JPH09141580A - Operating range limiting device for direct teaching robot - Google Patents

Operating range limiting device for direct teaching robot

Info

Publication number
JPH09141580A
JPH09141580A JP32834095A JP32834095A JPH09141580A JP H09141580 A JPH09141580 A JP H09141580A JP 32834095 A JP32834095 A JP 32834095A JP 32834095 A JP32834095 A JP 32834095A JP H09141580 A JPH09141580 A JP H09141580A
Authority
JP
Japan
Prior art keywords
force
limiting device
range limiting
hand
direct teaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32834095A
Other languages
Japanese (ja)
Inventor
Kenji Matsukuma
研司 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP32834095A priority Critical patent/JPH09141580A/en
Publication of JPH09141580A publication Critical patent/JPH09141580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a finger from interfering with an obstacle by providing a force information limit part to calculate the coefficient of limit which varies monotonously and successively according to a distance between an object position and each finger position only when a force in an approaching direction is positive. SOLUTION: A distance between an object 202 and a finger 203 is calculated, and a coefficient of limit αe varying monotonously and successively within the range of 1 to 0 according to its distance is obtained. Also the coefficient of limit αe thus obtained is multiplied by F' inx so as to newly obtain F' outx (=F' inx×α e). On the other hand, for F' outx as Y' component, F' iny is used undisturbed. Then a force of F' out after limit is re-synthesized from F' outx and F' outy, and the force is transformed into a force of F' out based on a coordinate system O fixed to the finger 203.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業用あるいは医
療福祉用あるいはトレーニング用に用いられるロボット
アームを力制御によって制御する場合の直接教示ロボッ
トの動作範囲制限装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motion range limiting device for a direct teaching robot for controlling a robot arm used for industrial use, medical welfare or training by force control.

【0002】[0002]

【従来の技術】一般的なロボットアーム力制御の概念ブ
ロック図を図4に示す。図4において、401はロボッ
トアーム、402は対象物、403はアーム401の手
先、404はアーム401の先端に取り付けられ、教示
者の力を検出する力センサ、405はアーム401を駆
動するモータ、406はモータ405の回転角を検出す
る回転角検出計、407は力センサ404の力情報をデ
ジタル値に変換するA/D回路、408は力制御の慣性
・粘性・弾性の各パラメータを設定するインピーダンス
設定部、409は力情報を手先403の変位に変換する
変位算出部、410は手先403のつりあい位置を設定
する釣合い位置設定部、411は手先403の位置から
モータ405の目標角度を算出する逆運動学計算部、4
12は回転角検出計406の出力をデジタル値に変換す
る回転角変換回路、413はゲイン積算器、414はゲ
イン積算器413の出力をアナログ値に変換するD/A
回路、415はD/A回路414の出力に従ってモータ
405を駆動するドライバである。
2. Description of the Related Art A conceptual block diagram of general robot arm force control is shown in FIG. In FIG. 4, 401 is a robot arm, 402 is an object, 403 is a hand of the arm 401, 404 is a force sensor attached to the tip of the arm 401 to detect the force of the teacher, 405 is a motor for driving the arm 401, Reference numeral 406 is a rotation angle detector for detecting the rotation angle of the motor 405, 407 is an A / D circuit for converting the force information of the force sensor 404 into a digital value, and 408 is for setting each parameter of inertia, viscosity, and elasticity for force control. An impedance setting unit, 409 is a displacement calculation unit that converts force information into displacement of the hand 403, 410 is a balance position setting unit that sets the balance position of the hand 403, and 411 calculates a target angle of the motor 405 from the position of the hand 403. Inverse kinematics calculator, 4
12 is a rotation angle conversion circuit for converting the output of the rotation angle detector 406 into a digital value, 413 is a gain integrator, and 414 is a D / A for converting the output of the gain integrator 413 into an analog value.
Circuits 415 are drivers that drive the motor 405 according to the output of the D / A circuit 414.

【0003】教示者が力センサ404に与える力情報
は、A/D変換回路407によってデジタル値に変換さ
れたのち、変位算出部409に入力される。変位算出部
409ではインピーダンス設定部408で設定された慣
性・粘性・弾性パラメータをもとに手先403の釣合い
位置からの変位が算出される。この変位は釣合い位置設
定部410の出力に加算され、手先403の位置指令と
なり、さらに逆運動学計算部411により各関節の角度
指令に変換される。この角度指令は、回転角検出計40
6により検出された回転角を回転角変換回路412によ
り変換したデジタル値と比較され、この差分にゲイン積
算器413によりゲインをかけた出力値が求められる。
この出力値はD/A回路414によってアナログ化さ
れ、ドライバ415によってモータ401に出力される
ことによってアーム401を駆動する。このようにして
力センサ404に教示力を加えることでロボットアーム
401が駆動され、複雑な制御を気にすることなく容易
に手先402を所要の位置まで移動させることができ
る。
The force information given by the teacher to the force sensor 404 is converted into a digital value by the A / D conversion circuit 407, and then input to the displacement calculation section 409. The displacement calculation unit 409 calculates the displacement of the hand 403 from the balanced position based on the inertial, viscous, and elastic parameters set by the impedance setting unit 408. This displacement is added to the output of the equilibrium position setting unit 410 to become a position command for the hand 403, and further converted into an angle command for each joint by the inverse kinematics calculation unit 411. This angle command is issued by the rotation angle detector 40.
The rotation angle detected by 6 is compared with the digital value converted by the rotation angle conversion circuit 412, and the difference is multiplied by the gain integrator 413 to obtain an output value.
This output value is analogized by the D / A circuit 414 and is output to the motor 401 by the driver 415 to drive the arm 401. In this way, the robot arm 401 is driven by applying the teaching force to the force sensor 404, and the hand 402 can be easily moved to a desired position without worrying about complicated control.

