JPH09138202A - Control method for construction of fill material - Google Patents

Control method for construction of fill material

Info

Publication number
JPH09138202A
JPH09138202A JP7298267A JP29826795A JPH09138202A JP H09138202 A JPH09138202 A JP H09138202A JP 7298267 A JP7298267 A JP 7298267A JP 29826795 A JP29826795 A JP 29826795A JP H09138202 A JPH09138202 A JP H09138202A
Authority
JP
Japan
Prior art keywords
ground
density
depth
measured
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7298267A
Other languages
Japanese (ja)
Other versions
JP3108754B2 (en
Inventor
Michio Tsuchihiro
道夫 土弘
Yoshiaki Nakaya
喜章 中矢
Toshiyuki Sugawara
俊幸 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP07298267A priority Critical patent/JP3108754B2/en
Publication of JPH09138202A publication Critical patent/JPH09138202A/en
Application granted granted Critical
Publication of JP3108754B2 publication Critical patent/JP3108754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a control method in which the surface of the ground can be measured in many points nondestructively and in a short time while a measuring instrument is being moved continuously, in which the surface can be evaluated and in which a result can be obtained in a short time. SOLUTION: A value in which a dry density (γd) and a water content ratio (w) near a part close to the surface of the ground after the construction of fill are found by a γ-ray density meter and a neutron moisture meter as RI measuring instruments. The permittivity (εs) of soil particles obtained by being calculated backwards from a calculation expression in such a way that reflected waves are measured by an underground radar (I) at a frequency of about one giga Hz from an object close to the surface of the ground in the same depth as the RI measuring instruments is used. Then, reflected waves are measured by an underground radar (II) at a frequency of several hundred mega Hz from an object in a depth as a target from the surface of the ground. A dry density (γd) and a wet density (γt) in the depth as the target from the surface of the ground are computed. The dry density (γd) and the wet density (γt) in the depth as the target as well as the water content ratio (w) are displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、土木工事における
盛土材料の締固め管理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compaction management method for embankment material in civil engineering work.

【0002】[0002]

【従来の技術】従来より、土木工事における道路の盛土
工事、フィルダム工事、空港の盛土工事、ソイルセメン
ト遮水工事およびベントナイト混合土による埋め戻し工
事などの盛土の締固め管理には、砂置換法をはじめとす
る現位置での置換による土の密度測定法やRI計器によ
る測定法のγ線密度計、中性子水分計などによって、施
工後の盛土の乾燥密度や空気間隙率や含水比などの値を
求めることによって評価し管理されている。
2. Description of the Related Art Conventionally, sand substitution method has been used for compaction management of embankments such as road embankment work, fill dam work, airport embankment work, soil cement water shield work and backfill work with bentonite mixed soil in civil engineering work. Values such as dry density, air porosity and water content of the embankment after construction by γ-ray densitometer, neutron moisture meter, etc. Is evaluated and managed by asking for.

【0003】この砂置換法は標準的な手法として最大粒
径が53mm以下の土に広く用いられているものであって、
JIS−A−1214(砂置換法による土の密度試験)
によって規定しているように、締固め施工後の表面に試
験孔を開け、掘り出した土の質量および含水比を直接的
に測定し、試験孔には予め粒度を調整して体積および密
度を検定した置換用の砂を充填して、試験孔の体積を間
接的に測定する方法であって、得られた各数値から締固
めの状態を評価するものである。
This sand replacement method is widely used as a standard method for soil with a maximum particle size of 53 mm or less,
JIS-A-1214 (Soil density test by sand replacement method)
As specified by the above, a test hole is opened on the surface after compaction and the mass and water content of the excavated soil are directly measured, and the particle size is adjusted in advance in the test hole to verify the volume and density. It is a method of indirectly measuring the volume of the test hole by filling with the sand for replacement, and evaluating the compacted state from the obtained numerical values.

