JPH09138196A - Concentration detector for particle in liquid - Google Patents

Concentration detector for particle in liquid

Info

Publication number
JPH09138196A
JPH09138196A JP32215995A JP32215995A JPH09138196A JP H09138196 A JPH09138196 A JP H09138196A JP 32215995 A JP32215995 A JP 32215995A JP 32215995 A JP32215995 A JP 32215995A JP H09138196 A JPH09138196 A JP H09138196A
Authority
JP
Japan
Prior art keywords
liquid
lubricating oil
oil
engine lubricating
particle concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32215995A
Other languages
Japanese (ja)
Inventor
Shinji Nanba
晋治 難波
Rie Oosaki
理江 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32215995A priority Critical patent/JPH09138196A/en
Publication of JPH09138196A publication Critical patent/JPH09138196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain stabilized performance through a simple structure. SOLUTION: The concentration detector for particle in liquid comprises a liquid housing 41, a light source radiating an inspection light, a photoconductor 16 for introducing the inspection light to a liquid contact face, an optical sensor for detecting the inspection light totally reflected on the liquid contact face, and a decision section wherein a choked channel part 412 having decreased channel area is disposed at a delivery port for the liquid chamber 410 of flow-in path 411 of fluid housing. A solid cleaning member 49 floating in the engine oil is encapsulated in the liquid chamber 410 and the shape of liquid chamber 410 is defined, along with the arrangement of flow-in path 411, flow-out path part 413 and liquid contact face, such that the engine oil produces a circulation flow in the liquid chamber 410 passing through the vicinity of liquid contact face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,エンジン潤滑油等における液中
粒子濃度を高精度で検出する液中粒子濃度検出装置に関
する。
TECHNICAL FIELD The present invention relates to an in-liquid particle concentration detecting device for detecting in-liquid particle concentration in engine lubricating oil or the like with high accuracy.

【0002】[0002]

【従来技術】ディーゼルエンジンなどの潤滑油の劣化の
判定は,潤滑油中に含まれるカーボン粒子量が有力な判
定指標となっている。そのため,潤滑油に含まれるカー
ボン粒子濃度を測定する光学式の液中粒子濃度検出装置
(オイル劣化センサ)が提案されている。例えば,図6
に示すように,潤滑油などの検査対象液体81中に没入
させた導光体91の一端に光ファイバ93から検査光3
1を入射させる。そして導光体91の他端に反射面92
を設け,該反射面92で反射された検査光311を図示
しない光センサによって検知する。
2. Description of the Related Art Deterioration of lubricating oil such as diesel engine is determined by the amount of carbon particles contained in the lubricating oil. Therefore, an optical liquid particle concentration detection device (oil deterioration sensor) for measuring the concentration of carbon particles contained in lubricating oil has been proposed. For example, in FIG.
As shown in FIG. 3, the inspection light 3 is introduced from the optical fiber 93 to one end of the light guide 91 immersed in the inspection liquid 81 such as lubricating oil.
1. The reflecting surface 92 is provided on the other end of the light guide 91.
Is provided, and the inspection light 311 reflected by the reflecting surface 92 is detected by an optical sensor (not shown).

【0003】検知される検査光311は,エンジン潤滑
油等の検査対象液体81と導光体91との接液面911
において全反射された光であり,その強度は検査対象液
体81中の粒子濃度によって変化する。即ち,接液面9
11で全反射する際に発生する,いわゆるエバネッセン
ト波は,検査対象液体81中の粒子により吸収,散乱さ
れその強度が変化する(特開平3−111741号公報
参照)。
The detected inspection light 311 is a liquid contact surface 911 between the light guide 91 and the liquid 81 to be inspected such as engine lubricating oil.
Is the light that is totally reflected at, and its intensity changes depending on the particle concentration in the liquid 81 to be inspected. That is, the liquid contact surface 9
The so-called evanescent wave generated when the light is totally reflected at 11 is absorbed and scattered by the particles in the liquid 81 to be inspected, and its intensity changes (see Japanese Patent Laid-Open No. 3-111741).

【0004】なお,入射する検査光31の強度は,一般
に温度その他の条件によって変動するから検知される検
査光311は,通常入射光31の強度と比較される。ま
た,上記において,導光体91の他端部に反射面92を
設けないで,この他端部側から出射した検査光,即ち導
光体の透過光を光センサで検知する第2の方式も提案さ
れている(特開平1−245135号公報参照)。
Since the intensity of the incident inspection light 31 generally changes depending on temperature and other conditions, the inspection light 311 detected is compared with the intensity of the normal incident light 31. Further, in the above, the second method in which the reflection surface 92 is not provided at the other end of the light guide 91 and the inspection light emitted from the other end, that is, the transmitted light of the light guide is detected by the optical sensor. Has also been proposed (see Japanese Patent Laid-Open No. 1-245135).

【0005】なお,上記第1,第2方式の液中粒子濃度
検出装置は,いずれも検査対象液体との接液面における
全反射光を利用するものであり,検査対象液体中を透過
した光を検知する方式(特開昭61−164144号公
報など)ではないから,検査対象液体の光の透過率に左
右されないという利点がある。従って,エンジン潤滑油
など光の透過率が極めて小さい液体に対しても用いるこ
とができる。なお,エンジン潤滑油中の粒子濃度を検出
するオイル劣化センサは,メインオイルホール等の既設
のオイル通路またはオイルパン等に配置されている。
The above-mentioned first and second methods for detecting particle concentration in liquid are both those that utilize the total reflected light at the surface in contact with the liquid to be inspected, and the light transmitted through the liquid to be inspected is used. Since it is not a method of detecting the liquid (for example, Japanese Patent Laid-Open No. 61-164144), there is an advantage that it is not affected by the light transmittance of the liquid to be inspected. Therefore, it can be used for liquids with extremely low light transmittance such as engine lubricating oil. The oil deterioration sensor for detecting the particle concentration in the engine lubricating oil is arranged in an existing oil passage such as a main oil hole or an oil pan.