【0004】このロボットアーム401の動作環境内に
障害物があり先端部を干渉させたくない場合の動作範囲
制限は従来専ら教示者の教示力のノウハウに頼ることが
多かった。すなわち、障害物に接近した時教示者自らが
教示力を弱めることで干渉を防ぐことが必要であった。
したがって教示者次第では当然障害物との干渉も起こり
得、アームおよび障害物を破損する危険性がある。また
先端部を対象物の回りをならってスムーズに動かしたい
場合にも、教示者の教示力の精度に頼っていることか
ら、一定の距離を保ち続けるのは困難である。このなら
い動作の精度をあげる装置については、アーム先端の運
動をある特定の線上や面上に拘束する拘束モードを有す
る制御装置が提案されている(特開平5-303425)。しか
しこの方法では拘束モードと通常の力制御モードとの切
替え信号の入力装置が必要であり、またその両モードの
滑らかな接続も困難である。
When there is an obstacle in the operating environment of the robot arm 401 and it is desired not to interfere the tip portion, conventionally, the operating range limitation has often depended exclusively on the know-how of the teaching force of the instructor. That is, it is necessary to prevent interference by weakening the teaching power by the teacher himself when approaching an obstacle.
Therefore, depending on the teacher, of course, interference with an obstacle may occur, and there is a risk of damaging the arm and the obstacle. Further, even when the user wants to move the tip end smoothly around the object, it is difficult to keep a certain distance because it depends on the accuracy of the teaching force of the teacher. As a device for increasing the accuracy of this tracing operation, a control device having a restraining mode for restraining the movement of the arm tip on a specific line or surface has been proposed (Japanese Patent Laid-Open No. 5-303425). However, this method requires an input device for a switching signal between the restraint mode and the normal force control mode, and it is difficult to smoothly connect both modes.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の直接教示ロボットにおいては、 手先が動作環境内の障害物に干渉する恐れがある。 ならい動作の精度が保たれない。 ある特定の線上や面上に拘束する拘束モードを有する
制御装置の場合、通常の力制御モードとの切替えを滑ら
かに行なうことができない。 という欠点があった。
As described above, in the conventional direct teaching robot, the hand may interfere with an obstacle in the operating environment. The accuracy of the tracing operation cannot be maintained. In the case of the control device having the restraint mode for restraining on a certain specific line or surface, it is not possible to smoothly switch to the normal force control mode. There was a disadvantage.