【0004】また、RI計器による測定法のうち、γ線
密度計は放射線の減速散乱の性質を利用して土の密度を
間接的に計るもので、被測定物中を透過した放射線の減
衰状況から密度を計る透過型のγ線密度計と、被測定物
から散乱する散乱線の量から密度を計る後方散乱型の密
度計とがある。測定装置は被測定物に対して放射線を照
射する線源部と、透過または散乱した放射線を捕らえて
その量を電気信号に変換しカウントする計数部分とに分
けられている。
Among the measuring methods using RI instruments, the γ-ray densitometer indirectly measures the density of soil by utilizing the property of decelerated scattering of radiation, and the attenuation state of radiation transmitted through an object to be measured. There are a transmission-type γ-ray densitometer that measures the density from a backscattering-type densitometer that measures the density from the amount of scattered radiation scattered from the object to be measured. The measuring device is divided into a radiation source unit that irradiates the object to be measured with radiation and a counting unit that captures the transmitted or scattered radiation and converts the amount into an electric signal to count.

【0005】また、測定目的からは道路、鉄道、滑走路
の路床およびロックフィルダムのコアなど比較的表面部
分の密度を測定するのに適した表面打込み型と、地盤改
良後の測定転圧厚さの大きいものの締固め効果の測定あ
るいは深部の土質調査に適した挿入型とがあるが、いず
れも各測定点における点の評価となる。
For the purpose of measurement, a surface driving type suitable for measuring the density of relatively surface portions such as roads, railroads, runway subgrades and cores of rockfill dams, and a measured rolling thickness after ground improvement There is an insertion type that is suitable for measuring the compaction effect of a large size or for deep soil investigation, but all of them are points at each measurement point.

【0006】一方、RI計器による測定法の中性子水分
計は被測定物にエネルギーの高い速中性子を照射する
と、被測定物中の水分子の水素原子に衝突して、その時
エネルギーを失い、その周辺に水分子の量に応じた熱中
性子に転換される性質を利用したもので、この量を計測
することによって含水比を求める測定方法であって、タ
イプとしては散乱型である。測定はγ線密度計と同時に
使用して計測することが多く、表面の状態を計測する表
面型と深部の状態を測定する挿入型とがあるが、この場
合も各測定点における点の評価となる。
On the other hand, in the neutron moisture meter of the measuring method using the RI instrument, when an object to be measured is irradiated with high-energy fast neutrons, it collides with hydrogen atoms of water molecules in the object to be measured and loses energy at that time, and its surroundings. It utilizes the property of being converted into thermal neutrons according to the amount of water molecules, and is a measurement method for determining the water content ratio by measuring this amount, and the type is the scattering type. Measurements are often made by using the gamma-ray densitometer at the same time, and there are a surface type that measures the surface condition and an insertion type that measures the depth condition. Become.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記砂置換法
では1点1点での測定であって、4人1組で作業しても
1日当たり10数点がやっとであり、機械化施工の時代に
そぐわない方法であることや広い面積では点の評価とな
って精度が悪いこと、また、測定後の分析結果が得られ
るまでに長時間(24時間近く)掛かることや測定法が施
工した表面に孔を開ける方法なので止水を目的としてい
る場合には漏水の原因になることなどの問題がある。
However, in the above sand substitution method, measurement is performed at one point at a time, and even if a group of four people work, only 10 or more points per day can be barely reached. It is not suitable for this method, the point is evaluated in a large area, and the accuracy is poor. Also, it takes a long time (near 24 hours) to obtain the analysis result after measurement, and the surface on which the measurement method is applied Since it is a method of opening holes, there is a problem that it may cause water leakage if the purpose is to stop water.

【0008】一方、RI計器による各測定法では、前記
砂置換法に比較して少しは自動化しているものの、やは
り2人1組で1日当たり30〜40点がやっとであって、こ
の場合も点の評価となって精度が悪いことや結果が得ら
れるのが1分間後であること、そして、この各方法にお
いても施工した表面に孔を開ける方法なので止水を目的
としている場合には漏水の原因になることなどの問題が
ある。
On the other hand, each measuring method using the RI instrument is a little more automated than the sand replacement method, but it is barely 30 to 40 points per day for a group of two people. The point is that the accuracy is poor and the result is obtained after 1 minute, and in each of these methods, water is leaked when the purpose is to stop water because it is a method of making holes in the constructed surface. There is a problem such as causing.

【0009】なお、RI計器による測定法の改良した方
法として、測定器を連続的に移動しながらの測定を可能
とした表面散乱タイプの計器もあるが表面から5〜10cm
付近の値しか得られず深部の測定には不十分である。
As an improved method of the RI instrument, there is also a surface scattering type instrument which enables measurement while continuously moving the instrument, but 5 to 10 cm from the surface.
Only near values can be obtained, which is not enough for deep measurements.