【0006】[0006]

【解決しようとする課題】しかしながら,エンジン潤滑
油中のカーボン粒子濃度を検知する従来の油中粒子濃度
検出装置には次のような問題点がある。それは,エンジ
ン潤滑油との接液面にカーボン粒子や潤滑油中の汚染物
質が付着し,オイル劣化の検出精度を低下させることで
ある。エンジン潤滑油に含まれるカーボン粒子は通常帯
電しているから,例えばエンジンを長期間停止し潤滑油
が滞溜すると接液面に付着し,検出精度を著しく低下さ
せる。
However, the conventional particle concentration detection device for oil which detects the carbon particle concentration in the engine lubricating oil has the following problems. That is, carbon particles and contaminants in the lubricating oil adhere to the surface that comes into contact with the engine lubricating oil, reducing the accuracy of oil deterioration detection. Since the carbon particles contained in the engine lubricating oil are usually charged, for example, when the engine is stopped for a long period of time and the lubricating oil stays, it adheres to the liquid contact surface, significantly reducing the detection accuracy.

【0007】その対策として,接液面の異物を除去する
ために,ワイパー機構を設けて異物を除去する方法が既
に提案されているが,この方法は機構が複雑で装置が大
形化すると共に,故障する恐れがあり信頼性が低いとい
う問題がある。そこで,これに代わる方法として,出願
人は,エンジン潤滑油中で浮遊する固形の洗浄部材を封
入し,潤滑油の循環によって浮遊する洗浄部材を接液面
に衝突させて,付着物質を接液面から除去する方法を既
に提案している。
As a countermeasure against this, a method has already been proposed for removing foreign matter on the liquid contact surface by providing a wiper mechanism, but this method requires a complicated mechanism and a large-sized device. , There is a problem that there is a risk of breakdown and the reliability is low. Therefore, as an alternative method, the applicant encloses a solid cleaning member floating in the engine lubricating oil, and causes the floating cleaning member to collide with the liquid contact surface by the circulation of the lubricating oil so that the adhered substance may come into contact with the liquid. We have already proposed a method to remove it from the surface.

【0008】この方法は,別個に動力を必要とせず構成
が簡素で,極めて効果的な方法であるが,潤滑油が高流
量で流れる場合に流路の圧力損失が大きくなり過ぎると
いう不具合があり,また,アイドル運転時など潤滑油の
流量が低い場合には洗浄部材による接液面の洗浄効果が
低下するという不具合がある。本発明は,かかる従来の
問題点に鑑みてなされたものであり,簡素な構成で長い
間検出精度を低下させることのない,安定した性能の液
中粒子濃度検出装置または油中粒子濃度検出装置を提供
しようとするものである。
This method is a very effective method because it requires no separate power and has a simple structure. However, when the lubricating oil flows at a high flow rate, the pressure loss in the flow path becomes too large. Moreover, when the flow rate of the lubricating oil is low, such as during idle operation, the cleaning effect of the cleaning member on the wetted surface decreases. The present invention has been made in view of the above conventional problems, and has a simple structure and does not deteriorate detection accuracy for a long time, and has a stable performance in liquid particle concentration detection apparatus or oil particle concentration detection apparatus. Is to provide.

【0009】[0009]

【課題の解決手段】請求項1記載の発明によれば,流体
ハウジングの液室に対する吐出口または吐出口の近傍
に,その上流部及び流出部よりも流路面積を狭めた絞り
流路部が設けられており,上記吐出口は上記接液面に向
かって配置されている。そのため,絞り流路部における
検査対象液体の流速は高速となり,また,液室に対する
吐出口は接液面に向かって配置されているため,検査対
象液体は高速で接液面に向かって衝突する。そのため,
接液面からは付着物が除去され,接液面を常にクリーン
な状態に保持することが出来る。
According to the first aspect of the present invention, a throttle channel portion having a channel area narrower than the upstream portion and the outlet portion is provided in the vicinity of the discharge port or the discharge port with respect to the liquid chamber of the fluid housing. The discharge port is provided toward the liquid contact surface. Therefore, the flow velocity of the liquid to be inspected in the throttle channel becomes high, and since the ejection port for the liquid chamber is arranged toward the liquid contact surface, the liquid to be inspected collides toward the liquid contact surface at high speed. . for that reason,
Adhesion is removed from the liquid contact surface, and the liquid contact surface can always be kept in a clean state.

【0010】また,狭められた吐出口から急に広い液室
に流入した検査対象液体は,液室内で渦流を生じ易いか
ら,内部に洗浄部材を封入した場合に液室内で洗浄部材
の循環運動を促進し易いという利点もある。また,上記
のように,流体ハウジングに絞り流路部を形成すること
は,構成が簡素にして容易であり,極めて安価である。
Further, since the liquid to be inspected which suddenly flows into the wide liquid chamber from the narrowed discharge port easily causes a swirl in the liquid chamber, the circulation movement of the cleaning member in the liquid chamber when the cleaning member is enclosed inside. There is also an advantage that it is easy to promote. Further, as described above, forming the throttle channel portion in the fluid housing is simple and simple in structure, and extremely inexpensive.

【0011】次に,請求項2記載の発明によれば,請求
項1記載の発明の構成に加えて,油中粒子濃度検出装置
は,エンジン潤滑油のオイル流路において圧力差の大き
い2点間をバイパスするバイパスオイル流路に配設され
ている。即ち,本装置は,潤滑油のメインオイル流路に
ダイレクトに配置するのではなく,バイパス流路に装置
を配置するから,機関に流れるオイルの流量が増加して
も装置にはその流入部と流出部の間の圧力差に対応する
流量が流れるだけであり,従来装置のように機関に流れ
るオイルがそのまま装置内を流れることはない。
Next, according to the second aspect of the invention, in addition to the configuration of the first aspect of the invention, the particle concentration detecting device for oil has two large pressure differences in the oil passage of the engine lubricating oil. It is arranged in a bypass oil flow path that bypasses the space. That is, since the present device does not place the lubricating oil directly in the main oil flow passage but arranges the device in the bypass passage, even if the flow rate of the oil flowing to the engine increases, Only the flow rate corresponding to the pressure difference between the outflow parts flows, and the oil flowing to the engine does not flow through the device as it is, unlike the conventional device.