【0006】そこで、本発明は、手先と障害物との干渉
を防止し、またならい動作においても、対象物への接近
動作と、対象物に対しある一定の距離を保ち続けるなら
い動作とを、特別のモード変更を行なうことなく滑らか
に実現できる動作範囲制限装置を提供することを目的と
するものである。
Therefore, the present invention prevents interference between the hand and an obstacle, and even in the following motion, the approaching motion to the target object and the following motion to keep a certain distance to the target object. It is an object of the present invention to provide an operation range limiting device that can be smoothly realized without performing a special mode change.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、ロボットアームの先端に取りつけた力セ
ンサの情報をもとにロボットの各関節を制御する力制御
のもとで、教示者が力センサに教示力を加えることによ
り意図する動作をロボットアームに直接教示する直接教
示装置において、力センサからの情報Tinを対象物に接
近する方向とそれに垂直な方向とに分解し、接近する方
向の力Tinが正の時のみ、装置内部に記憶している対象
物位置と各関節角から算出した手先位置との間の距離に
応じて1から0まで単調連続に変化するリミット係数α
e 算出し、これをTinに積算し、他の分力とともに再合
成することで出力Tout を得る力情報リミット部を備え
ることを特徴とするものである。
In order to solve the above problems, the present invention teaches under the force control for controlling each joint of the robot based on the information of the force sensor attached to the tip of the robot arm. In a direct teaching device in which a person applies a teaching force to a force sensor to directly teach an intended operation to a robot arm, information Tin from the force sensor is decomposed into a direction approaching an object and a direction perpendicular to the direction Tin to approach the object. The limit coefficient α that monotonously changes from 1 to 0 according to the distance between the object position stored in the device and the hand position calculated from each joint angle only when the force Tin in the direction
It is characterized by including a force information limit unit that obtains an output Tout by calculating e, integrating it with Tin, and recombining it with other component forces.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。本発明における力制御の概念ブロッ
ク図を図1に示す。図1において、101はロボットア
ーム、102は対象物、103はアーム101の手先、
104はアーム101の先端に取り付けられ、教示者の
力を検出する力センサ、105はアーム101を駆動す
るモータ、106はモータ105の回転角を検出する回
転角検出計、107は力センサ104の力情報をデジタ
ル値に変換するA/D回路、108は対象物の位置を設
定する対象物位置設定部、109は対象物との距離をも
とに力情報を加工する動作範囲制限装置、110は回転
角検出計106の出力をデジタル値に変換する回転角変
換回路、111は回転角変換回路110の出力から手先
103の位置を算出する順運動学計算部、112は力制
御の慣性・粘性・弾性の各パラメータを設定するインピ
ーダンス設定部、113は力情報を手先103の変位に
変換する変位算出部、114は手先103のつりあい位
置を設定する釣合い位置設定部、115は手先103の
位置からモータ105の目標角度を算出する逆運動学計
算部、116はゲイン積算器、117はゲイン積算器1
16の出力ををアナログ値に変換するD/A回路、11
8はD/A回路117の出力にしたがってモータ105
を駆動するドライバである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. A conceptual block diagram of force control in the present invention is shown in FIG. In FIG. 1, 101 is a robot arm, 102 is an object, 103 is the hand of the arm 101,
104 is a force sensor attached to the tip of the arm 101 to detect the force of the teacher, 105 is a motor for driving the arm 101, 106 is a rotation angle detector for detecting the rotation angle of the motor 105, and 107 is a force sensor 104. An A / D circuit for converting force information into a digital value, 108 an object position setting unit for setting the position of the object, 109 an operation range limiting device for processing the force information based on the distance to the object, 110 Is a rotation angle conversion circuit that converts the output of the rotation angle detector 106 into a digital value, 111 is a forward kinematics calculation unit that calculates the position of the hand 103 from the output of the rotation angle conversion circuit 110, and 112 is inertia / viscosity of force control. An impedance setting unit that sets each parameter of elasticity, 113 is a displacement calculation unit that converts force information into displacement of the hand 103, and 114 is a balance that sets the balance position of the hand 103. Position setting unit, 115 the inverse kinematics calculation unit for calculating a target angle of the motor 105 from the position of the hand 103, 116 gain multiplier, 117 is a gain multiplier 1
D / A circuit for converting 16 output to analog value, 11
8 is a motor 105 according to the output of the D / A circuit 117.
This is a driver for driving.

【0009】教示者が力センサ104に与える力情報
は、A/D変換回路107によってデジタル値に変換さ
れたのち、動作範囲制限装置109に入力される。また
回転角検出計106により検出された回転角は、回転角
変換回路112によりデジタル化されたのち、順運動学
計算部111によって先端部の位置情報に変換され、動
作範囲制限装置109に入力される。また対象物位置設
定部108で設定された対象物位置も動作範囲制限装置
109に入力される。動作範囲制限装置109は、これ
らの値をもとに力情報を加工し、変位算出部113に出
力する。変位算出部113ではインピーダンス設定部1
12で設定された慣性・粘性・弾性パラメータをもとに
手先103の釣合い位置からの変位が算出される。この
変位は釣合い位置設定部114の出力に加算され、手先
103の位置指令となり、さらに逆運動学計算部115
により各関節の角度指令に変換される。この角度指令
は、回転角検出計106により検出された回転角を回転
角変換回路110により変換したデジタル値と比較さ
れ、この差分にゲイン積算器116によりゲインをかけ
た出力値が求められる。この出力値はD/A回路117
によってアナログ化され、ドライバ118によってモー
タ105に出力されることによってアーム101を駆動
する。
The force information given by the teacher to the force sensor 104 is converted into a digital value by the A / D conversion circuit 107 and then input to the operation range limiting device 109. The rotation angle detected by the rotation angle detector 106 is digitized by the rotation angle conversion circuit 112, converted into position information of the tip end by the forward kinematics calculation unit 111, and input to the operation range limiting device 109. It Further, the object position set by the object position setting unit 108 is also input to the operation range limiting device 109. The operation range limiting device 109 processes force information based on these values and outputs the force information to the displacement calculator 113. In the displacement calculation unit 113, the impedance setting unit 1
The displacement of the hand 103 from the balanced position is calculated based on the inertial, viscous, and elastic parameters set in 12. This displacement is added to the output of the equilibrium position setting unit 114, and becomes a position command for the hand 103, and further the inverse kinematics calculation unit 115.
Is converted into an angle command for each joint. This angle command is compared with a digital value obtained by converting the rotation angle detected by the rotation angle detector 106 by the rotation angle conversion circuit 110, and an output value obtained by multiplying this difference by a gain integrator 116 is obtained. This output value is the D / A circuit 117
Is converted into an analog form and is output to the motor 105 by the driver 118 to drive the arm 101.

