JPH09137069A - Biodegradable composition - Google Patents

Biodegradable composition

Info

Publication number
JPH09137069A
JPH09137069A JP29669195A JP29669195A JPH09137069A JP H09137069 A JPH09137069 A JP H09137069A JP 29669195 A JP29669195 A JP 29669195A JP 29669195 A JP29669195 A JP 29669195A JP H09137069 A JPH09137069 A JP H09137069A
Authority
JP
Japan
Prior art keywords
starch
biodegradable resin
biodegradable
plasticizer
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29669195A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimooozono
哲哉 下大薗
Jiro Hino
治郎 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Nihon Shokuhin Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd, Nihon Shokuhin Kako Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP29669195A priority Critical patent/JPH09137069A/en
Publication of JPH09137069A publication Critical patent/JPH09137069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the above composition for sheet, etc., containing a biodegradable resin as a continuous phase and containing a plasticized starch as a discontinuous phase, capable of keeping water resistance and mechanical property and improving defects such as foaming in heat melting and restriction of thickness in film uses. SOLUTION: This biodegradable composition is obtained by heating and mixing (A) starch with (B) a plasticizer and (C) a biodegradable resin in the presence of water content in an amount of <=5% based on the dried material of the component A. Moreover, the component A is an unprocessed starch, a processed starch or a starch derivative and the component B is a biodegradable high-boiling point plasticizer and the plasticized starch is obtained by heating and mixing the component A with the component B and a weight ratio of the plasticized starch to the component C is (10:90) to (99:1) based on the dried materials of the components A and C and the component C is preferably an aliphatic polyester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、可塑化した澱粉と
生分解性樹脂とを含む生分解性組成物に関する。さらに
詳しくは、可塑化した澱粉を生分解性樹脂内に分散させ
ることによって澱粉の欠点である耐水性、機械的性質の
低下等を防ぎつつ、生分解性を向上させた生分解性複合
プラスチック組成物及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a biodegradable composition containing plasticized starch and a biodegradable resin. More specifically, by dispersing plasticized starch in a biodegradable resin, a biodegradable composite plastic composition having improved biodegradability while preventing the starch's drawbacks such as water resistance and mechanical properties from deteriorating. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】最近、地球環境の保全を図る観点から生
分解性樹脂の開発が活発になって来ている。これらの樹
脂はポリカプロラクトン、ポリ乳酸、ポリビニールアル
コールなどの化学合成系、ポリヒドロキシブチレート・
バリレート共重合体などの微生物系アセチルセルロース
などの天然物利用系等に分けられている。さらに、これ
らの樹脂に澱粉を配合してコストダウンや生分解性の改
善を行うことが提案され、一部実用化されている。生分
解性樹脂に澱粉を併用する場合、生澱粉をその粉体のま
ま生分解性樹脂の加熱溶融時に練込んで複合体を得る場
合と水存在下で澱粉と生分解性樹脂とを加熱溶融して複
合体を得る場合とがある。
2. Description of the Related Art Recently, the development of biodegradable resins has become active from the viewpoint of protecting the global environment. These resins are chemically synthesized systems such as polycaprolactone, polylactic acid, polyvinyl alcohol, polyhydroxybutyrate.
It is divided into microbial system such as valylate copolymer and natural product utilization system such as acetyl cellulose. Further, it has been proposed that starch is blended with these resins to reduce costs and improve biodegradability, and some of them have been put into practical use. When starch is used in combination with biodegradable resin, raw starch is kneaded as it is when the biodegradable resin is heated and melted to obtain a composite, and when starch and biodegradable resin are heated and melted in the presence of water. In some cases, a complex is obtained.

【0003】澱粉粉体を生分解性樹脂に練込んだ複合体
としては、特開平4−146953号公報に「プラスチ
ックの生分解性制御方法」として記載されている、生分
解性樹である脂肪族ポリエステルに澱粉等の有機フィラ
ーを配合したものが知られている。さらに、特開平5−
39381号公報に「生分解性ポリマー組成物」として
記載のポリ乳酸に澱粉粉体を配合した複合体なども知ら
れている。
As a complex in which starch powder is kneaded into a biodegradable resin, fat, which is a biodegradable tree, is disclosed in JP-A-4-146953 as "method for controlling biodegradability of plastic". It is known that a group polyester is blended with an organic filler such as starch. Further, Japanese Unexamined Patent Publication No.
Also known is a composite of starch powder mixed with polylactic acid, which is described in Japanese Patent No. 39381 as "biodegradable polymer composition".

【0004】これら複合体では、澱粉を添加することに
より生分解性は改善される。しかし、強度や伸長率等の
機械的性質が大幅に低下して脆くなるという問題があ
る。さらに、これらの複合体をフィルムに応用しようと
しても、配合した澱粉粉体の粒度が相当に粗いため、厚
さが100μm程度より薄いフィルムを得ることはでき
ず、用途が限定されると言った欠点もあった。
The biodegradability of these composites is improved by adding starch. However, there is a problem in that mechanical properties such as strength and elongation are significantly reduced to make it brittle. Furthermore, even if an attempt was made to apply these composites to a film, it was not possible to obtain a film thinner than about 100 μm due to the considerably coarse particle size of the blended starch powder, and the application was limited. There were also drawbacks.