【0012】そのため,本発明によれば,請求項1記載
の発明の効果に加えて,装置におけるオイルの圧力損失
が大きくならないという効果を奏することができる。な
お,上記圧力差の大きい2点間の例としては,請求項4
に記載のように,エンジンのオイルパンとメインオイル
ホールとの間に介設されたオイルポンプの吐出側と吸込
側との間等がある。
Therefore, according to the present invention, in addition to the effect of the invention described in claim 1, the effect that the pressure loss of the oil in the device does not increase can be exhibited. In addition, as an example between the two points where the pressure difference is large, as described in claim 4,
As described above, there is a space between the discharge side and the suction side of the oil pump provided between the oil pan of the engine and the main oil hole.

【0013】次に,請求項3記載の発明によれば,請求
項2記載の発明の構成に加えて,液室内に洗浄部材が封
入されており,また,エンジン潤滑油が液室内において
上記接液面の近傍を通る循環流を形成するよう,上記液
室の形状並びに上記流入路,流出部及び接液面の配置が
定められている。なお,上記構成において,循環流を形
成するための,液室の形状並びに上記流入路,流出部及
び接液面の配置は,コンピュータを用いた流体解析など
によって多くの構成形態を設定することが可能である。
極めて模式的に簡単な例を示せば,図4に示すように縦
渦を生ぜしめる方法,図5に示すように横渦を生ぜしめ
る方法,両者をミックスした方法等がある。
Next, according to the invention of claim 3, in addition to the structure of the invention of claim 2, a cleaning member is enclosed in the liquid chamber, and the engine lubricating oil is contacted in the liquid chamber as described above. The shape of the liquid chamber and the arrangement of the inflow passage, the outflow portion, and the liquid contact surface are determined so as to form a circulating flow near the liquid surface. In the above configuration, the shape of the liquid chamber and the arrangement of the inflow passage, the outflow portion, and the liquid contact surface for forming the circulation flow can be set in many configurations by fluid analysis using a computer. It is possible.
If a very simple example is shown, there are a method of producing a vertical vortex as shown in FIG. 4, a method of producing a horizontal vortex as shown in FIG. 5, and a method of mixing the two.

【0014】請求項3記載の発明においては,請求項2
記載の発明の効果に加えて,液室内にエンジン潤滑油の
循環流を生ずるよう構成されているから,洗浄部材が液
室内で活発に運動して接液面に衝突し,接液面からは付
着物が除去され,接液面を常にクリーンな状態に保持す
ることが出来る。そして,上記洗浄作用は,エンジン潤
滑油の流れに基づいて行われる。従って,ワイパーなど
の洗浄部材を用いる方法のように別の動力源が不要であ
り,且つ構成が簡素であり,故障の恐れも少なく信頼性
が極めて高い。
According to the invention of claim 3, claim 2
In addition to the effects of the invention described above, since the circulating fluid of the engine lubricating oil is generated in the liquid chamber, the cleaning member actively moves in the liquid chamber and collides against the liquid contact surface, The deposits are removed and the wetted surface can always be kept clean. The cleaning action is performed based on the flow of engine lubricating oil. Therefore, unlike the method of using a cleaning member such as a wiper, another power source is not necessary, the structure is simple, there is little fear of failure, and reliability is extremely high.

【0015】なお,自動車のエンジン潤滑油の油中粒子
濃度検出装置として用いる場合には,請求項5記載のよ
うに,上記絞り流路部の流路径の大きさは,0.5から
2.0mmの範囲とすることが好ましい。上記流路径が
0.5mm未満では装置に流入するエンジン潤滑油の流
量が不足し,付着物が接液面に付着し易くなる。一方,
流路径が2.0mmを超えると装置に流れ込むエンジン
潤滑油の量が大きくなり過ぎて,メインの流路を流れる
エンジン潤滑油の量が不足するか,全体の流量を増加さ
せる必要が生じて,好ましくないからである。
When used as a device for detecting the particle concentration in oil of an engine lubricating oil of an automobile, the size of the flow passage diameter of the throttle flow passage portion is 0.5 to 2. The range is preferably 0 mm. If the flow path diameter is less than 0.5 mm, the flow rate of the engine lubricating oil flowing into the device will be insufficient, and deposits will easily adhere to the liquid contact surface. on the other hand,
If the flow path diameter exceeds 2.0 mm, the amount of engine lubricating oil flowing into the device becomes too large, and the amount of engine lubricating oil flowing in the main flow path becomes insufficient, or it is necessary to increase the total flow rate. This is because it is not preferable.

【0016】なお,請求項3記載の発明における上記洗
浄部材は,エンジン潤滑油の流れや対流等の液体運動に
応動して運動し易い形状,比重,材質のもので構成す
る。また,洗浄部材の形状,比重,材質については,液
室や流入,流出部の形状,容積,流量等によって変わる
が,エンジン潤滑油の流れに対応して運動し易いものに
する。そして,洗浄部材の表面は,導光体の接液面の境
界面を傷つけることのない適度な硬度のもので形成す
る。
The cleaning member according to the third aspect of the present invention is configured to have a shape, a specific gravity, and a material that easily move in response to liquid movement such as engine lubricating oil flow or convection. Further, the shape, specific gravity, and material of the cleaning member vary depending on the shape, volume, flow rate, etc. of the liquid chamber and the inflow and outflow portions, but the cleaning member should be easily moved in accordance with the flow of the engine lubricating oil. Then, the surface of the cleaning member is formed of an appropriate hardness that does not damage the boundary surface of the liquid contact surface of the light guide.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本例は,図1に示すように,オイルパン61とメインオ
イルホール62との間を結び中間にオイルポンプ63が
介設されたオイル流路をバイパスするバイパスオイル流
路40に配設されたエンジン潤滑油の油中粒子濃度検出
装置1である。油中粒子濃度検出装置1は,矢印81で
示すエンジン潤滑油を流通させる流体ハウジング41
と,図2に示すように,検査光31を放射する光源11
と,上記流体ハウジング41内においてエンジン潤滑油
8に接する接液面161〜163に検査光31を導く導
光体16と,接液面161〜163で全反射した検査光
311を検知する光センサ12と,この光センサ12に
接続された粒子濃度の判定部20(図3)とを有する。
Embodiment 1 As shown in FIG. 1, this embodiment uses a bypass oil passage 40 that connects an oil pan 61 and a main oil hole 62 and bypasses an oil passage in which an oil pump 63 is interposed. It is the oil particle concentration detection device 1 of the engine lubricating oil that is provided. The device 1 for detecting particle concentration in oil is provided with a fluid housing 41 through which engine lubricating oil indicated by an arrow 81 flows.
As shown in FIG. 2, the light source 11 that emits the inspection light 31
And a light guide 16 for guiding the inspection light 31 to the liquid contact surfaces 161 to 163 in contact with the engine lubricating oil 8 in the fluid housing 41, and an optical sensor for detecting the inspection light 311 totally reflected by the liquid contact surfaces 161 to 163. 12 and a particle concentration determination unit 20 (FIG. 3) connected to the optical sensor 12.