【0010】上記手段により、手先が対象物から離れて
いる場合には通常の力制御が行なわれるが、手先が対象
物に接近した状態でさらに対象物に向けた方向に力を加
えていくと力センサに加えられた力が対象物との距離が
縮まるにつれて徐々に無視されていき、やがて手先はあ
る定められた距離において緩やかに停止する。このとき
対象物に対し横向きの力は無視されないので、対象物に
押しつけるようにしてかつ横向きに力を加えれば、一定
距離でならうような運動も実現できる。また対象物から
離れる方向の力も無視されないので、ならい動作から離
れるのも特別な切替を要することなく容易に行なうこと
ができる。
By the above means, the normal force control is performed when the hand is far from the object, but when the hand is closer to the object, a force is further applied toward the object. The force applied to the force sensor is gradually disregarded as the distance from the object is reduced, and eventually the hand stops gently at a predetermined distance. At this time, the lateral force on the object is not neglected, so that if the object is pressed against the object and lateral force is applied, it is possible to realize a motion that follows a constant distance. Further, since the force in the direction of moving away from the object is not ignored, it is possible to easily move away from the tracing motion without requiring special switching.

【0011】動作範囲制限装置109の動作を図2、3
を用いて説明する。図2は力情報の変換に関する説明図
である。力センサ204に加えられた力を、まず手先2
03での力Finに変換する。このFinは手先に固定され
た座標系Oに基づき記述される。これに対し、対象物位
置設定部にて設定された対象物202に向けて手先から
引いたベクトルをX’軸正方向とする座標系O’を新た
に設ける。座標系O上の力Finを座標系O’上に変換
し、力F'in を得る。F'in をX' 軸方向とそれに垂直
なY' 方向に分解し、それぞれF'inx、F'inyを得る。
このF'inxに力リミット係数αe を積算することによっ
て動作範囲を制限する。
The operation of the operation range limiting device 109 is shown in FIGS.
This will be described with reference to FIG. FIG. 2 is an explanatory diagram regarding conversion of force information. First, apply the force applied to the force sensor 204 to the fingers 2
Convert to force Fin at 03. This Fin is described based on the coordinate system O fixed to the hand. On the other hand, a coordinate system O ′ is newly provided in which the vector drawn from the hand toward the object 202 set by the object position setting unit is the X′-axis positive direction. The force Fin on the coordinate system O is converted to the coordinate system O ′ to obtain the force F′in. F'in is decomposed into the X'axis direction and the Y'direction perpendicular thereto, and F'inx and F'iny are obtained, respectively.
The operating range is limited by integrating the force limit coefficient αe with this F'inx.

【0012】図3は力リミット係数αe の算出に関する
説明図である。対象物202と手先203との距離Lを
計算し、その距離に応じて1から0までの範囲で単調連
続的に変化する力リミット係数αe を求める。 F'inx>0の場合 αe = 1 (Ls <L のとき) αe =(L−Le )/(Ls −Le ) (Le ≦L≦Ls のとき) αe = 0 (L<Le のとき) F'inx<0の場合 αe = 1 ここでLs は力リミットを開始する距離、Le は力リミ
ットが終了する、すなわち停止すべき距離である。こう
して求めたリミット係数αe をF'inxに積算し、新たに
F'outx とする。 F'outx =F'inx × αe 一方Y' 成分であるF'outy には、F'inyをそのまま用
いる。F'outx とF'outy とからリミット後の力F'out
を再合成し、これを手先に固定された座標系Oに基づく
力Fout に変換する。このFout を変位算出部113に
出力し、あとは通常の力制御と同様に制御をおこなう。
FIG. 3 is an explanatory diagram relating to the calculation of the force limit coefficient αe. The distance L between the object 202 and the hand 203 is calculated, and the force limit coefficient αe that monotonically and continuously changes in the range of 1 to 0 is calculated according to the distance. In case of F'inx> 0 αe = 1 (when Ls <L) αe = (L−Le) / (Ls−Le) (when Le ≦ L ≦ Ls) αe = 0 (when L <Le) F In the case of'inx <0 αe = 1 Here, Ls is the distance at which the force limit is started, and Le is the distance at which the force limit ends, that is, the distance at which the force limit should be stopped. The limit coefficient αe thus obtained is integrated with F'inx to newly obtain F'outx. F′outx = F′inx × αe On the other hand, F′iny is used as it is for F′outy which is the Y ′ component. Force after limit F'out from F'outx and F'outy
Is recombined and converted into a force Fout based on the coordinate system O fixed to the hand. This Fout is output to the displacement calculation unit 113, and thereafter the control is performed in the same manner as the normal force control.