【0010】本発明の目的は前記従来例の不都合を解消
し、地表面を連続的に移動しながら多数点を測定するの
に孔あけなしの非破壊的な作業ですみ、面での評価によ
る精度のよい結果が短時間に得られて、さらに、測定場
所において手直しができる盛土材料の施工管理装置を提
供することにある。
The object of the present invention is to eliminate the disadvantages of the above-mentioned conventional example, and to measure a large number of points while continuously moving on the ground surface, a non-destructive work without drilling is necessary, and the evaluation by the surface is performed. Another object of the present invention is to provide an embankment material construction management device that can obtain accurate results in a short time and that can be reworked at a measurement location.

【0011】[0011]

【課題を解決するための手段】本発明は前記目的を達成
するため、盛土施工後の地表に近接する付近の乾燥密度
(γd)および含水比(w)をRI計器のγ線密度計お
よび中性子水分計により求めた値と、RI計器と同じ深
さの地表に近接する付近を対象に周波数が1ギガHZ程度
の地下レーダー(I)によって反射波を測定して、計算
式から逆算して得た土粒子の誘電率(εS )とを用い
て、地表から目的とする深さを対象に周波数が数百メガ
HZの地下レーダー(II)によって反射波を測定し、計算
によって地表から目的とする深さの乾燥密度(γd)お
よび湿潤密度(γt)を算出し、目的とする深さの乾燥
密度(γd)、湿潤密度(γt)および含水比(w)を
表示して、施工後の締固めの状態を評価することを要旨
とするものである。
In order to achieve the above-mentioned object, the present invention provides a dry density (γd) and a water content (w) in the vicinity of the ground surface after embankment construction by using a γ-ray densitometer and a neutron meter of an RI instrument. The reflected wave is measured by the value obtained by the moisture meter and the vicinity of the surface of the same depth as the RI instrument, which is measured by an underground radar (I) with a frequency of about 1 gigahertz (HZ), and is calculated back from the formula. Using the permittivity (ε S ) of the soil particles, a frequency of several hundred mega
The reflected wave is measured by the underground radar (II) of HZ, the dry density (γd) and the wet density (γt) of the target depth are calculated from the ground surface, and the dry density (γd) of the target depth is calculated. The purpose is to display the wet density (γt) and the water content ratio (w) and evaluate the compaction state after construction.

【0012】本発明によれば、盛土施工後の地表面に試
験孔を開けることなく非破壊的に、移動しながら連続的
に多数点において乾燥密度(γd)、湿潤密度(γt)
および含水比(w)の値を測定できる。
According to the present invention, the dry density (γd) and the wet density (γt) at a number of points are continuously moved while moving non-destructively without making test holes on the ground surface after embankment.
And the value of water content (w) can be measured.

【0013】また、測定は少人数で短時間に行うことが
でき、再測定等の手直しも測定場所において容易にでき
て、さらに、結果が短時間に得られ、得られた結果が面
による評価なので精度の高いものとなる。
Further, the measurement can be carried out by a small number of people in a short time, rework such as re-measurement can be easily carried out at the measuring place, and further, the result can be obtained in a short time, and the obtained result can be evaluated by the surface. Therefore, it will be highly accurate.

【0014】[0014]

【発明の実施の形態】以下、図面に基づいて、本発明の
盛土材料の施工管理方法の実施の形態について詳細に説
明すると、図1に示すように、RI計器の表面散乱型水
分密度計と、得られたデーターに基づいて計算をする計
算機と、地表から10cm付近を対象として反射波を測定す
る1ギガHZ程度の周波数を有する地下レーダー(I)
と、地表から目的とする深さを対象として反射波を測定
する数百メガHZ程度の周波数を有する地下レーダー(I
I)とからシステムを構成する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the embankment material construction management method of the present invention will be described below in detail with reference to the drawings. As shown in FIG. , A calculator that calculates based on the obtained data, and an underground radar (I) with a frequency of about 1 gigahertz (HZ) that measures reflected waves targeting around 10 cm from the ground surface
And an underground radar (I with a frequency of several hundred mega HZ, which measures reflected waves from the ground surface to the target depth).
The system consists of I) and.