【0005】一方、水存在下で澱粉と生分解性樹脂を加
熱溶融して得られる複合体は、例えば、特開平2−14
228号公報に「分解澱粉及び少なくとも1種の合成熱
可塑性ポリマー材料から製造されるポリマー材料」とし
て記載のものがある。この公報に記載の方法では、5〜
30重量%の含水率を有する澱粉及び生分解性樹脂を含
む水不溶性熱可塑性樹脂を加熱溶融して複合体を得てい
る。しかし、ここに開示されている複合体は水を含んで
いるため、加熱溶融時に発泡するという問題がある。さ
らに、特に生分解性樹脂が脂肪族ポリエステルである場
合、水の存在下での加熱により、樹脂が加水分解して強
度が低下するという欠点もあった。また、澱粉を含む生
分解性の複合体では、澱粉の欠点である耐水性及び機械
的性質が劣るという欠点もある。
On the other hand, a composite obtained by heating and melting starch and a biodegradable resin in the presence of water is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-14.
No. 228 is described as "a polymer material produced from decomposed starch and at least one synthetic thermoplastic polymer material". According to the method described in this publication,
A water-insoluble thermoplastic resin containing starch and a biodegradable resin having a water content of 30% by weight is heated and melted to obtain a composite. However, since the composite disclosed herein contains water, it has a problem of foaming during heating and melting. Further, particularly when the biodegradable resin is an aliphatic polyester, there is a drawback that the resin is hydrolyzed by heating in the presence of water to lower the strength. In addition, the biodegradable composite containing starch also has the drawback that starch has poor water resistance and mechanical properties.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明の目的
は、澱粉と生分解性樹脂とを含む生分解性組成物であっ
て、生分解性樹脂が本来有する耐水性及び機械的性質を
ほぼ維持し、かつ加熱溶融時の発泡やフィルム用途での
厚さの制限などの欠点を改善できる生分解性組成物を提
供することにある。
Therefore, an object of the present invention is to provide a biodegradable composition containing starch and a biodegradable resin, the water resistance and mechanical properties of which are inherently maintained. In addition, the present invention is to provide a biodegradable composition capable of improving defects such as foaming at the time of heating and melting, and limitation of thickness in film applications.

【0007】[0007]

【課題を解決するための手段】本発明は、生分解性樹脂
を連続相とし、可塑化澱粉を非連続相として含有するこ
とを特徴とする生分解性組成物に関する。以下に、本発
明について詳細に説明する。
The present invention relates to a biodegradable composition comprising a biodegradable resin as a continuous phase and a plasticized starch as a discontinuous phase. Hereinafter, the present invention will be described in detail.

【0008】本発明の組成物では、可塑化澱粉を用い
る。可塑化澱粉とは、澱粉を可塑剤とともに加熱混合し
て得られたものである。可塑化澱粉の原料となる澱粉
は、未加工澱粉、加工澱粉または澱粉誘導体のいずれで
も良い。
Plasticized starch is used in the composition of the present invention. The plasticized starch is obtained by heating and mixing starch with a plasticizer. The starch used as the raw material for the plasticized starch may be any of unmodified starch, modified starch or starch derivative.

【0009】未加工澱粉は、従来から公知の澱粉であ
る。未加工澱粉としては、例えば、馬鈴薯澱粉、甘薯澱
粉、タピオカ澱粉等の地下澱粉及び小麦澱粉、コーンス
ターチ、サゴ澱粉、米澱粉等の地上澱粉、ワキシースタ
ーチ、ハイアミローススターチ等の特種澱粉を挙げるこ
とができる。
Raw starch is a conventionally known starch. Examples of the raw starch include underground starch such as potato starch, sweet potato starch and tapioca starch and wheat starch, ground starch such as corn starch, sago starch, rice starch, special starch such as waxy starch and high amylose starch. it can.

【0010】また、加工澱粉としては白色デキストリ
ン、黄色デキストリン、ブリテイシュガムなどの焙焼デ
キストリン、酸化澱粉、低粘性変性澱粉等の分解産物と
アルファー澱粉を挙げることができる。さらに、澱粉誘
導体としては酢酸エステル、リン酸エステル等の澱粉エ
ステル、カルボキシエチルエーテル、ヒドロキシエチル
エーテル、ヒドロキシプロピルエーテル、陽性澱粉等の
澱粉エーテルを挙げることができる。
Examples of the modified starch include white dextrin, yellow dextrin, roasted dextrin such as british gum, decomposed products such as oxidized starch and low-viscosity modified starch, and alpha starch. Furthermore, examples of starch derivatives include starch esters such as acetic acid ester and phosphoric acid ester, and carboxyethyl ether, hydroxyethyl ether, hydroxypropyl ether, and starch ether such as positive starch.