【0013】本発明に従えば、例えば手先が対象物から
離れている(Ls <L)場合には、αe =1なので、力
センサから取り込んだ力はそのまま変位算出部へ通され
る。従って通常の力制御が行なわれる。手先が対象物に
近付いた場合(Le ≦L≦Ls )、対象物から離れる方
向や横に動く方向には通常の力制御が行なわれるが、対
象物に近付く方向の力は、対象物との距離が短くなるに
つれ徐々に無視されていき、L≦Le でαe =0とな
る。つまりこの状態ではF'outx =0であり、力センサ
に力を加えてもそれ以上は対象物に近付かない。この時
も対象物から離れる方向や横に動く方向にはリミットを
行なわないため、対象物から離れるのは容易であるし、
また対象物に押しつけながら横方向にも力を加えれば、
対象物のまわりを一定距離Le をおいてならうような動
きが実現できる。対象物に接近した時どのくらい緩やか
に停止させるかはLs の値によって決定される。Ls と
Leの間が長ければ緩やかな停止動作が行なわれるが、
その反面自由に動ける領域は狭くなる。また本実施例で
はαe は単純な直線関数によって求めているが、これを
例えばシグモイド関数のようなものにすれば、さらに滑
らかな停止動作が期待できる。
According to the present invention, for example, when the hand is far from the object (Ls <L), since αe = 1, the force taken from the force sensor is directly passed to the displacement calculating section. Therefore, normal force control is performed. When the hand approaches the object (Le ≤ L ≤ Ls), normal force control is performed in the direction away from the object or in the lateral movement, but the force in the direction approaching the object is It is gradually ignored as the distance becomes shorter, and αe = 0 when L≤Le. That is, in this state, F'outx = 0, and even if a force is applied to the force sensor, the force sensor cannot approach the object any further. Also at this time, since there is no limit in the direction away from the object or the direction moving sideways, it is easy to leave the object,
Also, if you apply a force in the lateral direction while pressing it against the target object,
It is possible to realize a movement that follows a certain distance Le around the object. The value of Ls determines how slowly the object is stopped when approaching it. If the distance between Ls and Le is long, a gradual stop operation is performed,
On the other hand, the area where you can move freely becomes smaller. Further, in the present embodiment, αe is obtained by a simple linear function, but if this is made to be a sigmoid function, for example, a smoother stopping operation can be expected.

【0014】以上の説明では簡単のため運動をXY平面
内に限定したが、この制限装置は3次元空間内の力制御
アームにもそのまま適用できる。対象物が点の場合、ア
ームは半径Le の球の周辺をならうような運動に制限さ
れる。また対象物が線の場合にはLは手先から線への距
離として求められ、アームは半径Le の円筒の周辺をな
らうような運動に制限される。対象物が平面など空間図
形の場合にはLは手先から図形表面への距離として求め
られ、アームは表面に対しある一定の距離Leを保ちつ
つ運動するように制限される。
In the above description, the motion is limited to the XY plane for simplification, but this limiting device can be applied to the force control arm in the three-dimensional space as it is. If the object is a point, the arm is constrained to follow a sphere of radius Le. When the object is a line, L is calculated as the distance from the hand to the line, and the arm is restricted to a motion that follows the circumference of a cylinder having a radius Le. When the object is a space figure such as a plane, L is calculated as the distance from the hand to the figure surface, and the arm is restricted to move while maintaining a certain distance Le with respect to the surface.

【0015】請求項2で示した装置では、対象物の取り
得る範囲すべてを新たな対象物として対象物位置設定部
に入力する。これにより、対象物も動く可能性があり、
またその動作が予測できない場合においても対象物に干
渉するおそれなく手先を動かすことができる。
In the apparatus according to the second aspect, all the possible range of the object is input to the object position setting section as a new object. This may cause the object to move,
Further, even when the motion cannot be predicted, the hand can be moved without fear of interfering with the object.

【0016】請求項3で示した装置では、アーム手先の
到達不可な範囲すべてを新たな対象物として対象物位置
設定部に入力する。これにより、対象物の有無によらず
アームの動作範囲を制限することができ、直接教示時の
安全装置として有効である。
In the apparatus according to the third aspect, the entire range in which the arm hand cannot reach is input to the object position setting section as a new object. This makes it possible to limit the movement range of the arm regardless of the presence or absence of the object, which is effective as a safety device for direct teaching.

【0017】請求項4で示した装置では、対象物位置設
定部のかわりに、対象物との距離Lを直接近接センサに
よって測定する。また反応した近接センサの位置によっ
て対象物の方向を認識する。これにより、対象物の位置
があらかじめわかっていない場合にも、対象物から一定
の距離Le の地点で緩やかに停止する動作制限装置が実
現できる。
In the apparatus according to the fourth aspect, instead of the object position setting unit, the distance L to the object is directly measured by the proximity sensor. Also, the direction of the object is recognized based on the position of the proximity sensor that has reacted. As a result, even when the position of the target object is not known in advance, it is possible to realize a motion limiting device that gently stops at a point of a certain distance Le from the target object.

【0018】請求項5で示した装置では、アーム先端の
力センサによってアームの運動を教示するのではなく、
手先の運動量をジョイスティックなどの運動量指令デバ
イスによって与えることでアームを運動させる。この場
合も、運動量指令をそのままTinとして動作範囲制限装
置に入力すれば、対象物付近において干渉する方向の運
動量指令を無視していくような動作制限を行なうことが
できる。
In the apparatus according to the fifth aspect, the force sensor at the tip of the arm does not teach the movement of the arm, but
The arm is moved by giving the momentum of the hand by a momentum command device such as a joystick. Also in this case, if the momentum command is input as Tin to the motion range limiting device as it is, the motion limit can be limited so as to ignore the momentum command in the interference direction near the object.