【0018】図1,図4に示すように,流体ハウジング
41は,エンジン潤滑油の流入路411及び流出部41
3と,導光体16の接液面161〜163が配設された
液室410とを有し,液室410内には,エンジン潤滑
油中を浮遊する固形の洗浄部材49が封入されている。
流入路411の液室410に対する吐出口には,その上
流部及び流出部413よりも流路面積を狭めた絞り流路
部412が設けられており,かつ,エンジン潤滑油が液
室410内において接液面161〜163の近傍を通る
循環流を形成するよう,液室410の形状並びに流入路
411,流出部413及び接液面161〜163の配置
が定められている。そして,絞り流路部412の流路径
の大きさは,直径1mmである。
As shown in FIGS. 1 and 4, the fluid housing 41 includes an inflow passage 411 and an outflow portion 41 for the engine lubricating oil.
3 and a liquid chamber 410 in which the liquid contact surfaces 161 to 163 of the light guide 16 are arranged. In the liquid chamber 410, a solid cleaning member 49 floating in engine lubricating oil is enclosed. There is.
The outlet of the inflow passage 411 with respect to the liquid chamber 410 is provided with a throttle passage portion 412 having a passage area narrower than those of the upstream portion and the outflow portion 413, and the engine lubricating oil in the liquid chamber 410 is provided. The shape of the liquid chamber 410 and the arrangement of the inflow passage 411, the outflow portion 413, and the liquid contact surfaces 161 to 163 are determined so as to form a circulation flow passing near the liquid contact surfaces 161 to 163. Then, the size of the flow path diameter of the throttle flow path portion 412 is 1 mm in diameter.

【0019】以下,それぞれについて説明を補足する。
図1に示すように,油中粒子濃度検出装置1は,オイル
ポンプ63の吐出側に設けたオイルフィルタ64とオイ
ルパン61とを連結するバイパスオイル流路40に配設
されている。そして,オイルポンプ63を通った高圧側
のエンジン潤滑油が,流入路411から液室410に流
入する。また,流出部413から流出したエンジン潤滑
油は,低圧側のオイルパン61に還流される。同図にお
いて,符号65は,エンジン潤滑油のストレーナであ
る。そして,メインオイルホール62から流出したエン
ジン潤滑油は,エンジンを潤滑し,再びオイルパン61
に戻る。
A supplementary explanation will be given below for each of them.
As shown in FIG. 1, the particle concentration detecting device 1 in oil is arranged in a bypass oil flow passage 40 that connects an oil filter 64 and an oil pan 61 provided on the discharge side of an oil pump 63. Then, the engine lubricating oil on the high pressure side that has passed through the oil pump 63 flows into the liquid chamber 410 from the inflow passage 411. Further, the engine lubricating oil flowing out from the outflow portion 413 is returned to the low pressure side oil pan 61. In the figure, reference numeral 65 is a strainer for engine lubricating oil. Then, the engine lubricating oil flowing out from the main oil hole 62 lubricates the engine, and the oil pan 61 is again fed.
Return to

【0020】油中粒子濃度検出装置1は,エンジン潤滑
油を導入する流体ハウジング41と,流体ハウジング4
1に螺着される本体10とからなる。図1の符号19
は,本体10に接続されるケーブルである。本体10
は,図2に示すように,流体ハウジング41に螺着する
ネジ部101を形成した本体ハウジング100と,光源
11と,検査光31を導く導光体16と,接液面161
〜163で全反射した検査光311を検知する光センサ
12と,検査光31を直接受光する図示しない基準光セ
ンサ13(図3)と,粒子濃度を判定する判定部20
(図3)とを有する。図2において,符号109はエン
ジン潤滑油をシールするOリングである。
The device 1 for detecting particle concentration in oil comprises a fluid housing 41 for introducing engine lubricating oil and a fluid housing 4.
1. The main body 10 is screwed to 1. Reference numeral 19 in FIG.
Is a cable connected to the main body 10. Body 10
As shown in FIG. 2, the main body housing 100 having a threaded portion 101 screwed to the fluid housing 41, the light source 11, the light guide 16 for guiding the inspection light 31, and the liquid contact surface 161.
Optical sensor 12 that detects the inspection light 311 totally reflected at 163, reference light sensor 13 (not shown) that directly receives inspection light 31, and determination unit 20 that determines the particle concentration.
(FIG. 3). In FIG. 2, reference numeral 109 is an O-ring that seals engine lubricating oil.