【0015】本発明の測定の特徴は表面散乱型RI計器
の欠点と地中埋設物探査などに用いる地下レーダー法の
欠点とをお互いに補いながら、地表面からの深さ50cm程
度までの地盤内の水分、密度を求めようとするものであ
る。
The characteristic of the measurement of the present invention is that while compensating each other for the defect of the surface scattering type RI instrument and the defect of the underground radar method used for the underground buried object exploration, etc., the inside of the ground up to a depth of about 50 cm from the ground surface. It seeks to determine the water content and density of the.

【0016】このうち、RI計器の特徴としては、前述
のように測定器を連続的に移動しながらの測定が可能で
あるが、測定深度が地表から5〜10cmと浅いところしか
測定できず、一方、地下レーダー法は、使用する周波数
により測定深度が数cmから数m程度まで探索でき、RI
計器による方法と同様に連続的に移動しながら測定でき
る反面、土質の水分、密度表示ができないので土質の状
態を評価することには困難であった。
Among them, the characteristic of the RI instrument is that it is possible to measure while continuously moving the measuring instrument as described above, but the measurement depth is only 5 to 10 cm shallow from the surface of the earth, On the other hand, the underground radar method can search for measurement depths of several cm to several meters depending on the frequency used, and RI
Although it is possible to measure while moving continuously like the method using a meter, it is difficult to evaluate the soil condition because the soil moisture and density cannot be displayed.

【0017】そこで、図1に示す本発明のシステム構成
のように、まず、RI計器の表面散乱型水分密度計によ
って地表に近接する位置、すなわち、地表から10cm付近
の含水比(w)および乾燥密度(γd)を測定し、次い
で、1ギガHZ程度の周波数を有する地下レーダー(I)
によって前記RI計器による測定と同じ深さの地表から
10cm付近を対象として反射波を測定し、計算式から土粒
子の誘電率(εS )の値を逆算し、該土粒子の誘電率
(εS )の値と、周波数が数百メガHZの地下レーダー
(II)によって地表から目的とする深さ(例えば地表か
ら50cm付近)を対象として反射波を測定し、計算式によ
って乾燥密度(γd)、湿潤密度(γt)を算出し、地
表から目的とする深さ(例えば地表から50cm付近)の含
水比(w)、乾燥密度(γd)、湿潤密度(γt)を求
めて表示するものである。
Therefore, as in the system configuration of the present invention shown in FIG. 1, first, a water content (w) and a drying rate at a position close to the surface of the earth by a surface scattering type moisture densitometer of an RI instrument, that is, in the vicinity of 10 cm from the surface of the surface and drying. Underground radar (I) that measures the density (γd) and then has a frequency of about 1 Giga HZ
From the surface of the same depth as measured by the RI instrument
The reflected wave is measured as a target around 10 cm, from formulas of soil particles back to find the value of the dielectric constant (epsilon S), and the value of the dielectric constant of the該土particles (epsilon S), frequency of several hundred mega HZ Underground radar (II) measures the reflected wave from the ground surface to the target depth (for example, around 50 cm from the ground surface), and calculates the dry density (γd) and wet density (γt) by the calculation formula, and then from the ground surface The water content ratio (w), the dry density (γd), and the wet density (γt) at the depth (for example, around 50 cm from the ground surface) are obtained and displayed.

【0018】また、図2に示す本発明のデーターのフロ
ーのように、まず、RI計器の表面散乱型水分密度計と
計算機によって地表から10cm付近の含水比(w)および
乾燥密度(γd)を求め(ステップイ)、次いで、1ギ
ガHZ程度の周波数を有する地下レーダー(I)によって
前記RI計器による測定と同じ深さの地表から10cm付近
を対象として反射波を測定し(ステップロ)、計算式か
ら土粒子の誘電率(εS )の値を逆算して求め(ステッ
プハ)、該土粒子の誘電率(εS )の値と、周波数が数
百メガHZの地下レーダー(II)によって地表から目的と
する深さ(例えば地表から50cm付近)を対象として反射
波を測定し(ステップニ)、計算式から乾燥密度(γ
d)、湿潤密度(γt)を算出して(ステップホ)、地
表から目的とする深さ(例えば地表から50cm付近)の含
水比(w)、乾燥密度(γd)、湿潤密度(γt)を表
示する(ステップヘ)ものである。
Further, as in the data flow of the present invention shown in FIG. 2, first, the water content ratio (w) and the dry density (γd) in the vicinity of 10 cm from the surface of the earth are measured by a surface scattering type water densitometer of RI instrument and a computer. Obtained (step a), and then, using an underground radar (I) having a frequency of about 1 gigahertz (HZ), the reflected wave is measured for the vicinity of 10 cm from the ground surface at the same depth as that measured by the RI instrument (step b) and calculated. calculates back the value of the dielectric constant of the soil particles from the formula (epsilon S) (step c), the value of the dielectric constant of the該土particles (epsilon S), the underground radar (II) of the frequency of several hundred mega HZ The reflected wave is measured from the ground surface to the target depth (for example, around 50 cm from the ground surface) (step 2), and the dry density (γ
d) Calculate the wet density (γt) (step E) and display the water content (w), the dry density (γd), and the wet density (γt) at the desired depth from the surface (for example, around 50 cm from the surface) Yes (to step).