【0019】請求項6で示した装置では、ロボットアー
ムの動作制限ではなく移動ロボットの障害物回避に適用
される。すなわちジョイスティックなどの運動量指令デ
バイスによって移動ロボットを操縦する場合、障害物に
接近する方向に操作したとしてもある一定距離Le 以内
には接近せず、障害物の周囲をならうような動きでこれ
を回避することができる。
In the apparatus according to the sixth aspect, the present invention is applied to avoiding obstacles of a mobile robot, not to limit movement of a robot arm. In other words, when operating a mobile robot with a momentum command device such as a joystick, even if the mobile robot is operated in the direction of approaching an obstacle, it does not approach within a certain distance Le, It can be avoided.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、下
記の効果がある。 手先が動作環境内の障害物に干渉するのを防止でき
る。 対象物に押しつける力を加えるだけで簡単にならい動
作ができる。 通常の力制御から特別の切替を要することなく、滑ら
かにならい動作に移行できる。また復帰も容易である。
As described above, the present invention has the following effects. It is possible to prevent the hand from interfering with an obstacle in the operating environment. You can easily follow the movement by adding a force to press the object. It is possible to shift from normal force control to smooth follow-up operation without requiring special switching. It is also easy to return.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す力制御の概念ブロック図FIG. 1 is a conceptual block diagram of force control showing an embodiment of the present invention.

【図2】本発明における力情報の変換を示す図FIG. 2 is a diagram showing conversion of force information in the present invention.

【図3】本発明の動作を示す図FIG. 3 is a diagram showing the operation of the present invention.

【図4】従来技術における力制御の概念ブロック図FIG. 4 is a conceptual block diagram of force control in the related art.

【符号の説明】[Explanation of symbols]

101 ロボットアーム 102 対象物 103 手先 104 力センサ 105 モータ 106 回転角検出計 107 A/D回路 108 対象物位置設定部 109 動作範囲制限装置 110 回転角変換回路 111 順運動学計算部 112 インピーダンス設定部 113 変位算出部 114 釣合い位置設定部 115 逆運動学計算部 116 ゲイン積算器 117 D/A回路 118 ドライバ 101 Robot Arm 102 Object 103 Hand 104 Force Sensor 105 Motor 106 Rotation Angle Detector 107 A / D Circuit 108 Object Position Setting Unit 109 Operating Range Limiting Device 110 Rotation Angle Conversion Circuit 111 Forward Kinematics Calculation Unit 112 Impedance Setting Unit 113 Displacement calculation unit 114 Balance position setting unit 115 Inverse kinematics calculation unit 116 Gain accumulator 117 D / A circuit 118 Driver

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ロボットアームの先端に取りつけた力セ
ンサの情報をもとにロボットの各関節を制御する力制御
のもとで、教示者が力センサに教示力を加えることによ
り意図する動作をロボットアームに直接教示する直接教
示ロボットの動作範囲制限装置において、 力センサからの情報Tinを、対象物に接近する方向とそ
れに垂直な方向とに分解し、接近する方向の力Txin が
正の時のみ、装置内部に記憶している対象物位置と各関
節角から算出した手先位置との間の距離に応じて1から
0まで単調連続に変化するリミット係数αe を算出し、
これをTxin に積算し、他の分力とともに再合成するこ
とで出力Tout を得る力情報リミット部を備えたことを
特徴とする直接教示ロボットの動作範囲制限装置。
1. An instructor applies an instruction force to a force sensor under a force control for controlling each joint of a robot based on information of a force sensor attached to a tip of a robot arm, thereby performing an intended operation. In a motion range limiting device for a direct teaching robot that directly teaches to a robot arm, the information Tin from a force sensor is decomposed into a direction approaching an object and a direction perpendicular thereto, and when the force Txin in the approaching direction is positive. Only, the limit coefficient αe that monotonously changes from 1 to 0 according to the distance between the object position stored in the device and the hand position calculated from each joint angle is calculated,
A motion range limiting device for a direct teaching robot, comprising a force information limit unit for accumulating this in Txin and recombining it with other component forces to obtain an output Tout.
【請求項2】 対象物がとりうる動作範囲すべてを新た
な仮想の対象物として設定することを特徴とした請求項
1記載の直接教示ロボットの動作範囲制限装置。
2. The operation range limiting device for a direct teaching robot according to claim 1, wherein the entire operation range of the object is set as a new virtual object.
【請求項3】 ロボットアームの手先位置の到達不可な
範囲すべてを仮想の対象物として設定することを特徴と
した請求項1記載の直接教示ロボットの動作範囲制限装
置。
3. An operation range limiting device for a direct teaching robot according to claim 1, wherein all the unreachable ranges of the hand position of the robot arm are set as virtual objects.
【請求項4】 対象物からの距離情報を近接センサによ
って測定し、対象物の方向を近接センサの取り付け位置
によって決定することを特徴とした請求項1記載の直接
教示ロボットの動作範囲制限装置。
4. A motion range limiting device for a direct teaching robot according to claim 1, wherein distance information from the object is measured by a proximity sensor, and the direction of the object is determined by a mounting position of the proximity sensor.
【請求項5】 力センサを実際に用いることなく、Tin
を手先の運動方向としてジョイスティック等の運動量指
令デバイスによって与えることを特徴とした請求項1記
載の直接教示ロボットの動作範囲制限装置。
5. Tin without actually using a force sensor
2. The motion range limiting device for a direct teaching robot according to claim 1, wherein the movement direction of the hand is given by a momentum command device such as a joystick.
【請求項6】 移動ロボットを手先に見立てて障害物回
避を行なわせることを特徴とする請求項4または5記載
の直接教示ロボットの動作範囲制限装置。
6. The operation range limiting device for a direct teaching robot according to claim 4, wherein the mobile robot is used as a hand to avoid obstacles.
JP32834095A 1995-11-22 1995-11-22 Operating range limiting device for direct teaching robot Pending JPH09141580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32834095A JPH09141580A (en) 1995-11-22 1995-11-22 Operating range limiting device for direct teaching robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32834095A JPH09141580A (en) 1995-11-22 1995-11-22 Operating range limiting device for direct teaching robot