【0021】上記メイン光センサ12と基準光センサ1
3とは,等しい光電変換特性を有しており,メイン光セ
ンサ12に入射する第1検査光311の強度に対する基
準光センサ13に入射する第2検査光312の強度の比
率は,0.5から2.0の範囲となるよう光学系を構成
してある。発光体11は,LEDであり,光センサ1
2,13はフォトダイオード,フォトトランジスタなど
の受光素子である。そして,発光体11,光センサ1
2,13及び判定部20は,プリント配線板に搭載され
ており,ケーブル19を介して外部と電気的に接続され
ている。
The main light sensor 12 and the reference light sensor 1
3 has the same photoelectric conversion characteristics, and the ratio of the intensity of the second inspection light 312 incident on the reference optical sensor 13 to the intensity of the first inspection light 311 incident on the main optical sensor 12 is 0.5. The optical system is constructed so that the range is from 2.0 to 2.0. The light emitter 11 is an LED, and the light sensor 1
Reference numerals 2 and 13 are light receiving elements such as photodiodes and phototransistors. Then, the light emitter 11 and the optical sensor 1
2, 13 and the determination unit 20 are mounted on a printed wiring board and are electrically connected to the outside via a cable 19.

【0022】そして,図3に示すように,判定部20
は,メイン光センサ12と基準光センサ13の出力I
1 ,I0 を比較してエンジン潤滑油8中の粒子濃度を算
出する。判定部20は,光源11を駆動するドライバ回
路21を有しており,光源11はドライバ回路21に駆
動されて検査光31を放射する。そして,検査光31の
一部は,基準光センサ13に入射する。基準光センサ1
3と光センサ12の出力I0 ,I1 は変換増幅器22を
経て電圧信号VO ,V1 に変換され,除算回路23で両
者VO ,V1 の比率から反射率σが算出され,反射率σ
は比較器24にて基準値と比較される。その結果,エン
ジン潤滑油の劣化と判定された場合には,警報回路25
から警報信号が発せられる。同図において,符号26は
温度センサである。
Then, as shown in FIG.
Is the output I of the main light sensor 12 and the reference light sensor 13.
The particle concentration in the engine lubricating oil 8 is calculated by comparing 1 and I 0 . The determination unit 20 has a driver circuit 21 that drives the light source 11, and the light source 11 is driven by the driver circuit 21 and emits the inspection light 31. Then, a part of the inspection light 31 enters the reference light sensor 13. Reference light sensor 1
3 and the outputs I 0 and I 1 of the optical sensor 12 are converted into voltage signals V O and V 1 through a conversion amplifier 22, and a division circuit 23 calculates a reflectance σ from the ratio of both V O and V 1 to reflect the signals. Rate σ
Is compared with a reference value in the comparator 24. As a result, when it is determined that the engine lubricating oil is deteriorated, the alarm circuit 25
Gives an alarm signal. In the figure, reference numeral 26 is a temperature sensor.

【0023】一方,図4に示すように,流入路411か
ら絞り流路部412を経たエンジン潤滑油の液室410
への吐出口は,導光体16の接液面161,162に向
けられており,流出部143の流入口は,上記吐出口の
上部壁面に設けられている。そのため,エンジン潤滑油
の一部は同図の矢印に示すような縦渦87を形成する。
同図において,符号18は,洗浄部材49の流出を防止
する網目状のカバー部材である。
On the other hand, as shown in FIG. 4, a liquid chamber 410 for the engine lubricating oil from the inflow passage 411 through the throttle passage portion 412.
To the liquid contact surfaces 161 and 162 of the light guide 16, and the outlet of the outflow portion 143 is provided on the upper wall surface of the outlet. Therefore, a part of the engine lubricating oil forms a vertical vortex 87 as shown by the arrow in the figure.
In the figure, reference numeral 18 is a mesh-shaped cover member that prevents the cleaning member 49 from flowing out.

【0024】導光体16は,透光性の良好なプリズムで
あり,エンジン潤滑油(20℃で屈折率が約1.48)
に対して耐性を有する部材であり,また,エンジン潤滑
油8に対して全反射する屈折率を有する。例えば,発光
体11の放射光(検査光31)の波長が940nmの場
合には,入射角にもよるが,通常,屈折率が1.65以
上である。
The light guide 16 is a prism having a good light-transmitting property and is an engine lubricating oil (having a refractive index of about 1.48 at 20 ° C.).
It is a member having a resistance to, and has a refractive index that totally reflects the engine lubricating oil 8. For example, when the wavelength of the emitted light (inspection light 31) of the light emitter 11 is 940 nm, the refractive index is usually 1.65 or more, although it depends on the incident angle.

【0025】本例の油中粒子濃度検出装置1は,潤滑油
のメインオイル流路に配置するのではなく,バイパス流
路40に配置されるから,機関に流れるエンジン潤滑油
の流量が増加しても,従来装置のように機関に流れるエ
ンジン潤滑油がそのまま装置内を流れることはない。そ
のため,エンジン潤滑油が高流量の場合にも装置におけ
る圧力損失は大きくならない。
Since the device 1 for detecting particle concentration in oil of this example is arranged not in the main oil passage of the lubricating oil but in the bypass passage 40, the flow rate of the engine lubricating oil flowing to the engine increases. However, unlike the conventional device, the engine lubricating oil flowing to the engine does not flow through the device as it is. Therefore, the pressure loss in the system does not increase even when the engine lubricating oil has a high flow rate.

【0026】一方,絞り流路部412におけるエンジン
潤滑油の流速は高速となり液室410に流入するから,
アイドル運転などの場合にも,充分な流速を得ることが
出来る。そのため,液室410内の接液面161〜16
3からは付着物が除去され易く,接液面161〜163
はクリーンな状態に保持される。また,液室410内に
おいてエンジン潤滑油の循環流を生ずるよう構成されて
いるから,洗浄部材49は液室410内でとどまること
なく活発に運動して接液面161〜163に衝突し,接
液面161〜163からは付着物が除去され,接液面1
61〜163を常にクリーンな状態に保持される。
On the other hand, since the flow velocity of the engine lubricating oil in the throttle channel portion 412 becomes high and flows into the liquid chamber 410,
A sufficient flow velocity can be obtained even during idle operation. Therefore, the liquid contact surfaces 161 to 16 in the liquid chamber 410
It is easy to remove deposits from 3 and the liquid contact surfaces 161 to 163
Is kept clean. Further, since the circulating flow of the engine lubricating oil is generated in the liquid chamber 410, the cleaning member 49 does not stay in the liquid chamber 410 and actively moves to collide with the liquid contact surfaces 161 to 163 and come into contact therewith. The deposits are removed from the liquid surfaces 161-163, and the liquid contact surface 1
61 to 163 are always kept in a clean state.