【0011】可塑化澱粉の製造に際して、澱粉の含水量
は、澱粉乾物基準で5%以下、好ましくは2%以下であ
ることが適当である。澱粉の水分は少なければ少ないほ
ど加熱発泡時の発泡を抑制でき、かつ脂肪族ポリエステ
ル加水分解による強度低下も抑制できる。但し、澱粉を
乾燥して行くにつれ水分が飛びにくくなり、乾燥コスト
も上昇するので、経済的に見て5%以下、好ましくは2
%以下が妥当である。
In producing the plasticized starch, the water content of the starch is appropriately 5% or less, preferably 2% or less, based on the starch dry matter. The smaller the water content of the starch, the more the foaming during heat foaming can be suppressed, and the strength reduction due to the hydrolysis of the aliphatic polyester can be suppressed. However, as the starch is dried, water becomes less likely to fly and the drying cost increases, so economically, it is 5% or less, preferably 2%.
% Or less is appropriate.

【0012】澱粉の可塑化に用いる可塑剤は、澱粉に可
塑性を付与出来る、水以外のものであれば、特に制限は
ない。例えば、生分解性を有する高沸点可塑剤を挙げる
ことが出来る。そのような可塑剤の例としては、エチレ
ングリコール、プロピレングリコール、グリセリン、ソ
ルビトール、ポリエチレングリコール、ポリプロピレン
グリコール、1,3−ブタンジオール、イソデシルアル
コール、n−デシルアルコール、ジエチレングリコー
ル、ジグリセリン、ポリグリセリン、ジプロピレングリ
コール、n−オクチルアルコール等を挙げることができ
る。
The plasticizer used for plasticizing the starch is not particularly limited as long as it can impart plasticity to the starch and is other than water. For example, a high-boiling point plasticizer having biodegradability can be mentioned. Examples of such plasticizers include ethylene glycol, propylene glycol, glycerin, sorbitol, polyethylene glycol, polypropylene glycol, 1,3-butanediol, isodecyl alcohol, n-decyl alcohol, diethylene glycol, diglycerin, polyglycerin, Dipropylene glycol, n-octyl alcohol, etc. can be mentioned.

【0013】澱粉に対する可塑剤の配合比は、澱粉(乾
物基準)100重量部に対し10〜70重量部、好まし
くは20〜50重量部とすることが適当である。これら
の配合比率は澱粉に可塑性を付与し成形物の形成に於け
る流動性確保のために適している。
The blending ratio of the plasticizer to starch is 10 to 70 parts by weight, preferably 20 to 50 parts by weight, based on 100 parts by weight of starch (dry matter basis). These blending ratios are suitable for imparting plasticity to starch and ensuring fluidity in the formation of a molded product.

【0014】澱粉の可塑化のための加熱条件は、澱粉/
可塑剤及び澱粉/可塑剤/生分解性樹脂、可塑剤の種類
及び配合量により、適宜選択することができる。例え
ば、60〜220℃で10〜60分間加熱混合すること
で、可塑化澱粉を得ることができる。加熱混合は、例え
ば加圧ニーダーや押出し機等を用いて行うことが出来
る。加熱混合により得られる可塑化澱粉は、例えばペレ
ット化し、得られたペレットを後で生分解性樹脂と混合
し再度加熱溶融することが出来る。
The heating conditions for plasticizing the starch are starch /
It can be appropriately selected depending on the types and blending amounts of the plasticizer and starch / plasticizer / biodegradable resin, and the plasticizer. For example, a plasticized starch can be obtained by heating and mixing at 60 to 220 ° C. for 10 to 60 minutes. The heating and mixing can be performed using, for example, a pressure kneader or an extruder. The plasticized starch obtained by heating and mixing can be pelletized, for example, and the obtained pellets can be mixed with a biodegradable resin and heated and melted again.

【0015】本発明の組成物において用いられる生分解
性樹脂には特に制限はない。それ自身生分解性を有する
樹脂であれば良く、成形性を考慮すると熱可塑性である
ことが適当である。化学合成系樹脂、微生物系樹脂、天
然物利用系樹脂等のいずれに属する樹脂でもよい。例え
ば、脂肪族ポリエステル、ポリビニールアルコール、セ
ルロース誘導体等を挙げることができる。
The biodegradable resin used in the composition of the present invention is not particularly limited. Any resin that has biodegradability itself may be used, and thermoplastic resin is suitable in consideration of moldability. Resins belonging to any of chemically synthesized resins, microbial resins, resins utilizing natural products, etc. may be used. For example, aliphatic polyester, polyvinyl alcohol, cellulose derivative and the like can be mentioned.