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004292078A Division JP2005034991A (en) 2004-10-05 2004-10-05 Working range limiting apparatus for robot and mobile robot

Publications (1)

Publication Number Publication Date
JPH09141580A true JPH09141580A (en) 1997-06-03

Family

ID=18209148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32834095A Pending JPH09141580A (en) 1995-11-22 1995-11-22 Operating range limiting device for direct teaching robot

Country Status (1)

Country Link
JP (1) JPH09141580A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038314A (en) * 2005-08-01 2007-02-15 Nagoya Institute Of Technology Work assisting device
JP2007038059A (en) * 2005-08-01 2007-02-15 Nagoya Institute Of Technology Work assist apparatus
CN100336637C (en) * 2004-03-31 2007-09-12 发那科株式会社 Robot teaching apparatus
WO2008123200A1 (en) * 2007-03-27 2008-10-16 Gifu University Motion assisting device and its control method
WO2009034732A1 (en) * 2007-09-10 2009-03-19 Gifu University Operation supporting device and its control method
JP2015506850A (en) * 2011-11-09 2015-03-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Application of force feedback at the input device that prompts the operator of the input device to command the joint device to take a suitable posture
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9629520B2 (en) 2007-06-13 2017-04-25 Intuitive Surgical Operations, Inc. Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
JP2017094430A (en) * 2015-11-20 2017-06-01 ファナック株式会社 Manual feed apparatus for robot for calculating operation possible range of robot
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
KR20180059888A (en) 2015-10-14 2018-06-05 카와사키 주코교 카부시키 카이샤 Robot teaching method and robot arm control device
KR20180069031A (en) 2015-11-24 2018-06-22 카와사키 주코교 카부시키 카이샤 Direct teaching method of robot
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
CN108663973A (en) * 2018-06-09 2018-10-16 成都凯天电子股份有限公司 Multichannel target position distance control device
US10188472B2 (en) 2007-06-13 2019-01-29 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10271909B2 (en) 1999-04-07 2019-04-30 Intuitive Surgical Operations, Inc. Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device
US10271912B2 (en) 2007-06-13 2019-04-30 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
JP2019202383A (en) * 2018-05-23 2019-11-28 アズビル株式会社 Direct teaching device and direct teaching method of robot
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
WO2020050032A1 (en) * 2018-09-07 2020-03-12 アズビル株式会社 Robot direct teaching device and direct teaching method
JPWO2021064809A1 (en) * 2019-09-30 2021-04-08