【0027】そのため,長期間エンジンを使用せず,そ
のため接液面161〜163が汚れた場合にも,エンジ
ンを始動すると,30秒から1分程度の間に接液面16
1〜163を洗浄することが出来る。そして,上記洗浄
作用は,流路を上記のように形成し,エンジン潤滑油の
流れに基づいて行われるから,構成が簡素であり,故障
の恐れもなく信頼性が極めて高い。
Therefore, even if the engine is not used for a long period of time and therefore the wetted surfaces 161 to 163 are contaminated, when the engine is started, the wetted surface 16 will be removed in about 30 seconds to 1 minute.
1-163 can be washed. Since the above-mentioned cleaning action is performed based on the flow of the engine lubricating oil by forming the flow path as described above, the structure is simple, there is no fear of failure, and the reliability is extremely high.

【0028】実施形態例2 本例は,図5に示すように,実施形態例1において,エ
ンジン潤滑油の流入路411(絞り流路部412)と流
出部413の配置を変更して,液室410内において実
施形態例1と異なる方向の渦流を発生させるようにした
もう一つの実施形態例である。即ち,本例では,絞り流
路部412(流入路411)と流出部413との間に,
図5に示すような平面図上の位置ずれを設け,これによ
って水平射影面上に横渦88が形成されるようにした。
その他については,実施形態例1と同様である。
Embodiment 2 In this embodiment, as shown in FIG. 5, the arrangement of the engine lubricating oil inflow passage 411 (throttle passage 412) and outflow portion 413 in Embodiment 1 is changed so that the liquid 9 is another embodiment example in which a vortex flow in a direction different from that of the first embodiment is generated in the chamber 410. That is, in this example, between the throttle channel portion 412 (inflow passage 411) and the outflow portion 413,
A positional deviation on the plan view as shown in FIG. 5 is provided so that a horizontal vortex 88 is formed on the horizontal projection plane.
Others are the same as in the first embodiment.

【0029】なお,実施形態例1,2において,バイパ
ス流路40を設ける部位は,エンジン潤滑油の流路の高
圧部と低圧部との間であれば何処でも良く,上記例に限
定されるものではない。例えば,高圧側は,オイルパン
62としてもよく,低圧側は,エンジンのヘッドカバー
内やバイパス型オイルフィルターのリターン側などでも
良い。
In the first and second embodiments, the bypass passage 40 may be provided anywhere between the high pressure portion and the low pressure portion of the engine lubricating oil passage, and is not limited to the above example. Not a thing. For example, the high pressure side may be the oil pan 62, and the low pressure side may be the head cover of the engine or the return side of the bypass type oil filter.

【0030】[0030]

【発明の効果】上記のように,本発明によれば,簡素な
構成で長い間検出精度を低下させることのない安定した
性能の液中粒子濃度検出装置または油中粒子濃度検出装
置を提供することが出来る。
As described above, according to the present invention, there is provided a liquid particle concentration detecting device or a particle concentration detecting device in oil which has a simple structure and has stable performance which does not deteriorate the detection accuracy for a long time. You can

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の油中粒子濃度検出装置の流路の
配置と要部の断面図。
FIG. 1 is a cross-sectional view of an arrangement of a flow path and a main part of a particle concentration detecting device for oil according to a first embodiment.

【図2】実施形態例1の装置本体の断面図。FIG. 2 is a cross-sectional view of a device body according to the first embodiment.

【図3】実施形態例1の油中粒子濃度検出装置の接続
図。
FIG. 3 is a connection diagram of a device for detecting a particle concentration in oil according to the first embodiment.

【図4】実施形態例1の油中粒子濃度検出装置の液室周
辺の流路の拡大正面図。
FIG. 4 is an enlarged front view of a flow path around a liquid chamber of the particle concentration detecting device for oil according to the first embodiment.

【図5】実施形態例2の油中粒子濃度検出装置の液室周
辺の流路の拡大平面図。
FIG. 5 is an enlarged plan view of a flow path around a liquid chamber of the particle concentration detector for oil according to the second embodiment.

【図6】従来の油中粒子濃度検出装置のシステム構成
図。
FIG. 6 is a system configuration diagram of a conventional particle concentration detector in oil.

【符号の説明】[Explanation of symbols]

16...導光体, 41...流体ハウジング, 410...液室, 411...流入路, 412...絞り流路部, 413...流出部, 49...洗浄部材, 16. . . Light guide, 41. . . Fluid housing, 410. . . Liquid chamber, 411. . . Inflow path, 412. . . Throttle channel section, 413. . . Outflow, 49. . . Cleaning material,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 検査対象液体を流通させる流体ハウジン
グと,検査光を放射する光源と,上記流体ハウジング内
において検査対象液体に接する接液面に上記検査光を導
く導光体と,上記接液面で全反射した検査光を検知する
光センサと,この光センサに接続された粒子濃度の判定
部とを有する液中粒子濃度検出装置であって,上記流体
ハウジングは,検査対象液体の流入路及び流出部と,上
記導光体の接液面が配設された液室とを有しており,上
記流入路の液室に対する吐出口または吐出口の近傍に
は,その上流部及び上記流出部よりも流路面積を狭めた
絞り流路部が設けられていると共に上記吐出口は上記接
液面に向かって配置されていることを特徴とする液中粒
子濃度検出装置。
1. A fluid housing for circulating a liquid to be inspected, a light source for emitting inspection light, a light guide for guiding the inspection light to a liquid contact surface in contact with the liquid to be inspected in the fluid housing, and the liquid contact. An in-liquid particle concentration detection device comprising an optical sensor for detecting inspection light totally reflected by a surface, and a particle concentration determination unit connected to the optical sensor, wherein the fluid housing is an inflow path of an inspection target liquid. And an outflow portion, and a liquid chamber in which the liquid contact surface of the light guide body is arranged. The upstream portion and the outflow portion are provided in the vicinity of the discharge port or the discharge port with respect to the liquid chamber of the inflow passage. The in-liquid particle concentration detecting device is characterized in that a throttle channel portion having a channel area narrower than that of the portion is provided and the discharge port is disposed toward the liquid contact surface.
【請求項2】 エンジン潤滑油のオイル流路において圧
力差の大きい2点間をバイパスするバイパスオイル流路
に配設されたエンジン潤滑油の油中粒子濃度検出装置で
あって,上記油中粒子濃度検出装置は,エンジン潤滑油
を流通させる流体ハウジングと,検査光を放射する光源
と,上記流体ハウジング内においてエンジン潤滑油に接
する接液面に上記検査光を導く導光体と,上記接液面で
全反射した検査光を検知する光センサと,この光センサ
に接続された粒子濃度の判定部とを有し,上記流体ハウ
ジングは,エンジン潤滑油の流入路及び流出部と,上記
導光体の接液面が配設された液室とを有しており,上記
流入路の液室に対する吐出口または吐出口の近傍には,
その上流部及び上記流出部よりも流路面積を狭めた絞り
流路部が設けられていると共に上記吐出口は上記接液面
に向かって配置されていることを特徴とするエンジン潤
滑油の油中粒子濃度検出装置。
2. A particle concentration detecting device for engine lubricating oil, which is arranged in a bypass oil passage for bypassing between two points having a large pressure difference in the oil passage for engine lubricating oil, wherein The concentration detecting device includes a fluid housing for circulating engine lubricating oil, a light source for emitting inspection light, a light guide body for guiding the inspection light to a liquid contact surface in contact with the engine lubricating oil in the fluid housing, and the liquid contacting member. The fluid housing has an optical sensor for detecting the inspection light totally reflected on the surface, and a particle concentration determination unit connected to the optical sensor. The fluid housing has an inflow path and an outflow section for engine lubricating oil, and the light guide. And a liquid chamber in which the liquid contact surface of the body is arranged, and in the vicinity of the discharge port or the discharge port for the liquid chamber of the inflow path,
An oil for engine lubricating oil, characterized in that a throttle channel portion having a channel area narrower than that of the upstream portion and the outflow portion is provided and the discharge port is arranged toward the liquid contact surface. Medium particle concentration detector.
【請求項3】 請求項2において,前記流体ハウジング
の液室には,エンジン潤滑油中を浮遊する固形の洗浄部
材が封入されており,かつ,エンジン潤滑油が液室内に
おいて前記接液面の近傍を通る循環流を形成するよう,
上記液室の形状並びに前記流入路,流出部及び接液面の
配置が定められていることを特徴とするエンジン潤滑油
の油中粒子濃度検出装置。
3. The liquid chamber of the fluid housing according to claim 2, wherein a solid cleaning member that floats in the engine lubricating oil is enclosed, and the engine lubricating oil is in contact with the liquid contact surface in the liquid chamber. To form a circulating flow through the neighborhood,
A particle concentration detecting device for engine lubricating oil, characterized in that the shape of the liquid chamber and the arrangement of the inflow passage, the outflow portion and the liquid contact surface are determined.
【請求項4】 エンジンのオイルパンとメインオイルホ
ールとの間に介設されたオイルポンプの吐出側と吸込側
との間を連結するバイパス流路に配設された請求項2ま
たは請求項3記載の油中粒子濃度検出装置。
4. A bypass flow path, which connects between a discharge side and a suction side of an oil pump provided between an oil pan of the engine and a main oil hole, and is arranged in a bypass flow path. The particle concentration detecting device in oil described.
【請求項5】 請求項2から請求項4のいずれか1項に
おいて,前記絞り流路部の流路径の大きさが,0.5か
ら2.0mmの範囲にあることを特徴とする自動車のエ
ンジン潤滑油の油中粒子濃度検出装置。
5. The automobile according to any one of claims 2 to 4, wherein a size of a flow path diameter of the throttle flow path portion is in a range of 0.5 to 2.0 mm. Device for detecting particle concentration in engine lubricating oil.
JP32215995A 1995-11-15 1995-11-15 Concentration detector for particle in liquid Pending JPH09138196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32215995A JPH09138196A (en) 1995-11-15 1995-11-15 Concentration detector for particle in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32215995A JPH09138196A (en) 1995-11-15 1995-11-15 Concentration detector for particle in liquid

Publications (1)

Publication Number Publication Date
JPH09138196A true JPH09138196A (en) 1997-05-27

Family

ID=18140603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32215995A Pending JPH09138196A (en) 1995-11-15 1995-11-15 Concentration detector for particle in liquid

Country Status (1)

Country Link
JP (1) JPH09138196A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469870B1 (en) * 2002-08-02 2005-02-02 한국과학기술연구원 Apparatus for Measuring Soot Content in Diesel Engine Oil in Real Time
WO2009119087A1 (en) * 2008-03-26 2009-10-01 株式会社デンソー Concentration sensor device and concentration detection method
JP2009258092A (en) * 2008-03-26 2009-11-05 Denso Corp Concentration sensor device
JP2011185671A (en) * 2010-03-05 2011-09-22 Osaka Gas Co Ltd Device for controlling concentration of surfactant, and heat feed system equipped therewith
WO2013122129A1 (en) * 2012-02-17 2013-08-22 ナブテスコ株式会社 Lubricating oil deterioration sensor and machine provided with same
WO2013162031A1 (en) * 2012-04-26 2013-10-31 ナブテスコ株式会社 Lubricating oil degradation sensor and machine provided therewith
US8578761B2 (en) 2008-03-26 2013-11-12 Denso Corporation Concentration sensor device and concentration detecting method
TWI586951B (en) * 2012-01-25 2017-06-11 Nabtesco Corp A machine for detecting the deterioration of the lubricating oil, a reducer for industrial robots, and an industrial robot
CN107709998A (en) * 2015-04-27 2018-02-16 虚拟流体监测服务有限责任公司 For fluid analysis and the systems, devices and methods of monitoring
US10557776B2 (en) 2015-04-27 2020-02-11 Virtual Fluid Monitoring Services, Llc Fluid analysis and monitoring using optical spectrometry
CN111868522A (en) * 2018-05-15 2020-10-30 宝马股份公司 Method for analysing particles contained in a working fluid of a device and apparatus for implementing the method
CN112930472A (en) * 2018-10-31 2021-06-08 株式会社电装 PM sensor
US11442019B2 (en) 2018-06-19 2022-09-13 Virtual Fluid Monitoring Services, Llc Fluid analysis and monitoring using optical spectroscopy

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469870B1 (en) * 2002-08-02 2005-02-02 한국과학기술연구원 Apparatus for Measuring Soot Content in Diesel Engine Oil in Real Time
WO2009119087A1 (en) * 2008-03-26 2009-10-01 株式会社デンソー Concentration sensor device and concentration detection method
JP2009258092A (en) * 2008-03-26 2009-11-05 Denso Corp Concentration sensor device
US8578761B2 (en) 2008-03-26 2013-11-12 Denso Corporation Concentration sensor device and concentration detecting method
JP2011185671A (en) * 2010-03-05 2011-09-22 Osaka Gas Co Ltd Device for controlling concentration of surfactant, and heat feed system equipped therewith
TWI586951B (en) * 2012-01-25 2017-06-11 Nabtesco Corp A machine for detecting the deterioration of the lubricating oil, a reducer for industrial robots, and an industrial robot
WO2013122129A1 (en) * 2012-02-17 2013-08-22 ナブテスコ株式会社 Lubricating oil deterioration sensor and machine provided with same
JP2013170822A (en) * 2012-02-17 2013-09-02 Nabtesco Corp Lubricant deterioration sensor and machine with the same
CN104114998A (en) * 2012-02-17 2014-10-22 纳博特斯克有限公司 Lubricating oil deterioration sensor and machine provided with same
TWI586956B (en) * 2012-02-17 2017-06-11 Nabtesco Corp Lubricating oil deterioration sensor and machinery with its
EP2816343A4 (en) * 2012-02-17 2015-09-30 Nabtesco Automotive Corp Lubricating oil deterioration sensor and machine provided with same
WO2013162031A1 (en) * 2012-04-26 2013-10-31 ナブテスコ株式会社 Lubricating oil degradation sensor and machine provided therewith
CN104395731A (en) * 2012-04-26 2015-03-04 纳博特斯克有限公司 Lubricating oil degradation sensor and machine provided therewith
CN107709998A (en) * 2015-04-27 2018-02-16 虚拟流体监测服务有限责任公司 For fluid analysis and the systems, devices and methods of monitoring
JP2018526614A (en) * 2015-04-27 2018-09-13 バーチャル・フルイド・モニタリング・サービシズ,エルエルシー Systems, devices, and methods for fluid analysis and monitoring
US10557776B2 (en) 2015-04-27 2020-02-11 Virtual Fluid Monitoring Services, Llc Fluid analysis and monitoring using optical spectrometry
US10578548B2 (en) 2015-04-27 2020-03-03 Virtual Fluid Monitoring Services LLC Systems, apparatuses, and methods for fluid analysis and monitoring
US10591388B2 (en) 2015-04-27 2020-03-17 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy
US10605702B2 (en) 2015-04-27 2020-03-31 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy
US10809164B2 (en) 2015-04-27 2020-10-20 Virtual Fluid Monitoring Services, Llc Fluid analysis and monitoring using optical spectroscopy
CN111868522A (en) * 2018-05-15 2020-10-30 宝马股份公司 Method for analysing particles contained in a working fluid of a device and apparatus for implementing the method
US11719614B2 (en) 2018-05-15 2023-08-08 Bayerische Motoren Werke Aktiengesellschaft Method for analyzing the particles contained in an operating fluid of an apparatus, and apparatus for carrying out the method
US11442019B2 (en) 2018-06-19 2022-09-13 Virtual Fluid Monitoring Services, Llc Fluid analysis and monitoring using optical spectroscopy
CN112930472A (en) * 2018-10-31 2021-06-08 株式会社电装 PM sensor

Similar Documents

Publication Publication Date Title
JP2834004B2 (en) Method and apparatus for monitoring contamination level of fluid
US5548393A (en) Oil deterioration detection apparatus and apparatus for detecting particles in liquid
JPH09138196A (en) Concentration detector for particle in liquid
KR101041245B1 (en) Apparatus for on-line monitoring quality/condition of fluids
EP0995101B1 (en) Particle detection system utilizing an inviscid flow-producing nozzle
US6894778B2 (en) Low detection limit turbidimeter
US5565984A (en) Re-entrant illumination system for particle measuring device
WO2009078533A1 (en) Optical cavity enhanced turbidimeter and turbidity measuring method
US7595497B2 (en) Fuel contaminant light sensor
SE455134B (en) SET AND DEVICE FOR OPTICAL ANALYSIS IN FLOW CUVET
CN110927031A (en) Particulate matter sensing sensor assembly
JP2005164408A (en) Oil mist detector
EP3649456A1 (en) Optical detection of black powder concentration in gas flow-lines
US6842234B2 (en) Apparatus for measuring soot content in diesel engine oil in real time
JP3501178B2 (en) Liquid particle concentration detector
EP2169386B1 (en) Particle concentration detecting device
GB2141553A (en) Scatter cells for photosensors
KR20180103760A (en) Optical sensor with deposition sensor
JP3346004B2 (en) Liquid particle concentration detector
JPH1082735A (en) Device for measuring insoluble matter in lubrication oil
US5175596A (en) Liquid nephelometer
KR20230011281A (en) Optical measuring device and water quality analysis system
WO1999022219A1 (en) Fluid cavity particle measuring system and methods
JPH08247933A (en) Detection device of particle concentration in liquid
JPH0933426A (en) Device for detecting particle concentration in liquid