A (en) Method for inspecting accident point of cable
JPH0734606B2 (en) Electric wire abnormality diagnosis method
JPS58172507A (en) Detecting device for extraordinary form of outer surface of pipe