【0019】また、地中での電波の特性は、雑誌「土と
基礎」July,1985,33〜36p.保国光敏他「電波探査技術を
利用した浅層地盤調法」に記載されたように、探査対象
物までの深度Zは、電波の送信から受信までの時間Δt
を測定して次の数式(1) によって求められる。 Z=V×Δt/2 ………(1) V:地盤中における電波の伝ぱ速度 さらに、地盤中における電波の伝ぱ速度は、数1で示す
数式(2) で表されるが、通常の土が非磁性体と考えられ
ることや、電波の周波数が高いことから近似的に誘電率
の関数として、数1で示す数式(3) で求められる。
The characteristics of radio waves in the ground are as described in the magazine "Soil and Foundation" July, 1985, 33-36 p. Mitsutoshi Hokuni et al. "Shallow ground conditioning using radio wave survey technology". In addition, the depth Z to the exploration target is the time Δt from the transmission to reception of the radio wave.
Is calculated by the following formula (1). Z = V × Δt / 2 (1) V: Propagation speed of radio waves in the ground Furthermore, the propagation speed of radio waves in the ground is expressed by the mathematical expression (2) shown in Equation 1, Is considered to be a non-magnetic material, and the frequency of the radio wave is high, so it can be approximately calculated as a function of the dielectric constant by the mathematical expression (3) shown in Equation 1.

【数1】 ここで各記号は次のことを示す。 ε:地盤の絶対誘電率 ε=εr ・ε0 εr :地盤の比誘電率(通常、誘電率と称する) ε0 :真空の絶対誘電率(ε0 =8.854 ×10-12 F/
m) μ:地盤の透磁率 σ:地盤の導電率 ω:電波の角周波数(ω=2 πf) c0 :真空中における電波の伝ぱ速度(c0 =3 ×108
m/s )
(Equation 1) Here, each symbol shows the following. ε: Absolute dielectric constant of the ground ε = ε r · ε 0 ε r : Relative dielectric constant of the ground (usually referred to as dielectric constant) ε 0 : Absolute dielectric constant of vacuum (ε 0 = 8.854 × 10 -12 F /
m) μ: Permeability of ground σ: Conductivity of ground ω: Angular frequency of radio wave (ω = 2πf) c 0 : Propagation speed of radio wave in vacuum (c 0 = 3 × 10 8)
m / s)

【0020】また、誘電率(εr )は、土の種類や含水
状態によって異なることが知られており、筆者らは、リ
アクタンス法の1種である静電容量方式により種々の土
の誘電率(εr )を測定し、土の物理的性質との関係を
検討した結果、土の誘電率(εr )は土を構成している
成分(土粒子、水、空気)の誘電率と容積率によって表
される、数2で示す数式(4) によって、土の種類にかか
わらず近似的に計算できることを明らかにした。
It is known that the permittivity (ε r ) varies depending on the type of soil and the water content, and the authors have studied the permittivity of various soils by the capacitance method which is one of the reactance methods. As a result of measuring (ε r ) and examining the relationship with the physical properties of soil, the permittivity (ε r ) of soil is the permittivity and volume of the components (soil particles, water, air) that make up soil. It has been clarified that the mathematical formula (4) expressed by the formula 2 expressed by the ratio can be calculated approximately regardless of the soil type.