【0016】より具体的には、生分解性樹脂を考慮する
と、脂肪族ポリエステルとしてはポリヒドロキシブチレ
ート(PHB)及びその誘導体、ポリカプロラクトン
(PCL)、ポリエチレンアジペート(PEA)、ポリ
テトラメチレンアジペート、ポリグリコール酸(PG
A)、ポリ乳酸(PLA)及びその誘導体、ジオールと
ジカルボン酸を原料とする脂肪族ポリエステル等、セル
ロース類としてはアセチルセルロース、メチルセルロー
ス、エチルセルロース等を挙げることが出来る。これら
以外にも生分解性のポリビニールアルコール及びポリウ
レタン等が含まれる。
More specifically, considering biodegradable resins, the aliphatic polyesters include polyhydroxybutyrate (PHB) and its derivatives, polycaprolactone (PCL), polyethylene adipate (PEA), polytetramethylene adipate, Polyglycolic acid (PG
A), polylactic acid (PLA) and its derivatives, aliphatic polyesters using diol and dicarboxylic acid as raw materials, and celluloses such as acetyl cellulose, methyl cellulose, ethyl cellulose and the like. In addition to these, biodegradable polyvinyl alcohol and polyurethane are included.

【0017】本発明の可塑化澱粉と生分解性樹脂との割
合は、澱粉と生分解性樹脂との乾物基準での重量比が1
0:90〜99:1、好ましくは50:50〜95:5
の範囲であることが適当である。澱粉の配合比率が10
重量%以上になると可塑化澱粉の添加による生分解改善
効果が現れ始める。特に、澱粉の配合比率が50重量%
以上になると、可塑化澱粉による分解性の促進効果が顕
著になる。また澱粉の配合比率が99%以下であれば成
形性等に大きな支障なく、特に95重量%以下では通常
の樹脂のみの場合とほぼ同様の成形性を示す。
The ratio of the plasticized starch of the present invention to the biodegradable resin is such that the weight ratio of starch to biodegradable resin is 1 on a dry matter basis.
0:90 to 99: 1, preferably 50:50 to 95: 5
It is suitable that the range is. Mixing ratio of starch is 10
If it is more than weight%, the biodegradation improving effect due to the addition of plasticized starch begins to appear. Especially, the mixing ratio of starch is 50% by weight
In the above case, the effect of promoting the degradability by the plasticized starch becomes remarkable. Further, if the blending ratio of starch is 99% or less, the moldability and the like are not seriously affected.

【0018】本発明の組成物は、上記成分に加えて、必
要により各種添加剤を適宜加えることが出来る。添加剤
としては、例えば、植物性タンパク質、パルプ、紫外線
安定剤、殺菌剤、除草剤、肥料、酸化防止剤、界面活性
剤、顔料等を挙げることが出来る。
In addition to the above components, the composition of the present invention may optionally contain various additives. Examples of the additive include vegetable protein, pulp, ultraviolet stabilizer, bactericide, herbicide, fertilizer, antioxidant, surfactant, pigment and the like.

【0019】本発明の生分解性組成物は、例えば、前記
可塑化澱粉のペレットと生分解性樹脂とを、加熱混合す
ることにより得られる。加熱混合の条件は、澱粉の可塑
化のための加熱条件とほぼ同様にすることができる。但
し、可塑化澱粉および生分解性樹脂の種類や配合量によ
り、適宜選択することができる。例えば、60〜220
℃で10〜60分間加熱混合することで、生分解性樹脂
を連続相とし、可塑化澱粉を非連続相として含有する生
分解性組成物を得ることができる。加熱混合は、例えば
加圧ニーダーや押出し機等を用いて行うことが出来る。
また、澱粉の可塑化と生分解性樹脂との混合を同時に並
行して行うこともできる。
The biodegradable composition of the present invention can be obtained, for example, by heating and mixing the pellets of the plasticized starch and the biodegradable resin. The heating and mixing conditions can be almost the same as the heating conditions for plasticizing the starch. However, it can be appropriately selected depending on the types and blending amounts of the plasticized starch and the biodegradable resin. For example, 60 to 220
A biodegradable composition containing the biodegradable resin as the continuous phase and the plasticized starch as the discontinuous phase can be obtained by heating and mixing at 10 ° C. for 10 to 60 minutes. The heating and mixing can be performed using, for example, a pressure kneader or an extruder.
Further, the plasticization of starch and the mixing with the biodegradable resin can be simultaneously performed in parallel.

【0020】本発明の生分解性組成物は、生分解性樹脂
を連続相とし、可塑化澱粉を非連続相として含有する、
所謂海島構造(生分解性樹脂が海、可塑化澱粉が島)を
有する。そのため、生分解性組成物の表面は、生分解性
樹脂で覆われ、可塑化澱粉は生分解性樹脂内部に止ま
る。そのため、生分解性樹脂の有する機械的性質(成形
性)や耐水性は維持され、かつ生分解性は向上した組成
物が得られる。
The biodegradable composition of the present invention contains a biodegradable resin as a continuous phase and plasticized starch as a discontinuous phase.
It has a so-called sea-island structure (the biodegradable resin is the sea and the plasticized starch is the island). Therefore, the surface of the biodegradable composition is covered with the biodegradable resin, and the plasticized starch remains inside the biodegradable resin. Therefore, it is possible to obtain a composition in which the mechanical properties (moldability) and water resistance of the biodegradable resin are maintained and the biodegradability is improved.