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433919B2 (en) 1999-04-07 2019-10-08 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US10271909B2 (en) 1999-04-07 2019-04-30 Intuitive Surgical Operations, Inc. Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device
CN100336637C (en) * 2004-03-31 2007-09-12 发那科株式会社 Robot teaching apparatus
JP2007038314A (en) * 2005-08-01 2007-02-15 Nagoya Institute Of Technology Work assisting device
JP2007038059A (en) * 2005-08-01 2007-02-15 Nagoya Institute Of Technology Work assist apparatus
US11638999B2 (en) 2006-06-29 2023-05-02 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9801690B2 (en) 2006-06-29 2017-10-31 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical instrument
US10137575B2 (en) 2006-06-29 2018-11-27 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10773388B2 (en) 2006-06-29 2020-09-15 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10737394B2 (en) 2006-06-29 2020-08-11 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10730187B2 (en) 2006-06-29 2020-08-04 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US11865729B2 (en) 2006-06-29 2024-01-09 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
WO2008123200A1 (en) * 2007-03-27 2008-10-16 Gifu University Motion assisting device and its control method
US10695136B2 (en) 2007-06-13 2020-06-30 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US11399908B2 (en) 2007-06-13 2022-08-02 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9901408B2 (en) 2007-06-13 2018-02-27 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10271912B2 (en) 2007-06-13 2019-04-30 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US11432888B2 (en) 2007-06-13 2022-09-06 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US11751955B2 (en) 2007-06-13 2023-09-12 Intuitive Surgical Operations, Inc. Method and system for retracting an instrument into an entry guide
US9629520B2 (en) 2007-06-13 2017-04-25 Intuitive Surgical Operations, Inc. Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
US10188472B2 (en) 2007-06-13 2019-01-29 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
WO2009034732A1 (en) * 2007-09-10 2009-03-19 Gifu University Operation supporting device and its control method
US11638622B2 (en) 2008-06-27 2023-05-02 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US11382702B2 (en) 2008-06-27 2022-07-12 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10368952B2 (en) 2008-06-27 2019-08-06 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10984567B2 (en) 2009-03-31 2021-04-20 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10282881B2 (en) 2009-03-31 2019-05-07 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US11941734B2 (en) 2009-03-31 2024-03-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10959798B2 (en) 2009-08-15 2021-03-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US11596490B2 (en) 2009-08-15 2023-03-07 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10271915B2 (en) 2009-08-15 2019-04-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10772689B2 (en) 2009-08-15 2020-09-15 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10828774B2 (en) 2010-02-12 2020-11-10 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10537994B2 (en) 2010-02-12 2020-01-21 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
JP2015506850A (en) * 2011-11-09 2015-03-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Application of force feedback at the input device that prompts the operator of the input device to command the joint device to take a suitable posture
JP2017080887A (en) * 2011-11-09 2017-05-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Application of force feedback in input device that urges input device operator to give instruction so that joint instrument takes appropriate posture
US11806102B2 (en) 2013-02-15 2023-11-07 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US11389255B2 (en) 2013-02-15 2022-07-19 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
KR20180059888A (en) 2015-10-14 2018-06-05 카와사키 주코교 카부시키 카이샤 Robot teaching method and robot arm control device
DE112016004725B4 (en) 2015-10-14 2021-09-16 Kawasaki Jukogyo Kabushiki Kaisha Method for teaching a robot and robot arm control device
US10751874B2 (en) 2015-10-14 2020-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of teaching robot and robotic arm control device
DE112016004725T5 (en) 2015-10-14 2018-07-19 Kawasaki Jukogyo Kabushiki Kaisha Method for teach-in of a robot and robot arm control device
JP2017094430A (en) * 2015-11-20 2017-06-01 ファナック株式会社 Manual feed apparatus for robot for calculating operation possible range of robot
US10118295B2 (en) 2015-11-20 2018-11-06 Fanuc Corporation Manual feed apparatus of robot for calculating operable range of robot
DE112016005365B4 (en) 2015-11-24 2022-06-23 Kawasaki Jukogyo Kabushiki Kaisha Direct teaching method of a robot
US10864632B2 (en) 2015-11-24 2020-12-15 Kawasaki Jukogyo Kabushiki Kaisha Direct teaching method of robot
KR20180069031A (en) 2015-11-24 2018-06-22 카와사키 주코교 카부시키 카이샤 Direct teaching method of robot
KR20200139217A (en) * 2018-05-23 2020-12-11 아즈빌주식회사 Robot's direct teaching device and direct teaching method
CN112118940A (en) * 2018-05-23 2020-12-22 阿自倍尔株式会社 Direct teaching device and direct teaching method for robot
CN112118940B (en) * 2018-05-23 2023-05-30 阿自倍尔株式会社 Direct teaching device and direct teaching method for manipulator
WO2019225358A1 (en) * 2018-05-23 2019-11-28 アズビル株式会社 Device and method for direct teaching of robot
JP2019202383A (en) * 2018-05-23 2019-11-28 アズビル株式会社 Direct teaching device and direct teaching method of robot
CN108663973A (en) * 2018-06-09 2018-10-16 成都凯天电子股份有限公司 Multichannel target position distance control device
CN108663973B (en) * 2018-06-09 2023-11-10 成都凯天电子股份有限公司 Multi-path target position distance control device
WO2020050032A1 (en) * 2018-09-07 2020-03-12 アズビル株式会社 Robot direct teaching device and direct teaching method
JP2020040136A (en) * 2018-09-07 2020-03-19 アズビル株式会社 Direct teaching device of robot, and direct teaching method
KR20210041034A (en) * 2018-09-07 2021-04-14 아즈빌주식회사 Robot's Direct Teaching Device and Direct Teaching Method
WO2021064809A1 (en) * 2019-09-30 2021-04-08 株式会社Fuji Robot control device and direct teaching method for robot
JPWO2021064809A1 (en) * 2019-09-30 2021-04-08

Similar Documents

Publication Publication Date Title
JPH09141580A (en) Operating range limiting device for direct teaching robot
JP2019018340A (en) Work robot, control method therefor
US20140188280A1 (en) Method and system for controlling gait of robot
JP6032811B2 (en) Force control device and position control device using admittance control
JP2019020826A (en) Force control device, force control method and force control program
JPH10329071A (en) Impedance control device for robot arm
JP2604929B2 (en) Robot control device
JPH03123907A (en) Direct teaching device and method of robot
JPH1158278A (en) Control device for robot
JP2005034991A (en) Working range limiting apparatus for robot and mobile robot
JP2003300183A (en) Control device of vertical articulated manipulator
Arita et al. Smoothly Connected Preemptive Impact Reduction and Contact Impedance Control
JPH09154900A (en) Control device for limb drive device
JP2739764B2 (en) Robot scanning speed control method
JP2737325B2 (en) Robot trajectory generation method
JP4032263B2 (en) Robot direct teach device
JP2709001B2 (en) Work Object Position Detector for Force Control Robot
JPH10202558A (en) Master slave device
JPH09185416A (en) Power controller for manipulator
JP3063863B2 (en) Manipulator operating device
JP2006218573A (en) Operation device, operation adjustment method of operation element, and its program
JP2830205B2 (en) Robot control device
JP3412324B2 (en) Arm drive
JP4376712B2 (en) Operating device
JP2005088114A (en) Direct teaching device of robot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A521 Written amendment

Effective date: 20040428

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20040819

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050411