【数2】 ここで各記号は次のことを示す。 εS ,εW ,εa :土粒子,水,空気の誘電率 (εS ≒4,εW ≒81,εa ≒1) φS ,φw ,φa :土粒子,水 空気の容積率 (比重、単位体積重量、含水比から求まる。)(Equation 2) Here, each symbol shows the following. ε S , ε W , ε a : Dielectric constants of soil particles, water and air (ε S ≈ 4, ε W ≈ 81, ε a ≈ 1) φ S , φ w , φ a : Soil particles, water Air volume Rate (determined from specific gravity, unit volume weight, water content ratio)

【0021】次に、前述の数1に示す(3) 式と数2に示
す(4) 式と次に示す(5) 式、(6) 式および(7) 式とを用
いて、代入法によって(4) 式に(5) 式、(6) 式および
(7) 式を代入し整理して乾燥密度(γd)を求める形と
し、これに(3) 式を代入すると、目的とする深さ(例え
ば地表から50cm付近)の乾燥密度(γd)を求める数3
に示す(8) 式が得られる。 φw =w・γd ………(5) φa =1−γd(1/GS +w) ………(6) φS =γd/GS ………(7) (GS :土粒子比重)
Next, the substitution method is performed using the equation (3) shown in the equation 1 and the equation (4) shown in the equation 2 and the following equations (5), (6) and (7). Equation (5), Equation (6) and
By substituting equation (7) and rearranging it to obtain the dry density (γd), by substituting equation (3) into this, the dry density (γd) at the target depth (for example, around 50 cm from the ground surface) is obtained. Number 3
Equation (8) shown in is obtained. φ w = w · γd (5) φ a = 1-γd (1 / G S + w) (6) φ S = γd / G S (7) (G S : soil particle specific gravity)

【数3】 (Equation 3)

【0022】また、地下レーダーのみの測定によって、
目的とする深さの乾燥密度(γd)、湿潤密度(γt)
および含水比(w)を直接求めることが出来ない理由
は、前述の数4に示す(8) 式に未知数が多いことにあっ
て、特に土粒子の誘電率(εS)が地盤により異なるこ
とが挙げられる。
Also, by measuring only underground radar,
Dry density (γd) and wet density (γt) at the target depth
The reason why the water content ratio (w) cannot be obtained directly is that there are many unknowns in the equation (8) shown in the above-mentioned equation 4, and the permittivity (ε S ) of the soil particles differs depending on the ground. Is mentioned.

【0023】そこで、同じ測定深さの地表から10cm付近
をRI計器とギガHZ帯の地中レーダーで前述の(8) 式の
乾燥密度(γd)および含水比(w)の値をRI計器の
測定から求めて土粒子の誘電率(εS )を計算機等で逆
算によって求めることとする。ここで、電波の伝ぱ速度
(c)、空気の誘電率(εa )、地盤中における電波の
伝ぱ速度(Vε)は既知の値であり、また、土粒子の比
重(GS )、水の誘電率(εW )は現地の土質試験等で
簡単に求められ、土質が複雑でない限り、ほぼ一様であ
ることなどから簡単に土粒子の誘電率(εS )を求める
ことができる。
Therefore, about 10 cm from the surface of the same measurement depth, the values of the dry density (γd) and the water content (w) of the above formula (8) were measured by the RI instrument and the Giga HZ zone underground radar. The permittivity (ε S ) of soil particles will be obtained by back calculation using a computer, etc., obtained from measurement. Here, radio waves propagation speed (c), the dielectric constant of air (epsilon a), propagation speed of radio waves in the ground (Vε) is a known value, also, the specific gravity of the soil particles (G S), water The permittivity (ε W ) can be easily obtained by a local soil test or the like. Unless the soil is complex, the permittivity (ε S ) of the soil particles can be easily obtained because it is almost uniform.

【0024】次に、この土粒子の誘電率(εS )の値を
用いて、求めようとする深さでの地盤中における電波の
伝ぱ速度(Vε)を現地で測定確認すれば周波数が数百
メガHZの地中レーダーでも乾燥密度(γd)を導けるこ
とになる。
Next, using the value of the dielectric constant (ε S ) of the soil particles, if the propagation velocity (Vε) of the radio wave in the ground at the depth to be obtained is measured and confirmed on site, the frequency will be several. Underground radar of 100 mega HZ can also guide the dry density (γd).