【0021】さらに、本発明の組成物は、低水分下で可
塑化した澱粉を用いることで、加熱溶融時の発泡を防ぎ
つつ生分解性を向上させた生分解性複合体を得ることも
できる。上記組成物にこれら海島構造体を取らせるため
には澱粉と樹脂の比率、可塑剤の配合量、加熱溶融条件
等が重要である。
Furthermore, the composition of the present invention can obtain a biodegradable composite having improved biodegradability while preventing foaming during heating and melting, by using starch plasticized under low water content. . In order to allow the above composition to have these sea-island structures, the ratio of starch and resin, the amount of plasticizer compounded, the heating and melting conditions, etc. are important.

【0022】本発明の組成物は樹脂製品の加工に用いら
れる常法により成形することができる。成形品の形状や
用途等には特に制限がない。例えば、シート、フィル
ム、容器等に成形出来る。またペレットに成形し、更に
二次加工用に供することも出来る。これらの中で特にフ
ィルム用途には汎用樹脂と同程度の薄いフィルムを作成
出来ることから各種フィルム例えばコンポストバッグ、
レジ袋及びマルチフィルム、並びに生分解性樹脂の種類
によっては食品包装用フィルムにも使用出来る。
The composition of the present invention can be molded by a conventional method used for processing resin products. There is no particular limitation on the shape or use of the molded product. For example, it can be formed into a sheet, a film, a container or the like. It can also be formed into pellets and used for secondary processing. Among these, various films, such as compost bags, can be used to make thin films that are as thin as general-purpose resins for film applications.
It can be used for plastic bags, mulch films, and food packaging films depending on the type of biodegradable resin.

【0023】[0023]

【発明の効果】本発明によれば、可塑化澱粉と生分解性
樹脂を併用することによって、安価で機械的性質及び成
形性の優れた生分解性樹脂組成物を得ることが出来る。
従来の生分解性樹脂は汎用の熱可塑性樹脂に比べて高価
であり、将来的にも汎用樹脂並みの価格になることは難
しい。本発明により安価な澱粉を添加して複合化させる
ことで生分解性樹脂組成物の価格を低減出来、また生分
解性の促進にもつながり、その応用範囲を汎用樹脂並み
に拡大させることが可能となる。
According to the present invention, by using the plasticized starch and the biodegradable resin in combination, a biodegradable resin composition which is inexpensive and has excellent mechanical properties and moldability can be obtained.
Conventional biodegradable resins are more expensive than general-purpose thermoplastic resins, and it will be difficult to achieve the same price as general-purpose resins in the future. According to the present invention, it is possible to reduce the cost of the biodegradable resin composition by adding inexpensive starch to form a composite, and also to promote the biodegradability, so that the application range can be expanded to the level of general-purpose resins. Becomes

【0024】[0024]

【実施例】以下本発明を実施例によりさらに詳細に説明
する。 実施例1 低水分コーンスターチ(水分2%以下)20重量部、エ
チレングリコール10重量部、脂肪族ポリエステル(昭
和高分子製ビオノール#3010)70重量部をヘキシ
ルミキサー(三井三池化工機製)で1000r.p.m.3分
間混合し、試験用押出機(東洋精機製)にて150℃で
加熱溶融しペレット化した。
The present invention will be described in more detail with reference to the following examples. Example 1 20 parts by weight of low-moisture corn starch (water content of 2% or less), 10 parts by weight of ethylene glycol, and 70 parts by weight of aliphatic polyester (Bionol # 3010 manufactured by Showa High Polymer) were mixed with a hexyl mixer (Mitsui Miike Kakoki) at 1000 rpm. After mixing for a minute, the mixture was heated and melted at 150 ° C. with a test extruder (manufactured by Toyo Seiki) to pelletize.

【0025】得られたペレット試験用卓上プレス(東洋
精機製)を用いて150℃150kgf/cm2 、30
秒間熱圧下で成形し、厚さ約0.4mmのシートを得
た。シートより幅5mm、長さ80mmの短冊状試験片
を切り出し引張り試験機(オリエンテック)を用いて、
機械的性質を調べた。測定条件としては100kgf のロ
ードセルを用い、スパン長を40mmにし、クロスヘッ
ドスピード5mm/minで行った。この引張り試験結
果より各機械的性質を以下の計算式にて算出した。
Using the obtained pellet test bench press (manufactured by Toyo Seiki), 150 ° C., 150 kgf / cm 2 , 30
The sheet was molded under hot pressure for 2 seconds to obtain a sheet having a thickness of about 0.4 mm. A strip-shaped test piece with a width of 5 mm and a length of 80 mm was cut out from the sheet, using a tensile tester (Orientec),
The mechanical properties were investigated. The measurement conditions were a load cell of 100 kgf, a span length of 40 mm, and a crosshead speed of 5 mm / min. Each mechanical property was calculated from the results of this tensile test by the following formulas.

【0026】・引張り強度(kgf/cm2 )=破壊荷
重(kgf)/断面積(cm2 ) ・破壊伸長率(%)−{(破壊伸び−スパン長)/スパ
ン長}×100 ・弾性率(kgf/cm2 )=比例源応力/歪み 結果を表1に示す。
Tensile strength (kgf / cm 2 ) = breaking load (kgf) / cross-sectional area (cm 2 ) -breaking elongation rate (%)-{(breaking elongation-span length) / span length} × 100-elastic modulus (Kgf / cm 2 ) = proportional source stress / strain Results are shown in Table 1.

【0027】比較例1 澱粉及び可塑剤を使用しないで、ビオノーレ#3010
のペレットのみから実施例1と同様にしてシートを得て
機械的性質を調べた。結果を表1に示す。
Comparative Example 1 Bionore # 3010 without starch and plasticizer
A sheet was obtained in the same manner as in Example 1 from only the pellets of Example 1, and the mechanical properties were examined. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示す様に、実施例1では樹脂だけの
比較例1に較べて引張強度は若干低下するものの、伸長
率が大幅に改善しており、樹脂だけの場合のもろい物性
から弾力性のある物性に変わったことを示している。
As shown in Table 1, in Example 1, although the tensile strength was slightly reduced as compared with Comparative Example 1 in which only the resin was used, the elongation rate was significantly improved. It indicates that the physical properties have changed.

【0030】比較例2 ビオノーレ#3010を加えない以外は実施例1と同じ
条件で、ペレット化及びフィルム化を行い、澱粉とエチ
レングリコールからなるフィルムを調製した。
Comparative Example 2 Pelletization and film formation were carried out under the same conditions as in Example 1 except that Bionole # 3010 was not added to prepare a film composed of starch and ethylene glycol.

【0031】耐水性試験 実施例1及び比較例2において調製したフィルム0.1
gを30℃の水20mlの中で16時間振とうした。次
いでそのロ過液のTOC(全有機炭素濃度)を測定し
た。その結果を表2に示す。
Water Resistance Test Films 0.1 prepared in Example 1 and Comparative Example 2 0.1
g was shaken in 20 ml of water at 30 ° C. for 16 hours. Next, the TOC (total organic carbon concentration) of the filtration liquid was measured. Table 2 shows the results.

【0032】[0032]

【表2】 [Table 2]

【0033】表2から明らかなように、比較例2に比較
して実施例1は、ほとんどTOCの値を示さなかった。
すなわち水中においてその澱粉成分は殆んど溶出せず、
耐水性を備えていることが分かる。
As is clear from Table 2, in comparison with Comparative Example 2, Example 1 showed almost no TOC value.
That is, the starch component was hardly eluted in water,
It can be seen that it has water resistance.

【0034】実施例2 低水分コーンスターチ(水分2%以下)40重量部、グ
リセリン20重量部、ポリカプロラフトン(ダイセル化
学工業製プラクセルH−7)40重量部をヘンシルミキ
サーで1000r.p.m.3分間混合し、試験用押出し機
(東洋精機製)にて100℃に加熱溶融しペレット化し
た。得られたペレットを試験用卓上プレス(東洋精機
製)を用いて100℃の温度で処理した以外は実施例1
と同じ条件で試験した。結果表3に示す。
Example 2 40 parts by weight of low-moisture cornstarch (water content of 2% or less), 20 parts by weight of glycerin, and 40 parts by weight of polycaprorafton (Placcel H-7 manufactured by Daicel Chemical Industries) were mixed with a Hensyl mixer at 1000 rpm for 3 minutes. Then, a test extruder (manufactured by Toyo Seiki Co., Ltd.) was used to heat and melt at 100 ° C. to form pellets. Example 1 except that the obtained pellets were treated at a temperature of 100 ° C. using a test bench press (manufactured by Toyo Seiki).
Tested under the same conditions as. The results are shown in Table 3.