【0025】また、含水比(w)については別の実験結
果から、ダンピングローラー転圧と平滑処理を行って盛
土した前層20cmと当該層20cmに対して、Case1として仕
様書方式に基く透過型RI密度計による前層の含水比の
測定値と、Case2として透過型RI密度計による当該層
表面の含水比の測定値と、Case3として表面散乱型RI
密度計による当該層表面から深さ10cmの含水比の測定値
とを対比してみると、Case1〜3の値、即ち、地表面付
近と求めようとする地表から数十cm深さでの値に余り変
化がみられないことから、転圧管理において同じ土で締
め固める場合には、1層目と2層目のように隣合う層で
は殆ど変化がないものと解釈してよく、地表面付近の値
をそのまま利用できるものとした。
Regarding the water content (w), from another experiment result, it was determined that Case 1 was a transmission type based on the specification method for the front layer 20 cm and the layer 20 cm that were embanked by rolling the compaction roller and smoothing the soil. The water content of the front layer measured with an RI densitometer, the water content of the layer surface measured with a transmission RI densitometer as Case 2, and the surface scattering RI as Case 3.
When comparing the measured value of the water content at a depth of 10 cm from the surface of the layer with a densitometer, the values of Cases 1 to 3, that is, the value at a depth of several tens of cm from the surface of the earth to be obtained near the ground surface Since there is little change in the soil, when compacting with the same soil in rolling compaction, it may be interpreted that there is almost no change in the adjacent layers such as the first and second layers. The values in the vicinity can be used as they are.

【0026】[0026]

【発明の効果】以上述べたように本発明の盛土材料の施
工管理方法は、盛土施工後の地表面に試験孔を開けるこ
となく非破壊的に、連続的に移動しながら多数点におい
て乾燥密度(γd)、湿潤密度(γt)および含水比
(w)の値を測定できるものである。
As described above, the embankment material construction management method of the present invention is a non-destructive continuous movement without embedding a test hole on the ground surface after embankment construction while continuously moving to a dry density. The values of (γd), wet density (γt) and water content ratio (w) can be measured.

【0027】また、測定は少人数で短時間に行うことが
でき、再測定等の手直しも測定場所において容易にで
き、さらに、結果が短時間に得られ、得られた結果が面
による評価なので精度の高いものとなる。
Further, the measurement can be performed by a small number of people in a short time, rework such as re-measurement can be easily carried out at the measurement place, and further, the result can be obtained in a short time, and the obtained result is an evaluation by the surface. It will be highly accurate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の盛土材料の施工管理方法のシステム構
成を示す説明図である。
FIG. 1 is an explanatory diagram showing a system configuration of an embankment material construction management method of the present invention.

【図2】本発明の盛土材料の施工管理方法のデーターの
フロー図である。
FIG. 2 is a data flow diagram of the embankment material construction management method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 盛土施工後の地表に近接する付近の乾燥
密度(γd)および含水比(w)をRI計器のγ線密度
計および中性子水分計により求めた値と、RI計器と同
じ深さの地表に近接する付近を対象に周波数が1ギガHZ
程度の地下レーダー(I)によって反射波を測定して、
計算式から逆算して得た土粒子の誘電率(εS )とを用
いて、地表から目的とする深さを対象に周波数が数百メ
ガHZの地下レーダー(II)によって反射波を測定し、計
算によって地表から目的とする深さの乾燥密度(γd)
および湿潤密度(γt)を算出し、目的とする深さの乾
燥密度(γd)、湿潤密度(γt)および含水比(w)
を表示して、施工後の締固めの状態を評価することを特
徴とする盛土材料の施工管理方法。
1. The dry density (γd) and water content (w) in the vicinity of the ground surface after embankment are determined by a γ-ray densitometer and a neutron moisture meter of the RI instrument and the same depth as the RI instrument. The frequency is 1 gigahertz HZ for the vicinity of the ground surface
Measure the reflected wave with the underground radar (I)
Using the permittivity (ε S ) of the soil particles obtained by back calculation from the calculation formula, the reflected wave was measured by the underground radar (II) with a frequency of several hundred mega HZ at the target depth from the ground surface. , Dry density (γd) of the target depth from the surface by calculation
And the wet density (γt) are calculated, and the dry density (γd), the wet density (γt) and the water content ratio (w) of the target depth are calculated.
Is displayed, and the state of compaction after construction is evaluated, and the construction management method for the embankment material is characterized.
JP07298267A 1995-11-16 1995-11-16 Construction management method of embankment material Expired - Fee Related JP3108754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07298267A JP3108754B2 (en) 1995-11-16 1995-11-16 Construction management method of embankment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07298267A JP3108754B2 (en) 1995-11-16 1995-11-16 Construction management method of embankment material

Publications (2)