【0035】比較例3 澱粉及び可塑剤を使用しないで、プラクセルH−7のペ
レットのみから実施例2と同様にしてシートを得て機械
的性質を調べた。結果表3に示す。
Comparative Example 3 A sheet was obtained in the same manner as in Example 2 except that the starch and the plasticizer were not used and only the pellets of Praxel H-7 were used to investigate the mechanical properties. The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例3 コーンスターチ100重量部にアマニ油を1重量部添加
してブレーンミキサー(宝工機製)を用いて均一に混合
した後100℃に加温された箱型乾燥機を用いて製品水
分が0.3%以下になるように乾燥しアマニ油加工コー
ンスターチを得た。このアマニ油加工コーンスターチ
(水分1.0%)40重量部、ポリエチレングリコール
20重量部、ポリ乳酸(島津製作所製ラクテイ)40重
量部をヘンシルミキサーで1000r.p.m.3分間混合
し、試験用押出し機(東洋精機製)にて180℃に加熱
溶融しペレット化した。得られたペレットを試験用卓上
プレス(東洋精機製)を用いて180℃の温度で処理し
た以外は実施例1と同じ条件で試験した。結果を表4に
示す。
Example 3 1 part by weight of linseed oil was added to 100 parts by weight of cornstarch, and the mixture was uniformly mixed using a brane mixer (manufactured by Takara Machine Co., Ltd.), and then the product was dried using a box dryer heated to 100 ° It was dried so that the water content was 0.3% or less to obtain corn starch processed with flaxseed oil. 40 parts by weight of this linseed oil-processed corn starch (water content of 1.0%), 20 parts by weight of polyethylene glycol, and 40 parts by weight of polylactic acid (Lacti manufactured by Shimadzu Corporation) were mixed with a Hensyl mixer at 1000 rpm for 3 minutes, and a test extruder ( (Toyo Seiki) and heated to 180 ° C to melt and pelletize. The obtained pellets were tested under the same conditions as in Example 1 except that they were treated at a temperature of 180 ° C. using a test bench press (manufactured by Toyo Seiki). Table 4 shows the results.

【0038】比較例4 澱粉及び可塑剤を使用しないで、バイオポールD410
Gのペレットのみから実施例3と同様にしてシートを得
て機械的性質を調べた。結果を表4に示す。
Comparative Example 4 Biopol D410 without starch and plasticizer
A sheet was obtained from the G pellets in the same manner as in Example 3, and the mechanical properties were examined. Table 4 shows the results.

【0039】[0039]

【表4】 [Table 4]

【0040】実施例3では、比較例4と比べ、伸長率が
高くなり、ポリL−乳酸の結晶性の高いことによる脆い
物性が改善され、延伸処理などのコストのかかる物理処
理の必要のないことが示された。
In Example 3, as compared with Comparative Example 4, the elongation rate was higher, the brittle physical properties due to the high crystallinity of poly L-lactic acid were improved, and there was no need for costly physical treatment such as stretching. Was shown.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 生分解性樹脂を連続相とし、可塑化澱粉
を非連続相として含有することを特徴とする生分解性組
成物。
1. A biodegradable composition comprising a biodegradable resin as a continuous phase and a plasticized starch as a discontinuous phase.
【請求項2】 可塑化澱粉が澱粉を可塑剤とともに加熱
混合して得られたものである請求項1記載の組成物。
2. The composition according to claim 1, wherein the plasticized starch is obtained by heating and mixing starch with a plasticizer.
【請求項3】 可塑化澱粉が含水量が5%以下の澱粉を
可塑剤とともに加熱混合して得られたものである請求項
1記載の組成物。
3. The composition according to claim 1, wherein the plasticized starch is obtained by heating and mixing a starch having a water content of 5% or less with a plasticizer.
【請求項4】 澱粉が、未加工澱粉、加工澱粉または澱
粉誘導体である請求項1〜3のいずれか1項に記載の組
成物。
4. The composition according to claim 1, wherein the starch is raw starch, processed starch or starch derivative.
【請求項5】 可塑化澱粉と生分解性樹脂との割合が、
澱粉と生分解性樹脂との乾物基準での重量比が10:9
0〜99:1の範囲である請求項1〜4のいずれか1項
に記載の組成物。
5. The ratio of plasticized starch and biodegradable resin is
The weight ratio of starch and biodegradable resin on a dry matter basis is 10: 9.
The composition according to any one of claims 1 to 4, which is in the range of 0 to 99: 1.
【請求項6】 可塑剤が生分解性を有する高沸点可塑剤
である請求項1〜5のいずれか1項に記載の組成物。
6. The composition according to claim 1, wherein the plasticizer is a high boiling plasticizer having biodegradability.
【請求項7】 生分解性樹脂が脂肪族ポリエステル、ポ
リビニールアルコール及びセルロース類からなる群から
選ばれる少なくとも1種の生分解性樹脂である請求項1
〜6のいずれか1項に記載の組成物。
7. The biodegradable resin is at least one biodegradable resin selected from the group consisting of aliphatic polyester, polyvinyl alcohol and celluloses.
The composition according to any one of claims 1 to 6.
【請求項8】 脂肪族ポリエステル、ポリヒドロキシブ
チレート、ポリカプロラクトン(PCL)、ポリエチレ
ンアジペート(PEA)、ポリテトラメチレンアジペー
ト、ポリグリコール酸(PGA)、ポリ乳酸(PLA)
及びその誘導体、並びにジオールとジカルボン酸を原料
とする脂肪族ポリエステルからなる群から選ばれる少な
くとも1種である請求項7記載の組成物。
8. An aliphatic polyester, polyhydroxybutyrate, polycaprolactone (PCL), polyethylene adipate (PEA), polytetramethylene adipate, polyglycolic acid (PGA), polylactic acid (PLA).
The composition according to claim 7, which is at least one selected from the group consisting of an aliphatic polyester derived from a diol and a dicarboxylic acid, and a derivative thereof.
【請求項9】 澱粉、可塑剤及び生分解性樹脂を、澱粉
(乾物基準)に対して5%以下の水分の存在下、加熱混
合する請求項1記載の組成物の製造方法。
9. The method for producing a composition according to claim 1, wherein the starch, the plasticizer and the biodegradable resin are heated and mixed in the presence of 5% or less of water relative to the starch (dry matter basis).
JP29669195A 1995-11-15 1995-11-15 Biodegradable composition Pending JPH09137069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29669195A JPH09137069A (en) 1995-11-15 1995-11-15 Biodegradable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29669195A JPH09137069A (en) 1995-11-15 1995-11-15 Biodegradable composition

Publications (1)

Publication Number Publication Date
JPH09137069A true JPH09137069A (en) 1997-05-27

Family

ID=17836842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29669195A Pending JPH09137069A (en) 1995-11-15 1995-11-15 Biodegradable composition

Country Status (1)

Country Link
JP (1) JPH09137069A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029050A (en) * 2002-03-29 2002-04-17 주식회사 나선하이테크 Disasemble resin and the manufacturing method for thereof
JP2007537324A (en) * 2004-05-11 2007-12-20 アデプト ポリマーズ リミテッド Extrusion method
EP3118264A4 (en) * 2014-03-11 2017-10-11 Toyo Seikan Group Holdings, Ltd. Resin molded article to be thrown in water
JP2018053192A (en) * 2016-09-30 2018-04-05 日本コーンスターチ株式会社 Esterificated starch and starch-based plastic composition
CN113773617A (en) * 2021-08-12 2021-12-10 广州市聚赛龙工程塑料股份有限公司 PBAT (poly (butylene adipate-co-terephthalate)) based material as well as preparation method and application thereof
CN114395270A (en) * 2022-02-08 2022-04-26 湖北飞歌科技股份有限公司 Nano modified starch polyvinyl alcohol completely degradable plastic and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029050A (en) * 2002-03-29 2002-04-17 주식회사 나선하이테크 Disasemble resin and the manufacturing method for thereof
JP2007537324A (en) * 2004-05-11 2007-12-20 アデプト ポリマーズ リミテッド Extrusion method
EP3118264A4 (en) * 2014-03-11 2017-10-11 Toyo Seikan Group Holdings, Ltd. Resin molded article to be thrown in water
JP2018053192A (en) * 2016-09-30 2018-04-05 日本コーンスターチ株式会社 Esterificated starch and starch-based plastic composition
US11203648B2 (en) 2016-09-30 2021-12-21 Japan Corn Starch Co., Ltd. Esterified starch and starch-containing plastic composition
CN113773617A (en) * 2021-08-12 2021-12-10 广州市聚赛龙工程塑料股份有限公司 PBAT (poly (butylene adipate-co-terephthalate)) based material as well as preparation method and application thereof
CN114395270A (en) * 2022-02-08 2022-04-26 湖北飞歌科技股份有限公司 Nano modified starch polyvinyl alcohol completely degradable plastic and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104861210B (en) A kind of starch base full biodegradable resin of hydrophobic stabilization and preparation method thereof
US8232348B2 (en) Masterbatch and polymer composition
JP4687129B2 (en) Aliphatic polyester resin composition and molded article thereof
JP4553875B2 (en) Biodegradable resin composition and biodegradable film
KR100806985B1 (en) Aliphatic polyester composition and flexible products
EP2493975B1 (en) Starch-based biodegradable polymer; method of manufacture and articles thereof
WO2013029018A1 (en) Macrophyte-based bioplastic
KR20130002591A (en) Biodegradable mulching film
Fang et al. The use of starch and its derivatives as biopolymer sources of packaging materials
JPWO2013073403A1 (en) Biodegradable resin composition and biodegradable film
CN113631657A (en) Polyhydroxyalkanoate resin composition, molded article thereof, and film or sheet
JP7110228B2 (en) biodegradable film
JP2005281678A (en) Aliphatic polyester resin composition and its molded product
KR100428953B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film using said composition
US5691403A (en) Biodegradable compositions
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
JPH09137069A (en) Biodegradable composition
KR102116694B1 (en) Renewable resin composition and product prepared from the same
JPH11241009A (en) Polylactate resin composition
KR102599541B1 (en) Composition for mulching film with improved biodegradability in soil conditions after crop cultivation, manufacturing method thereof, and mulching film prepared therefrom
JP3078478B2 (en) Composition for biodegradable molded article and method for producing biodegradable molded article
JP2009227882A (en) Production method of biodegradable film with combined softness and strength by enhancing compatibility, and its composition
JPH09294482A (en) Biodegradable pot for raising seedling
JP2000109665A (en) Production of organic-containing biodegradable composition
JP6845852B2 (en) Method for Producing Aliphatic Polyester Resin Composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040218