Publication Number Publication Date
JPH09138202A true JPH09138202A (en) 1997-05-27
JP3108754B2 JP3108754B2 (en) 2000-11-13

Family

ID=17857430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07298267A Expired - Fee Related JP3108754B2 (en) 1995-11-16 1995-11-16 Construction management method of embankment material

Country Status (1)

Country Link
JP (1) JP3108754B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097896A (en) * 2000-09-26 2002-04-05 Toda Constr Co Ltd Method and system for improving excavated soil
CN102012221A (en) * 2010-10-27 2011-04-13 中公高科(北京)养护科技有限公司 Ground penetrating radar-based pavement crack depth nondestructive test method
JP2014219208A (en) * 2013-05-01 2014-11-20 アースニクス株式会社 Moisture measuring device
JP2018128372A (en) * 2017-02-09 2018-08-16 株式会社安藤・間 Measuring method of bentonite mixed soil and measuring device of bentonite mixed soil
JP2021056021A (en) * 2019-09-27 2021-04-08 太平洋セメント株式会社 Quality evaluation method for improved ground
CN113466083A (en) * 2021-07-15 2021-10-01 深圳市粤通建设工程有限公司 Method, system and device for processing high-precision asphalt pavement density and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097896A (en) * 2000-09-26 2002-04-05 Toda Constr Co Ltd Method and system for improving excavated soil
CN102012221A (en) * 2010-10-27 2011-04-13 中公高科(北京)养护科技有限公司 Ground penetrating radar-based pavement crack depth nondestructive test method
JP2014219208A (en) * 2013-05-01 2014-11-20 アースニクス株式会社 Moisture measuring device
JP2018128372A (en) * 2017-02-09 2018-08-16 株式会社安藤・間 Measuring method of bentonite mixed soil and measuring device of bentonite mixed soil
JP2021056021A (en) * 2019-09-27 2021-04-08 太平洋セメント株式会社 Quality evaluation method for improved ground
CN113466083A (en) * 2021-07-15 2021-10-01 深圳市粤通建设工程有限公司 Method, system and device for processing high-precision asphalt pavement density and storage medium
CN113466083B (en) * 2021-07-15 2024-01-02 深圳市粤通建设工程有限公司 High-precision asphalt pavement density processing method, system, device and storage medium

Also Published As

Publication number Publication date
JP3108754B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US5952561A (en) Real time asphalt pavement quality sensor using a differential approach
Zhang et al. Application of ground penetrating radar in grouting evaluation for shield tunnel construction
Plati et al. Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies
Anbazhagan et al. Comparison of soil water content estimation equations using ground penetrating radar
Carlsten et al. Radar techniques for indicating internal erosion in embankment dams
CN108717082A (en) A kind of compaction of earth rock material quality continuous assessment method based on integrated sonic detection technology
Yu et al. Quality monitoring of metro grouting behind segment using ground penetrating radar
CN106767371A (en) A kind of method that GPR quick detection Reclaimed Soil covers table soil thickness
Fauchard et al. Determination of the compaction of hot mix asphalt using high-frequency electromagnetic methods
Karlovsek et al. Investigation of voids and cavities in bored tunnels using GPR
CN102759491B (en) Rockfill compaction density measurement method and device
Tomer et al. Field evaluation of a soil water-capacitance probe in a fine sand
Vickers et al. Archeological investigations at Chaco Canyon using a subsurface radar
Ye et al. Principle of a low-frequency transient electromagnetic radar system and its application in the detection of underground pipelines and voids
JP3108754B2 (en) Construction management method of embankment material
Liu et al. Evaluation of the antenna parameters for inspection of hidden defects behind a reinforced shield tunnel using GPR
Tan et al. Application of cross-hole radar tomograph in karst Area
Reeves et al. Time domain reflectometry for measuring soil water content in range surveys.
Diamanti et al. A GPR-based sensor to measure asphalt pavement density
Dasari et al. In situ evaluation of radioisotope cone penetrometers in clays
Silvast et al. Onkalo edz-measurements using ground penetrating radar (gpr) method
Charlton Small-scale soil-moisture variability estimated using ground penetrating radar
Zhiyuan et al. Research on soil water content variation in coal mining area based on ground-penetrating radar
Meehan et al. Using electrical density gauges for field compaction control
Potapov et al. Nondestructive quality testing of concrete and asphalt concrete pavements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees